
HAL Id: hal-03022144
https://hal.science/hal-03022144v1

Submitted on 24 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Survey of Performance Acceleration Techniques for
Network Function Virtualization

Leonardo Linguaglossa, Stanislav Lange, Salvatore Pontarelli, Gábor Rétvári,
D. Rossi, Thomas Zinner, Roberto Bifulco, Michael Jarschel, Giuseppe Bianchi

To cite this version:
Leonardo Linguaglossa, Stanislav Lange, Salvatore Pontarelli, Gábor Rétvári, D. Rossi, et al.. Survey
of Performance Acceleration Techniques for Network Function Virtualization. Proceedings of the
IEEE, 2019, �10.1109/JPROC.2019.2896848�. �hal-03022144�

https://hal.science/hal-03022144v1
https://hal.archives-ouvertes.fr


1

Survey of Performance Acceleration Techniques for
Network Function Virtualization

Leonardo Linguaglossa†, Stanislav Lange∗, Salvatore Pontarelli§, Gábor Rétvári¶, Dario Rossi†,
Thomas Zinner‖, Roberto Bifulco∗∗, Michael Jarschel††, Giuseppe Bianchi‡

†Telecom ParisTech, ∗University of Würzburg, ‡CNIT (National Inter-University Consortium for
Telecommunications) / University of Rome “Tor Vergata”, §Axbryd / CNIT (National Inter-University

Consortium for Telecommunications), ¶MTA-BME Information Systems Research Group, ‖Technical University
of Berlin, ∗∗NEC Laboratories Europe, ††Nokia Bell Labs

Abstract—The ongoing network softwarization trend holds
the promise to revolutionize network infrastructures by mak-
ing them more flexible, reconfigurable, portable, and more
adaptive than ever. Still, the migration from hard-coded/hard-
wired network functions towards their software-programmable
counterparts comes along with the need for tailored optimizations
and acceleration techniques, so as to avoid, or at least mitigate,
the throughput/latency performance degradation with respect to
fixed function network elements. The contribution of this article
is twofold. First, we provide a comprehensive overview of the
host-based Network Function Virtualization (NFV) ecosystem,
covering a broad range of techniques, from low level hardware ac-
celeration and bump-in-the-wire offloading approaches, to high-
level software acceleration solutions, including the virtualization
technique itself. Second, we derive guidelines regarding the
design, development, and operation of NFV-based deployments
that meet the flexibility and scalability requirements of modern
communication networks.

Index Terms—NFV, Performance Acceleration, Fast Packet
Processing, Offloading, Virtualization.

I. INTRODUCTION

Current communication and networking use cases such as
industrial Internet, Internet of Things (IoT), video streaming,
and vehicle-to-everything communication confront operators
with numerous challenges. On the one hand, an ever growing
number of devices and services calls for scalable systems that
can cope with the increasing resource demands. On the other
hand, the heterogeneity of demands and communication types
as well as their temporal dynamics require a high degree of
adaptability in order to operate the network in an efficient
manner while meeting performance criteria.

A possible solution for overcoming the limitations of to-
day’s network architectures and addressing these challenges is
offered by ecosystems that are built around the paradigms of
Software Defined Networking (SDN) and Network Functions
Virtualization (NFV). While SDN provides a flexible and pro-
grammable infrastructure, NFV replaces dedicated hardware
middleboxes with software instances that can be deployed,
scaled, and migrated in a dynamic fashion. However, using
software that runs on common-off-the-shelf (COTS) hardware
to replace special-purpose ASIC-based hardware can have a
severe performance impact, e.g., in terms of key performance
indicators such as throughput and latency, affecting the overall
end-to-end application performance. Hence, recent research

efforts focus on various acceleration techniques for Virtual
Network Functions (VNFs) that address these performance
issues at different levels. These include software-based ap-
proaches that optimize packets’ traversal through the software
stack after their reception at the network interface card, as well
as approaches that offload parts of the processing pipeline to
programmable hardware. Furthermore, acceleration techniques
can be specialized in particular aspects of the processing
pipeline and therefore improve the performance regarding
resources such as compute, memory, or storage.

One particular problem that arises in such ecosystems is the
choice of an appropriate acceleration technique given a specific
combination of network function and virtualization context.
There are two main sources of heterogeneity that complicate
this task. First, network functions differ significantly w.r.t. the
type and intensity of their resource usage, e.g., compute-heavy
transcoding operations as opposed to caches that require a
large amount of storage I/O. Second, the virtualization stack,
on which the corresponding deployment is built, has a large
impact on the availability and applicability of acceleration
techniques. Figure 1 shows a compact representation of the
scenario considered in the remainder of this paper. We provide
in the figure a reference to the Sections devoted to the
description of the components of this generic architecture,
ranging from pure software components that offer a high
degree of programmability to pure hardware devices that have
low or no programmability. From a top-down point of view,
VNFs are software components built on top of one or more
host systems, mainly consisting of commodity PCs. Section
II focuses on the ecosystem of VNFs, analyzing the most
common network functions and identifying some underlying
building blocks. The host system is in turn made of several
components like CPU, memory, and storage that are tightly
coupled: as an example, the main memory might be split into
multiple Non-Uniform Memory Access (NUMA) nodes, and
the computing unit may consist of several processors, attached
to different NUMA nodes. The host system represents a layer
on top of which software components such as VNFs can be
placed: Section III describes existing pieces of software in
scope with the NFV philosophy, as well as the most important
software acceleration techniques. Finally, in the lower part of
this hierarchy, Network Interface Cards (NICs) are responsible
for the actual data exchange among host systems and there-



2

VIM

Accelerator Driver(s)

AA 
Backend

Compute
Agent

VNF(C)

Accelerator Abstraction
(AA) Frontend, e.g. virtio VNFM

Acceleration
Enabler

Compute
Management 

Function

Acceleration
Management 

Controller

VNF(C)

Accelerator Abstraction
(AA) Frontend, e.g. virtio

Network 
Management 

Function

Network-attached Accelerator

L1

CPU
cores

Multicore
processor

PCIe bus
SmartNIC

Server Hardware

Bare-metal Hypervisor

SDN Switch

VIM

NFVONFVO

Accelerator
Card

L1

L2

Sec. II

D
D

R
 M

e
m

o
ry

Socket

L3 cache

NUMA node(s)

On-NIC accel.

Sec. III

Sec. IV

Figure 1: Overview of NFV systems considered in this work. From a top-down perspective, the interaction among the VNFs and
the components responsible for the management are explored in Sec.II. The acceleration techniques can be exploited, via the
presence of accelerated drivers, after the deployment of VNFs on a server hardware: the most important software acceleration
techniques are explored in Sec. III. Finally, hardware acceleration, which can rely on SmartNICs or external accelerators, are
described in Sec. IV.

fore, for VNF communication. For some applications, Field-
Programmable Gate Arrays (FPGAs) or other programmable
hardware can be used to offload part of the computation
typically provided by the software components. Although all
network function may reside in the top part of Figure 1, the
virtualized function implemented may have an effect on a
different part of the hardware/software hierarchy. Hence an
interesting problem may arise: can all VNFs exploit the same
typology of acceleration techniques or there exists some class
of VNFs for which a specific acceleration technique is better?

We make the following contributions in this article. On the
one hand, we provide a comprehensive overview of the NFV
ecosystem, i.e., functions that are virtualized, virtualization
techniques that provide abstractions for accessing physical
resources, and orchestration frameworks that integrate all
components into the ecosystem. We further decompose VNFs
into functional blocks: the characterization of both existing and
novel NFs allows to identify potential performance bottlenecks
and, consequently, assess the feasibility and expected benefits
coming from acceleration mechanisms. In a similar fashion,
we survey acceleration techniques. In the case of software
acceleration, we provide an overview of mechanisms, their
focus and benefits, as well as various tools and frameworks
that utilize them. Hardware acceleration mechanisms are sub-
divided into standard NICs with basic offloading capabilities,

SmartNICs that offer FPGA-like programmability, as well
as domain-specific programming abstractions for NFs. Based
on the outlined survey, we derive guidelines for the design,
development, and operation of NFV ecosystems that can cope
with heterogeneous and dynamic workloads in an efficient
manner. In addition to the general view of the NFV ecosystem,
we choose one exemplary VNF — the Next Generation Fire-
wall (NGFW) — which leverages a large number of functional
blocks, and that thus represents a good example to illustrate
how these guidelines translate to a particular use case.

In the remainder of this manuscript we cover the NFV
ecosystem (Section II) and survey software (Sections III)
and hardware (IV) acceleration techniques. We next present
guidelines that are extracted from this survey (Section V) and
conclude the work (Section VI).

II. NETWORK FUNCTION VIRTUALIZATION ECOSYSTEM

Numerous areas of networking are targeted by the NFV
paradigm [1], [2]. These range from traditional middle-
boxes [3] like NATs and firewalls to mobile network func-
tions [4] such as Serving or Packet Gateways (SGW, PGW)
and Mobile Management Entities (MME), as well as fur-
ther extending to customer premises equipment and media
transcoders. In this section, we provide a structured overview
of the NFV ecosystem in order to cope with the resulting



3

heterogeneity in terms of requirements for an efficient oper-
ation of individual functions as well as management of their
coexistence on a shared physical substrate.

First, we break down VNFs into common functional build-
ing blocks (Section II-A) to identify consumed resources,
possible performance bottlenecks, and therefore opportunities
for acceleration. This modular approach allows for a straight-
forward classification of new functions and their building
blocks. Furthermore, guidelines and insights for functions that
are composed of the same building blocks can be transferred
between functions. Second, we discuss different virtualization
options (Section II-B) and how they are used to achieve shar-
ing and isolation of network, compute, storage, and memory
resources. Finally, we provide a brief overview of options
regarding management and orchestration mechanisms (Section
II-C) alongside their compatibility with the aforementioned
virtualization mechanisms.

A. Set of Network Functions and Building Blocks

As outlined above, there are numerous different VNF types
and areas of use. Specialized surveys and articles provide in-
formation regarding individual functions and their details [1],
[2], [4], [5]. In contrast, we first (1) identify common building
blocks that can be used to compose and classify a particular
function. We then (2) demonstrate how this classification
and decomposition can be applied to the Next Generation
Firewall (NGFW) which features a large number of these
building blocks, and later (3) present guidelines regarding
acceleration options for the NGFW.

1) Individual functions and blocks: Each building block
is characterized by a certain degree of resource utilization
(e.g., compute, memory, and storage) as well as the posi-
tion within a function at which the corresponding action is
usually performed. For several VNFs, Table I displays their
decomposition into building blocks alongside the each blocks’
characteristics, which are outlined next.

Header read. Basically all network functions that are con-
sidered in this work need to parse packet headers as a part
of their processing and decision making process. Headers are
typically compact and well defined, often in binary or Type
Length Value (TLV) format, for which this operation is neither
compute- nor memory-intensive and requires no access to
storage.

Header write. In order to perform the tasks of a Network
Address Translation (NAT) function or enable tunneling for
Virtual Private Network (VPN), or even for simple IP forward-
ing, NFs also need to modify the content of packet headers.
Although the complexity of such a write access depends on
the particular type of operation and incurs a larger CPU and
memory usage when compared to a read-only header access,
it still amounts to a negligible factor on modern systems.

Table lookup. Often, to make decisions regarding network
actions (e.g., like the appropriate forwarding of an IP packet or
an Ethernet frame), a lookup based on some packet properties
(e.g., the IP or Ethernet destination address) in a specific
table (e.g., typically implemented as tries in the case of IP
forwarding, or as hash-based data structures for Ethernet)

is necessary. These tables are typically kept in memory, so
that no additional storage is required. Hence, CPU usage
and memory I/O are higher, particularly in the case of larger
forwarding tables.

Payload inspection. More sophisticated actions such as
Deep Packet Inspection (DPI) that are performed by an In-
trusion Detection System (IDS) such as Bro [6] or Snort [7]
or by an NGFW, take into account packet payload to identify
malicious content and applications. Depending on the com-
plexity of the performed analysis, this block can be both highly
compute- and memory-intensive.

Payload modification. Similarly to the case of header read
and write operations, payload modification requires additional
CPU cycles for copying packet contents to memory. Fur-
thermore, functions like TCP optimizers and VPNs perform
compute-intensive tasks related to compression and encryp-
tion, respectively.

Flow state tracking. Although they perform actions on a
per-packet basis, several functions need to maintain per-flow
state information. This information can range from simple
header characteristics in a NAT lookup-table, to data that is
more demanding in terms of CPU and memory resources
like a short-term history of a flow’s packets for tasks like
monitoring and intrusion detection [6], [8] or resource sharing
for concurrent flows [9].

Flow actions. Furthermore, functions such as firewalls and
load balancers perform actions on a per-flow basis. These
include flow termination or redirection, are usually performed
at the end of a function, and consume few resources.

Session management. Several functions like Intrusion Pre-
vention Systems (IPS), need information on multiple flows in
order to reconstruct and analyze the corresponding applica-
tion sessions and persistently store data that is relevant for
accounting purposes. These tasks can incur an even higher
demand for CPU and memory resources than their per-flow
counterpart. Similarly to the case of flow state tracking, some
information might be logged to disk.

Disk access. A subset of NFs heavily depends on read and
write access to persistent storage (e.g. nDPI [10]). These NFs
include caches as well as network probes that capture and log
traffic traces, at either packet or flow-level.

Signal processing. Finally, CPU-intensive signal processing
tasks like the Fast Fourier Transform (FFT) need to be per-
formed by Cloud Radio Access Network (C-RAN) functions
such as the Base Band Unit (BBU) in a virtualized Base
Station (BS).

As mentioned above, building blocks can not only be
mapped to the consumption of a particular resource but also
to a position within a function. This factor is relevant when
considering to accelerate a building block since its position
can affect the feasibility and performance gain of the acceler-
ation. While we acknowledge that the position of a building
block can vary from function to function, we observe certain
patterns, e.g., reading headers and payloads being most likely
performed at the beginning of a processing pipeline whereas
flow-level actions are usually performed at the end.

2) Next Generation Firewall: In order to illustrate the
characterization of a network function by means of its building



4

Table I: Network functions, the building blocks they are composed of, and characteristics of the building blocks w.r.t. their
resource usage. Acronyms: Base Station (BS); Baseband Unit (BBU); Deep Packet Inspection (DPI); Intrusion Prevention
System (IPS); Firewall (FW); HTTP Header Enrichment (HTTP HE); Intrusion Detection System (IDS); Network Address
Port Translation (NAPT); Next Generation Firewall (NGFW); TCP Optimizer (TCP Opt); Virtual Private Network (VPN).

Building Blocks
Headers Table Payload Flows Session Misc

Network
Function

(1)
Header
Read

(2)
Header
Write

(3)
Table

Lookup

(4)
Payload

Inspection

(5)
Payload

Mod.

(6)
Flow State
Tracking

(7)
Flow

Actions

(8)
Session
Mgmt.

(9)
Disk

Access

(10)
Signal
Proc.

BS / BBU 3

Cache 3 3 3 3 3 3

DPI, IPS 3 3 3 3 3 3

FW, Load Balancer 3 3 3 3

HTTP HE 3 3 3 3 3

IDS 3 3 3 3 3

Monitor 3 3 3 3 3 3

NA(P)T 3 3 3 3

NGFW 3 3 3 3 3 3 3 3

Proxy 3 3 3 3 3 3

Shaper 3 3 3 3 3

TCP Opt, VPN 3 3 3 3 3 3 3

Transcoder 3 3 3 3 3 3

Characteristic
(1)

Header
Read

(2)
Header
Write

(3)
Table

Lookup

(4)
Payload

Inspection

(5)
Payload

Mod.

(6)
Flow State
Tracking

(7)
Flow

Actions

(8)
Session
Mgmt.

(9)
Disk

Access

(10)
Signal
Proc.

Compute ε ε + + / ++ ++ + / ++ ε ++ + ++

Memory ε ε + + / ++ + / ++ + / ++ ε ++ + + / ++

Storage - - - - - + - + ++ -

Position Start End Start Start Middle Middle End Middle Middle Middle

“-”, “ε”, “+”, and “++” represent no, low, medium, and high usage of the corresponding resource, respectively.

blocks, we consider the Next Generation Firewall (NGFW)
that is outlined in [11]. In addition to standard firewall features,
the NGFW is also capable of performing DPI and encompasses
IPS as well as Secure Socket Layer (SSL) VPN functions
and Man-in-The-Middle (MITM) proxying capabilities. We
deliberately choose this VNF due its wide range of func-
tionalities and the resulting complexity of characterizing it
in its entirety. From the capabilities of the NGFW, we can
identify its building blocks and requirements: after reading
the header of a received packet (1), the NGFW needs to
check the packet’s flow and / or session membership (3, 6,
8). Furthermore, a scan of the packet’s payload might be
necessary (4) before deciding whether to forward, redirect,
or drop the packet (7). Finally, packet headers need to be
rewritten (2), sometimes also with payload modification (5)
e.g., in the case of proxying or for encryption in the case of
VPN tunneling.

B. Virtualization Techniques

In order to fully reap the flexibility and scalability benefits
of the NFV paradigm, the underlying infrastructure needs
to expose access to a shared resource pool. Simultaneously,
it needs to maintain isolation between different tenants and

dynamically adapt the resource allocation to VNF instances
for scalability and efficiency. In this context, conventional
host resources such as compute, memory, and storage are
virtualized alongside networking resources, i.e., links between
nodes with delay and bandwidth guarantees. In the following,
we provide an overview of virtualization mechanisms from
these two categories and refer to them as (1) hardware and
(2) network virtualization, respectively. The choice of options
from these two categories results in different trade-offs regard-
ing costs, performance, and flexibility.

1) Hardware Virtualization.: The main goal in the context
of hardware virtualization consist of providing a functional
equivalent of the original hardware to the VNF while limiting
performance degradation. This is achieved by the virtualization
layer that resides between the physical and virtualized in-
frastructure. Options regarding its implementation range from
different hypervisors to container-based approaches which
offer different degrees of resource and isolation, security, and
performance [2], [12].

Hypervisors can reside at different locations in the system.
On the one hand, hypervisors such as Xen [13] and ESXi [14]
run directly on the physical machine and directly handle
hardware access as well as interrupts. On the other hand,



5

hypervisors like KVM [15] require the presence of kernel
modules in the host OS and kernel processes are responsi-
ble for handling events and interrupts. Due to the different
numbers of intermediate abstraction layers, implementation
details, and the heterogeneity of possible use cases, there is
no single hypervisor that performs best in all scenarios and
therefore should be chosen carefully to match the particular
requirements [16]. Furthermore, high-speed I/O virtualization
plays a crucial role for meeting performance requirements and
maximizing flexibility when VNFs are run inside VMs [17].
To this end, drivers such as virtio [18] and ptnet [19] provide
a common device model for accessing virtual interfaces.

Recently, container-based technologies like Docker [20]
have gained popularity, that instead share the kernel of the
host OS and provide isolation through segregated process
namespace (anciently known as BSD jails [21]). On the one
hand, containers avoid the overhead of providing an entire
guest OS, enabling a flexible and lightweight deployment. In
particular, network ports or entire interfaces can be directly
assigned to a container without incurring an overhead as in
the case of hypervisor-based solutions. On the other hand,
sharing the kernel also raises concerns regarding security
and (performance) isolation between instances. Finally, worth
mentioning are also unikernel [22] as well as serverless [23],
[24] technologies for the virtualization of network functions,
that sits at the opposite side of the spectrum as the former
targets full flexibility with light-weight monolithic kernels that
run on a hypervisor such as Xen, whereas the latter targets
performance by trading it for a more constrained environment
offering a set of Application Program Interface (APIs). All
these technologies are still competing, and there is no single
candidate that fits all use-cases, which makes the ecosystem
very rich.

2) Network Virtualization.: In a similar fashion to hardware
virtualization, network virtualization (NV) accomplishes an
abstraction of network resources and therefore acts as an
enabler for fully programmable networks whose entire stack
can be provisioned in a flexible manner. The survey in [25]
provides an overview of NV approaches that are categorized
w.r.t. several characteristics. These include the network tech-
nology that is virtualized, the layer in the network stack at
which virtualization is performed, as well as the granularity
of virtualized entities. Depending on the envisioned use case,
operators need to decide on an NV technology that satisfies
the corresponding requirements.

An additional step in the evolution of NV consists of
combining the NV idea of sharing a physical substrate among
several stakeholders with the SDN paradigm. By introducing
an SDN hypervisor, it is possible to virtualize SDN-based
networks and therefore allow multiple tenants to deploy their
own SDN-based network including their own controllers while
operating on one common physical infrastructure. A survey of
SDN hypervisors is available in [26]. The main distinctions
between different of these hypervisors include their architec-
ture, the network attributes that are abstracted, as well as the
capabilities in terms of isolation between slices.

Our work leverages the technologies described in [26] and
clearly build upon [25]: specifically, we go one step further

with respect to [25] by understanding how functions can be
implemented and, especially, accelerated with either software,
hardware or hybrid approaches.

C. Integration into the Orchestration Context
Given the abstractions and flexibility of the outlined virtual-

ization mechanisms, management and orchestration (MANO)
techniques can attach to interfaces that are defined in frame-
works such as ETSI MANO [27] and adapt the resource
allocation of individual VNF types and instances in a dynamic
fashion. Additionally, knowledge regarding a VNF’s resource
requirements and performance levels given a specific resource
enables scaling VNFs according to observed demands. An
overview of efforts from research projects, standardization
bodies, and both open-source and commercial implementations
is provided in [28].

A concrete example regarding the integration of hardware
acceleration mechanisms into the MANO context is outlined
in [11]. In the presented use case, a Virtual Infrastructure Man-
ager (VIM) enables the elastic deployment of an IPSec tunnel
termination VNF by combining two types of information. On
the one hand, it has knowledge of nodes’ CPU cores, available
instruction sets, and hardware acceleration capabilities. On
the other hand, the VNF descriptor provides the performance
levels in terms of possible bandwidth given different numbers
of CPU cores, instruction sets, and hardware acceleration.

Whereas orchestration is out of the scope of this survey,
[11], [28] testify that effort is ongoing into making it possible
to harness acceleration techniques in a seamless way. It is thus
important to understand which of the software or hardware
acceleration are suitable for VNFs, and more generally to
outline a pattern for the design and implementation of new
VNFs that can make the most out of the available acceleration
techniques.

III. SOFTWARE ACCELERATION TECHNIQUES

To bridge the performance gap between specialized hard-
ware middleboxes and software instances that run on COTS
hardware while retaining the flexibility of the latter, the past
two decades have seen tremendous advances in software
acceleration techniques (Section III-A). This sparked a quick
evolution of pure-software user-space network stacks and NFV
frameworks, which attain multi-gigabit performance on COTS
platforms (Section III-B).

A. Software Acceleration
We review the most important software acceleration tech-

niques in the context of network function virtualization. In
the below discussion we make a distinction between pure
software acceleration techniques, program code optimization
approaches affecting the parts of the network stack, including
firmware, driver code, operating system code, and the user-
facing network infrastructure, that can be directly modified
by a user or a vendor without having to upgrade or modify
the underlying hardware, and hardware-assisted acceleration
techniques that require explicit support in hardware. Table II
provides a compact summary of the techniques and their
benefits.



6

Table II: Benefits of software acceleration techniques. Acronyms: Zero-copy (ZC); Mempools (MP); Hugepages (HP);
Prefetching (PF); Cache alignment (CA); Lock-free multithreading (LFMT); Lightweight threads (LT); Multiloop (ML);
Branch prediction (BP); Receive-side scaling (RSS); Flow hash (FH); Single-Instruction Multiple-Data (SIMD); Direct Data
I/O (DDIO); Single-root input/output virtualization (SR-IOV).

Poll I/O
Batch

Memory Compute
Batch

Threading Coding NIC-support CPU-support

ZC MP HP PF CA LFMT LT ML BP RSS FH SR-IOV SIMD DDIO

Reduce memory
3 3 3 3 3

access

Optimize memory
3 3 3

allocation

Share overhead
3 3

of processing

Reduce interrupt
3 3

pressure

Horizontal
3 3 3 3

scaling

Exploit CPU
3 3 3 3

cache locality

Reduce CPU
3 3 3 3

context switches

Fill CPU
3 3 3 3

pipeline

Exploit HW
3 3 3 3

computation

Simplify thread
3 3

scheduling

1) Pure Software Acceleration: Polling techniques, as op-
posed to an interrupt-driven design, have been used for quite
some time to speed up Network Interface Card (NIC) drivers.
In the interupt-driven mode, the NIC driver is managed by
the operating system in the kernel-space or a user-space
application via kernel-bypass, and is responsible for pushing
received packets to main memory and to interrupt the CPU to
signal the availability of new packets to process. The CPU
then enters a special interrupt-handling routine (IRQ) and
starts VNF processing. However, the corresponding context
switches may cause non-negligible overhead at high loads
and the interrupts may saturate the CPU. Interrupt-mitigation
techniques have a relatively long history: one such technique
is represented by interrupt-coalescing [29] which waits for
a fixed timer for further packet reception before raising an
interrupt. Yet, a more efficient technique to avoid overloading
the CPU at very high packet rates is switching to polling mode,
whereby the CPU periodically checks for pending packets
(pull model) without the need for the NIC to raise an interrupt
(push model). Polling the NIC in a tight loop, however, results
in 100% CPU usage regardless of the traffic load. Support
for poll-mode drivers has been introduced in BSD at least
since 2001 [30] and interrupt coalescing is also available in
the Linux kernel [31].

I/O batching is another technique that is commonly used in
poll-mode NIC drivers to mitigate interrupt pressure at high
load. In batched mode, the NIC does not receive or transmit
packets individually, but operates by aggregating several pack-
ets into a batch. Upon reception of a packet, the NIC writes it
into a hardware queue and then the whole batch is pulled by

the CPU in a single chunk. In the reverse direction, the CPU
may wait for multiple packets to accumulate in the transmit
queue before performing an I/O operation. Accordingly, I/O
batching overcomes the bottleneck that exists between the
NIC and the main memory by amortizing I/O costs over
multiple packets. The price to pay is an increased per-packet
latency, due to packets having to wait in the queues until a
complete batch is formed. First used in PacketShader [32] and
DoubleClick [33], I/O batching has become widely adopted
by all major high-speed packet processing frameworks to
today [34]–[36].

Optimizing memory management is another technique that
may significantly improve the performance of VNFs. Upon
finalizing packet reception, the kernel needs to make the
received data available for a user-space application to consume
it. This operation may be an additional bottleneck in traditional
network stacks, since the memory region where packets can
be written by the NIC via Direct-memory Access (DMA) may
not overlap with the user-space memory, incurring a memory
copy overhead. Several techniques exist to overcome this lim-
itation. A zero-copy network receive/transmit code-path [35]–
[37] mitigates costly memory operations by mapping DMA
regions into user-space memory and passing only lightweight
packet descriptors between the kernel and the application; such
descriptors may contain a pointer to the packet buffer plus
some additional metadata.

Memory management, i.e., the allocation of new packet
buffers or the freeing of unused ones, may also be a source
of significant overhead. To avoid memory management in the
fast packet processing path, modern network stacks typically



7

use pre-allocated packet buffers. A set of memory pools is
created during startup and this memory area is never freed:
such mempools are usually organized into ring buffers where
packets are written to, and read from, in a sequential fashion.
Mempools are usually allocated from hugepages whose size
typically ranges from 2 MB to 1 GB to prevent misses in
the Translation Lookaside Buffer (TLB). Care must be taken,
however, to place mempools to the Non-Uniform Memory
Access (NUMA) node where the majority of memory accesses
will be made during runtime, otherwise performance may
incurr the penalty of accessing faraway memory across NUMA
nodes. Network programmers should also take care of adopting
cache-friendly data structures: for instance hash-table buckets
should always be sufficiently aligned to cache lines and should
occupy as few cache lines as possible in order to maximize
CPU cache hit rate, and compressed data structures may be
used to reduce the overall memory footprint of performance-
sensitive data [38]. Finally, prefetching data ahead of time
from main memory may substantially contribute to increased
performance, by avoiding CPU stalls (i.e., that the execution
of CPU instructions is blocked due to memory access).

Compute batching is a technique that can be used to enhance
the CPU pipeline performance [34], [39]. Traditional network
engines typically process network traffic on a per-packet basis:
network functions in the processing path are sequentially
applied to a packet until the final forwarding decision is made.
With compute batching, the notion of I/O batching is extended
to VNF processing, in that network functions are implemented
from the outset to work on entire bursts of packets rather
than on a single packet. Similarly to I/O batching, compute-
batching helps mitigating the overhead of invoking VNFs
(e.g., context switches and stack initialization) as well as
providing additional computational benefits. First, compute
batching optimizes the use of the first-level CPU instruction
cache: when a packet batch enters a network function, the
corresponding code is fetched into the L1 instruction cache
upon processing the first packet, and the instruction cache
remains warm during processing the rest of the packet burst.
Furthermore, using compute batching allows to take advantage
of data-level parallelism primitives available in modern CPUs
(see SIMD later). Finally, compute batching also allows better
use of the CPU processing pipeline, as it facilitates the CPU
pipeline to be consistently full, which allows the CPU to
execute multiple instructions within the same clock cycle [34].

Exploiting CPU parallelism has become imperative given
that, to manage CPU power dissipation, processor makers
started favoring multi-core chip designs. Thus, network appli-
cations must be written to exploit a massively multi-threaded
design. Packet processing presents a workload that is ideally
suited for parallelization, in that each packet or packet batch
may be serviced by a separate execution thread, but care
must be taken to avoid packet reordering, and especially to
preserve flow-coherence (in both the forward and backward
flow directions). To maximize multicore scalability, it is im-
perative to avoid synchronization between threads as much
as possible, e.g., by preferring lightweight mutual exclusion
primitives like read-copy-update (RCU) over mutexes and
semaphores, and leveraging atomic instructions, lock-free data

structures, and per-CPU variables. Lock-free parallelism is
tightly coupled with the availability of multiple hardware
queues, since different CPUs can be attached to different
hardware queues (see RSS later) to operate on different traffic
subsets. More recently, frameworks such as DPDK [35] started
complementing the fully-fledged preemptive multitasking of-
fered by the underlaying OS, with the introduction of a
simpler cooperative multitasking model. With standard run-
to-completion execution, each packet is assigned to a separate
thread that performs a complete VNF processing until the final
forwarding decision. In a cooperative environment, a thread
can implement a subset of functionalities, and can decide when
to pass the packet to another thread for further processing. This
was made possible by the introduction of lightweight threads,
making the VNF scheduler logic much simpler and faster.

Programming best-practices also becomes imperative for
network application developers, as some coding techniques
are known to help compilers to accelerate packet processing.
One such best-practice is called multi-loop programming,
an evolution of the conventional loop unrolling practice by
explicitly writing the program control flow in a way as to
handle packets in groups of two or four in each iteration (dual-
loop or quad-loop, respectively). Loop unrolling has two main
goals: the first is to reduce the number of ”jump” instructions
(that can introduce idle slots in the CPU pipelines). The second
goal is to carefully prefetch new packets while operating
on already prefetched packets: this coding practice helps the
compiler to organize the code in a way as to maximize
the usage of the CPU pipeline [34]. In addition, explicitly
inlining frequently accessed code may allow to save on run-
time function call overhead, at the cost of a slightly increased
program text size [40]. Finally, using workload-related insights
a network programmer may manually annotate the branches
of conditional program code more likely to execute during
runtime, this way improving the CPU’s branch prediction
success rate. Using such programmer-provided annotations,
the compiler can place the likely execution branch right after
the conditional expression and let the CPU automatically fetch
the corresponding code into the CPU pipeline; in contrast, the
CPU pipeline must be tediously invalidated and repopulated
with the correct branch code in case of any mispredicted
branch, possibly leading to a significant performance penalty.

2) Hardware–supported Functions in Software: An im-
portant class of acceleration techniques is constituted by
hardware-assisted functions, whereby the hardware exposes
certain functionalities that can be used to speed up the execu-
tion of software. We distinguish two categories in this context,
depending on whether the assistance is offered by the NIC or
by the CPU, that are reported in the rightmost part of Table II.

NIC-assisted acceleration techniques range from virtualiza-
tion support and direct DMA to NIC-driven parallel packet
dispatching. Modern NICs contain a fast packet parser to
compute flow level hashes in hardware, maintain multiple
hardware packet queues called Receive Side Scaling (RSS) and
expose packet counters in registers. Access to this hardware
functionality is typically implemented in the low-level NIC
drivers. Use of register-backed packet counters reduces mem-
ory overhead, while RSS is instrumental to multi-threading



8

process, as the packet RSS hash may be used by the NIC to
dispatch packets to different CPU cores, in order to leverage
flow-level parallelism and avoid packet reordering. RSS hashes
ensure that packets of a single transport-level connection
(and, depending on the RSS seed, of both direction of the
connection) will always be scheduled to the same CPU, which
also enforces locality of data structures usage. Furthermore,
newer NICs can take advantage of Data Direct I/O (DDIO),
which allows packets to be transferred directly into the last-
level CPU caches instead of into the main memory, preventing
a costly cache miss when the CPU starts processing the packet.
Single root input/output virtualization (SR-IOV) in addition
lets the NIC arbitrate received packets to the correct VNF
without the explicit involvement of a hypervisor switch.

CPU-assisted acceleration techniques, on the other hand,
leverage the features of modern CPUs to speed up network
applications. Most modern CPUs support low-level data-
parallelism through an advanced Single Instruction Multiple
Data (SIMD) instruction set. SIMD operations allow to exe-
cute the same instruction on multiple data instances at the same
time, which greatly benefits vector-based workloads like batch
packet processing. In addition, latest CPU chipsets include
built-in CPU virtualization support, exposing a single CPU
as multiple virtual CPUs to different VNFs, hyperthreading
to multiply the number of CPU pipelines for better multicore
scalability, and multiple memory channels that allow applica-
tions to load-balance memory accesses.

B. The Ecosystem of Software Stacks

The previous techniques are leveraged by a number of tools,
that we overview in this section. Roughly, software stacks
can be categorized into three main branches, depending on
whether they are (1) low-level building blocks, (2) specialized
pieces of software implementing a single VNF, or (3) full-
blown frameworks for network function composition. In the
following, we discuss representatives from each category and
provide a visual overview of the resulting ecosystem of stacks
in Figure 2.

1) Low-level Building Blocks: Low-level high-speed packet
processing libraries may be implemented in kernel space or in
user-space, using kernel-bypass. Kernel-space solutions have
full access to the resources of the machine, but must be ac-
cessed via standard system calls (the kernel performs controls
to grant fault tolerance and isolation w.r.t. other processes).
User-space approaches, on the contrary, bypass this step via
specific libraries, thus avoiding the overhead of the kernel at
the cost of a reduced isolation. Particularly, while kernel-based
networking has progressed at a relatively low pace, user-space
data-plane libraries have seen tremendous advance within the
last decade, with a flourishing ecosystem of which [35]–[37]
are representative examples. A performance comparison of
these frameworks for packet forwarding is available in [39].

Netmap [36] is a framework for packet I/O that provides a
high-speed interface between user-space applications and the
NIC (with assistance of a kernel-level module). Depending on
the NIC utilized, netmap may leverage hardware capabilities
(such as RSS queues), and it allows to reach a 10Gbps rate

Figure 2: The ecosystem of software stacks for high-speed
network function composition.

with a single low-tier CPU (900 MHz CPU clock rate). Being
part of FreeBSD and also available on Linux, netmap is well-
known in both the research and industrial communities, and
is typically used to build packet-sniffing or traffic-generator
applications, L2/L3 software routers, and even firewalls. The
Intel Data Plane Development Kit (DPDK) [35] is another
framework for high-speed packet processing, with a large
user community. In contrast to netmap, DPDK provides a
full kernel-bypass, exporting the NIC driver logic as well into
user-space and exposing a rich NIC abstraction to applications:
registers, counters, and hardware-assisted functionality may all
be accessed by the programmer using a convenient C language
API. PF RING ZC [37] is another multi 10-gigabit frame-
work targeting inter-process and inter-VM communications.
PF RING ZC NIC drivers may work both as a regular kernel
driver or can be switched into kernel-bypass mode, allowing
the user to select which packets are received in kernel-bypass
mode and which ones get processed by the standard Linux
kernel network stack.

Recently, the above features used by kernel-bypass stacks
have started being introduced in the Linux kernel, notably by
AF_PACKET v4 [41] and the eXpress Data Path (XDP) [42]
projects. XDP adopts many of the aforementioned acceleration
techniques, such as batched I/O, multiple HW queues, and
zero-copy, on top of a virtual machine that allows the user
to inject custom packet processing programs into the network
stack written in the C-like eBPF language. Applications can
also take advantage of the MSG_ZEROCOPY feature available
in recent Linux kernels that enables zero-copy transmission of
data, and efforts are ongoing to address the receive code-path
as well [43]. Given the recent appearance of these function in
the kernel, a comprehensive comparison of high-speed kernel
and kernel-bypass stacks is still lacking so far.

2) Monolithic Network Functions: One step above in the
ecosystem is represented the realization of useful network
functions based on the low-level building blocks: a set of
monolithic network functions have started to appear that
address one specific use case, like forwarding, network address
translation, intrusion-detection, transcoding, etc. These func-
tions are custom stand-alone software components that either
(more rarely) re-implement a custom user-space network stack



9

making use of the acceleration techniques early introduced or
(more frequently) build their VNF-specific code on top of an
existing low-level building block, like DPDK or netmap.

One such specialized VNF is PacketShader [32], a high-
speed packet I/O framework targeting packet processing func-
tionality is implemented such as IPv4/IPv6 forwarding and
OpenFlow switching. PacketShader greatly benefits from GPU
acceleration. Another tool is G-opt [44], a software router
which targets memory access optimization to speed up packet
processing. The Hierarchical Content Store (HCS) [45], targets
the problem of line-rate access to a router cache in Information
Centric Networking [46].

Sandstorm and Namestorm [47] are specialized user-space
network stacks building over netmap to implement Web server
and DNS server functionalities, respectively. DPDKStat [8]
and FlowMon-DPDK [48] are, as the name implies, DPDK-
based tools for traffic monitoring: the former is a CPU-hungry
tool providing features such as DPI, full payload analysis,
flow reconstruction and exports hundreds of advanced flow-
level statistics, the latter targets very simple flow-tracking
with minimal CPU resources. mTCP [49] is a user-space TCP
framework targeting high-speed flow-level packet processing,
designed to exploit multicore systems and it can work on top
of Linux as well as PacketShader I/O, DPDK, or netmap.

Finally, Open vSwitch (OVS) [50] and ESwitch [40] are ex-
amples of fully fledged high-performance OpenFlow software
switches that come with some network functions built-in (e.g.,
NAT with connection tracking). OVS in particular is inspired
by the SDN paradigm of the separation between control and
data plane, and as such works with a set of match/action rules,
similarly to a regular SDN switch, and it can be deployed both
over a stock Linux kernel using kernel-space networking and
also over a fast DPDK datapath.

3) Modular Network Function Composition Frameworks:
One last relevant class of the software stack ecosystem is

represented by frameworks whose main aim is generality and
feature-richness: in contrast to low-level blocks or monolithic
functions, these frameworks provides a set of already avail-
able VNFs, as well as an environment which simplifies the
development of new VNF and, especially, their composition
into complex and dynamic service chains.

In this category we find software routers, such as Vector
Packet Processor (VPP) [34], Click [51] and its high-speed
variant FastClick [39], and Berkeley Extensible Software
Switch (BESS) [52]. These frameworks allow users to config-
ure, manage, and deploy flexible service chains, by developing
and customizing monolithic network functions such as ACL
and NAT as elementary building blocks and then arranging
these network functions into a dataflow graph. At high-level,
the difference is that VPP is aimed at typical L2-L4 workloads
and, as such, the dataflow graph is fixed, whereas Click and
BESS allow arbitrary processing graphs, thus focusing more
on flexibility and reconfigurability.

While the previous frameworks delegate the majority of the
work for developing and arranging VNFs to the user, other
frameworks offer a “cloud-like” environment for the flexible
composition of network functions encapsulated as stand-alone
virtual machines or containers. Examples are ClickOS [53],

ClickNF [54], mOS [55], OpenStack [56] and NetVM [57].
ClickOS [53], provides tiny virtual machines (unikernels)
that implement the Click abstraction for providing resource-
efficient and high-performance virtual machines. ClickNF [54]
and mOS [55] respectively build over Click and mTCP, to
offers the possibility to design, prototype, and deploy custom
middleboxes on commodity hardware. OpenStack [56] and
NetVM [57] in addition, provide telco cloud services to deploy
customizable data-plane functionality as virtual machines,
targeting a high-speed inter-VM communication paradigm.

Finally, worth mentioning are IX [58] and Arrakis [59].
Rather than targeting composition of VNF through a dataflow
graph abstraction or in a cloud-like NFV infrastructure, these
frameworks offer a new operating system that is explicitly
tailored for network function deployment. In particular, both
IX and Arrakis re-implement basic operating system function-
ality, including I/O, memory management, and system calls, to
provide a protected environment in which high-speed network
functions can be deployed as simple network applications.

Given the abundance of tools for VNF deployment with
similar spirit and capabilities, making a selection of the
most appropriate candidate is not an easy task. Particularly,
very few work exists that aim at independently and directly
benchmarking these frameworks in a scientifically sound way.
Further work beyond [60], that compares OVS, SR-IOV and
VPP, is thus necessary to provide a complete picture of the
ecosystem.

IV. HARDWARE OFFLOADING

With the end of Dennard’s scaling and Moore’s law, general
purpose CPUs cannot increase their processing power at the
same pace at which per-interface network speeds grow [61].
As a matter of fact, Network Interface Cards (NICs) already
offload several functions that should be otherwise provided by
a system’s CPUs. For example, commodity NICs such as those
described in [62], [63] can offload checksum calculation and
verification, packet filtering, and functions related to specific
protocols such as VxLAN encapsulation or TCP segmentation.
Such operations help the system in handling traffic rates in
excess of 40 Gbps per NIC port, saving the CPU for further
computations.

In line with this trend, and in order to handle a larger
number of potentially complex functions, the adoption of pro-
grammable network function accelerators is becoming wide-
spread1. Generally, these accelerators are integrated in the
NIC, hence called a SmartNIC [65]–[67], and deployed as
bump-in-the-wire, i.e., they apply their processing either before
or after the processing performed by the system’s CPUs.

Current SmartNICs’ programmable engines are usually pro-
vided with proprietary software that offloads some well-known
protocols and functions, and whose programmability is not
exposed to third-party users. This allows to quickly adapt the
SmartNIC functions to emerging needs, without waiting for
the long implementation cycles experienced with traditional

1Such a need has been recently recognized also by standard organizations
such as ETSI ISG NFV, which is defining hardware accelerators’ capabilities
in their specifications for NFV platforms [64].



10

NIC hardware [68], but it is a process still largely driven
by specific vendor’s interests. For example, it is common for
SmartNICs to provide only well-known functions, such as
Firewall offloading, e.g., integrated with Linux’s iptables, or
offloading of virtual switches, e.g., Open vSwitch [50].

However, the offloading of fixed functions hardly matches
the requirements of modern dynamic and fast changing appli-
cations [69]–[72]. As a result, recently, vendors started to in-
creasingly open their programmable engines, and provide users
with the ability to customize the SmartNIC’s software. As
such, it becomes of particular interest to study how SmartNICs
can be leveraged to become programmable network function
accelerators, and what are the related opportunities and issues.

A SmartNIC [73] typically adopts specialized Network
Processors (NPs) or FPGAs as programmable engines. Despite
obvious considerations regarding costs, with the NICs being
usually cheaper than SmartNICs, the latter have also important
implications in terms of ease of use, application development
time, and performance guarantees, to name a few. In particular,
while a SmartNIC gives great flexibility to introduce new
functions enhancing system performance, it comes with the
complexity of programming their engines, which includes
phases of design, debugging, verification, and optimization.
To overcome this design complexity, SmartNICs often offer
higher level, domain-specific programming abstractions for
their programmable engines [74], [75]. Such abstractions
implement a point in a conceptual design space that ranges
from fixed functions on the one side, to full programmability
on the other, with any specific solution trading in its way
programming simplicity with expressiveness.

In this sense, one of the open research questions for
SmartNICs is about which abstraction should be adopted,
in order to provide ease of use, flexibility, and performance
at the same time. In the remainder of this section, we first
describe the primitives usually offloaded to commodity NICs
(Section IV-A), then we give a short survey of the SmartNIC
architectures (Section IV-B). Finally, we describe the currently
available programming abstractions for SmartNICs’ offloading
engines (Section IV-C).

Here, we want to underline that there are complex tasks,
such as Deep Packet Inspection (DPI), which are appealing
candidates for hardware acceleration but that are not covered
in this survey. For example, Deep Packet Inspection (DPI)
is a candidate for hardware acceleration due to the cost of
payload inspection and to the complexity of pattern matching
operations. In fact, DPI acceleration has been extensively
considered both using different targets like GPU [76] and
FPGA [77] and using different algorithmic approaches [78]–
[80]. However, due to the specific nature and complexity
of such functions, the corresponding acceleration techniques
require an ad-hoc and extensive description that is outside the
scope of this survey. We instead refer the interested reader
to [81] for further details.

A. Offloading in Commodity NICs

Here we describe a set of commonly used primitives of-
floaded to NICs and we discuss to what extent these offloading

procedures can be made programmable in order to satisfy
the flexibility required by NFV applications. A set of widely
offloaded primitives is listed next: clearly, commodity NICs
offer a set of well defined fixed functions targeting existing
widespread protocols.

1) CRC / Checksum Computation: The widespread use of
some checksum computation such as the 1’s complements
sum used by TCP/IP protocols makes it suitable for hardware
offload. In transmission, the NIC directly computes the check-
sum value defined by the specific protocol and sets the corre-
sponding field in the packet before sending it out; in receive
mode, the NIC checks the checksum’s correctness and discards
the packet if the checksum is wrong. Almost all commercial
NICs provide TCP/IP checksum offloading. Since the Stream
Control Transport Protocol (SCTP) checksum algorithm is
different from TCP/IP, only few NICs support SCTP checksum
offloading. This is clearly related to the smaller adoption of
this protocol with respect to TCP. It is worth noting that
checksum computation could be easily performed by current
generation processors, also exploiting specific instruction set
extensions to speed up the computation. This limits the gain
between hardware and software implementations. However,
the cost of implementing such operations in hardware is
marginal, thus making its offloading appealing. Furthermore,
offloading the checksum enables also other offloading features
such as TCP Segmentation Offloading or IPSec offloading.
Finally, even if the CRC/checksum computation is fixed and
not programmable in current NICs, it seems not necessary to
develop more flexible and programmable engines for check-
sum computation due to the very limited interest in deploying
checksum algorithms different from those used today.

2) Encryption / Decryption: The encryption/decryption of
packet payloads requires very expensive computations, and
as such it a good candidate for NIC offloading. Due to
the large number of encryption standards, each one with
its specific algorithm and implementation characteristics, it
is nearly impossible2 to have a generic or programmable
encryption offloading engine. Instead, there are several NICs
that are able to provide specific protocol offloading, such as
IPSec, with a subset of encryption algorithms (e.g., AES-
CBC) with authentication features (e.g., HMAC-SHA1 and
HMAC-SHA2 with different key length), or more recent
AEAD - Authenticated Encryption with Associated Data -
algorithms such as AES-GCM or AES-CCM. In some cases,
the encryption offloading can save more than 50% of CPU
time, providing significant gains of the packet forwarding
throughput [82]. However, due to the complexity of the
hardware development of encryption algorithms, only high end
NICs provide IPSec offloading features. Moreover, integrating
the encryption engine in the ASIC chip providing the basic
NIC functionalities can be very costly. A possible solution
utilized by several vendors is to use a Network Processing
Unit (NPU) or an FPGA inside the NIC as the device in which
the encryption engine is realized. This choice presents several

2Nor advisable! As well known, implementation of cryptographic primitives
requires professional developers with extremely specific skills, e.g. to avoid
secret information leakage via side channels that a general-purpose developer
may inadvertently introduce in the design.



11

benefits, since it is possible to add novel algorithms updating
the NIC firmware, and it makes very easy to provide patches
if security problems arise in the implementation of the specific
protocol. From the programmability point of view, this is an
opportunity for the development of NFV, since the presence
of a programmable device in the NIC could permit a more
timely network security upgrades and a much faster patching
of emerging vulnerabilities. In short, the hardware designed
to provide programmable encryption engine already represents
an embryo of an FPGA enabled SmartNIC, as those described
next.

3) Large Send / Receive Offloading: Transport protocols
usually split the stream of data to transmit into smaller chunks
with a maximum size given by the network infrastructure.
The task of splitting a stream in smaller segments, as well
as the receiver task of rebuilding the stream from the received
packet can consume several CPU clocks. In particular, there is
a considerable overhead caused by the system call associated
with each packet. These overheads can be avoided if the task
of splitting / rebuilding the packets is offloaded to the NIC.
In case of data sending, this is generically called generic
segmentation offload (GSO) and it is called TCP segmentation
offload (TSO) when applied to TCP. The offloading engine
breaks the data coming from the host into smaller segments,
adds the TCP, IP, and data link layer protocol headers to
each segment, recomputes the checksum, and sends the packet
over the network. For the receive side, the offloading is called
Large Receive Offload (LRO) and allows the system to reduce
the CPU time for processing TCP packets that arrive from
the network, and to reduce the interrupt pressure from the
NIC. We notice that these techniques complement the I/O
batching technique early seen: whereas I/O batching maintains
the individual packets received by the card unaltered and
reduces interrupt pressure, segmentation offloading goes one
step further by offering to disassemble/reassemble higher-
layer data into/from several segments, which reduces interrupt
pressure. Furthermore, LRO also can significantly increases
the throughput of software network functions. In fact, in
software NFs most of the processing overhead comes from
per-packet operations. Increasing the packet size well above
the MTU size (a reassembled packet could have up to packet
64KBs) drastically reduces the overhead thereby increasing
the overall throughput of a software network function.

Still, it is worth to remark that when, as in the case of
TCP, packet batching occurs at the NIC level, the subsequent
transmission of batched packets may occur in (micro) bursts
which may increase packet loss in some scenarios [83].
Programmable pacing techniques directly implemented in the
NIC HW are an interesting research direction to address such
issue [84].

Another hot topic for segment offloading is related to the
use of this technique when UDP is used to build an overlay
protocol, for example for QUIC. Since each QUIC packet in
its encrypted header a packet number (PN) identifier, the seg-
mentation/reassembly of UDP packets breaks the correspon-
dence between the UDP packet and the PN. And due to the
encryption, it is not straightforward to update the PN during
the segmentation/reassembly operations. Thus, a native QUIC

segmentation offloading can be done combining both the HW
encryption with a modified HW for segmentation offloading.
However, as will be discussed extensively in section V-C,
designing such offloading hardware depends on how largely
adopted will be this protocol.

B. SmartNIC Architectures

A SmartNIC hosts a programmable engine that allows for
the implementation and extension of the NIC’s functions,
e.g., for hardware offloading of new protocols that become
of widespread adoption. Almost all the SmartNICs work as a
bump-in-the-wire device inserted between the PHY Ethernet
interface and the host PCIe interface [85]. This type of
SmartNIC usually provides several network interfaces, a PCIe
interface to communicate with the host, and different memory
peripherals such as external DRAMs and SRAMs. The former
are bigger memories with considerable latency and are used for
packet buffering, the latter has lower latency and are used to
store random access information (e.g., hash or routing tables,
counters, etc.). The core of the SmartNIC is a programmable
element that can be a Multicore System-on-Chip (SoC) or an
Field Programmable Gate Array (FPGA), as discussed next.

1) Multicore SoC-based SmartNICs: Examples of Multi-
core SoCs are the Cavium [86] and BlueField [87], based
on general purpose CPU cores (mainly ARM cores) or the
Netronome [88] and Tilera [89], based on smaller cores
specifically designed for networking applications. Usually
these SoCs also have several hardware blocks, usually called
acceleration engines (AE) that perform specific network tasks
such as encryption or packet classification (using on-chip
TCAMs). These processor-based SmartNICs also use software
acceleration techniques like those described in the previous
section (some of them can run applications on top of the
DPDK framework) but at the same time share the same draw-
backs, in terms of latency and latency variability as well as
memory contention, state synchronization and load balancing
issues among cores. In summary, these devices allow for a
good degree of programmability but offer limited scalability
and maximum achievable throughput, e.g., it is usually hard
to scale their performance beyond 50-100 GbE [90].

2) FPGA-Based SmartNICs: The other solution for the re-
alization of a SmartNIC is a FPGA-based card. A well known
example of this kind of SmartNIC, in the academic domain,
is the NetFPGA SUME [67], that provides 4x10 GbE SFP+
links, a x8 Gen3 PCIe interface, a Xilinx Virtex-7 XC7V690T
FPGA, three 72 Mbits SRAM chips and two 4 GB DDR3
DRAMs. Several other cards with similar characteristics are
available in the market. These cards differ for the FPGA
performance and size and for the type of attached peripheral
(number and speed of network links, size of external memories
and so on). The performance of FPGA-based SmartNICs is
extremely competitive in terms of latency, power consumption,
and cost as extensively discussed in [90].

C. Programming Abstractions

SmartNICs differ not only in their hardware architecture, but
also on the way the hardware features can be accessed, pro-



12

grammed and extended. In the most general case, an FPGA-
based SmartNIC can be programmed with Hardware Descrip-
tion Languages (such as VHDL and Verilog), whereas Multi-
SoC-based SmartNICs offer programmability through some
high-level language (e.g., a C dialect used to programmed spe-
cialized network processors). However, since these languages
require a programmer to have extensive hardware knowledge
(either for FPGA or Network Processors), domain-specific
abstractions for network functions are often also provided.
We can categorize these abstractions in stateless and stateful
ones. A stateful abstraction allows a programmer to describe
algorithms that read and modify state, whereas a stateless
abstraction can only read state that has been provided to the
device through some other means, e.g., written by a non-
programmable block.

1) Stateless Abstractions: The match-action table (MAT)
abstraction is widely used to describe a stateless packet
processing data plane. The abstraction allows a programmer
to define which actions should be applied to the packets
belonging to a given network flow. The flow is specified by the
match part of MAT’s entry, while the corresponding actions
can forward or drop a packet and modify its header. The entries
of the MAT cannot be changed using the abstraction itself. It is
assumed that a separated control plane asynchronously updates
the entries. In other words, the entries’ update operations are
not executed in the device’s fast path.

MATs are used in several contexts. OpenFlow [91] adopts
a pipeline of MATs to describe packet processing in net-
work switches. Some SmartNICs implement OpenFlow-like
abstractions, and even regular NICs may offer a limited
MAT abstraction support [92]. Reconfigurable Match Tables
(RMT) [93] extends the OpenFlow approach with the ability to
define the type and number of MATs, including the description
of custom packet headers and actions. Originally targeted
to hardware switches (P4 switches may indeed leverage an
internal architecture based on the RMT technology), the ap-
proach has been recently applied also to SmartNICs [69], [74],
[75]. Given their stateless nature, MAT-based abstractions are
generally used only to describe a small subset of functional
blocks, such as Header Read and Write and a small set of
Flow Actions.

2) Stateful Abstractions: While MAT abstractions dominate
the scene for stateless packet processing, it is still unclear
which abstraction is most appropriate for capturing high-
performance stateful processing. Often a very generic ap-
proach is used: the programmer writes tiny packet programs
that are executed for each processed packet. The programs
are typically expressed with a restricted programming lan-
guage, in order to reduce the risk of negatively impacting
performance (e.g., removing unbounded loops), and to increase
system safety (e.g., forbidding flexible, pointer-based memory
accesses).

This is the approach used by packetC [94], protocol oblivi-
ous forwarding [95] (POF), Linux’s enhanced Berkeley Packet
Filter [96] (eBPF) and Domino [97], which mainly differ
for the target platforms and for the state access model. For
instance, packetC and POF target network processors, eBPF is
usually executed within the Linux kernel but can be offloaded

to some SmartNICs, while Domino targets high-performance
ASIC implementations. In terms of state management, these
abstractions are influenced by the target executor. Thus, when
the target is a multi-processor system (NPs, multi-core CPUs),
state is partitioned in processor-local and global parts, and the
programmer has to carefully manage state access. In the case
of Domino, the state is always global, and state consistency
and performance are guaranteed at compile time at the cost of
limited flexibility.

A different, more structured, abstraction was originally
suggested by OpenState [98] and FAST [99]. In both cases
packets are grouped in programmer defined network flows
(like in MATs), and flows are associated with a Finite State
Machine (FSM). Programmers define the FSMs transition
tables, which are used to update the corresponding FSMs’
states as packets are processed. When processing a packet, the
corresponding FSM’s current state is used to select the packet
forwarding and modification actions. The compelling nature
of such abstractions is their very efficient implementation in
hardware, in a small and deterministic number of clock cycles
- a state transition in fact can be modelled and executed via
a suitably extended flow table [98]. Moreover, OpenState was
extended in [100] with the support for triggering conditions,
flow context memory registers, and on-the-fly arithmetic/logic
register update functions. These stateful abstractions allow a
programmer to describe more complex functions, thus sup-
porting also the offloading of more demanding Flow State
Tracking and, in some cases, Session Management blocks.

At last, please note that all the stateful HW programming
abstractions mentioned above have been designed for the
somewhat “simpler” context of programmable data planes
inside network switches, i.e., on-the-fly forwarding and packet-
level processing functions. And even in such scenario, to date
it is still unclear what is the “right” compromise between flex-
ibility, performance, and openness. To a greater extent, such
compromise becomes critical when we seek programming
abstraction focused on higher layer network functions, which
may involve network functions well beyond packet-level “on-
the-fly” operations — hence further accounting for protocol
states, timers, opportunistic packet buffering, signalling mes-
sages, etc. The quest for a sufficiently expressive programming
abstraction, tailored to permit offloading in hardware NICs of
transport/application layer functions, or even implement way
more challenging cloud-like functions such as those posited
in [101], is still open and appears to be an exciting research
topic.

V. KEY DERIVATIONS AND GUIDELINES

In this section, we present guidelines concerning the dif-
ferent techniques that were detailed in the previous sections.
They include general guidelines and caveats that should be
taken into account when designing and developing VNFs
(Section V-A). Furthermore, we provide guidelines that are
specific to the two main categories of acceleration techniques
that are covered in this work, i.e., software (Section V-B) and
hardware (Section V-C) acceleration. Finally, we demonstrate
how these guidelines can be applied to the exemplary NGFW
function (Section V-D).



13

A. Guidelines for Design and Development of Network Func-
tions

Ideally, as outlined in Section II, the VNF ecosystem should
be designed based on a detailed performance requirement
specification for the intended deployment scenario. However,
due to internal policies or previous design choices, the es-
sential execution environment is often already given when
the performance becomes constraining. In the following, we
concentrate on this deployment optimization scenario when
the task is to improve VNF performance for a given envi-
ronment. We highlight best practices for the VNF adoption,
derive corresponding suggested implementation patterns, and
summarize caveats in antipatterns, which should be avoided.

1) Know relevant performance metrics: To bootstrap the
performance optimization process, it is necessary to be aware
of the network functions, the current workload, the resource
utilization of the whole ecosystem, as well as the underlying
network topology.

3 Pattern: Deployment of dedicated monitoring and ver-
ification tools providing up-to-date reports about the actual
performance and resource descriptors in the system.

7 Antipattern: Inaccurate view due to missing monitoring
information and insufficient insights may result in resource
over-provisioning, e.g., by vertical scaling.

2) Optimize for the most constraining resource: Apply the
“Pareto-principle” of software optimization to identify the
10% of the code affecting the most critical resource (e.g.,
most of the running time is spent, most of the memory is
used) and apply the previously outlined software and hardware
acceleration techniques. Table I is a good starting point to
identify the bottleneck resources for the specific VNF type.

3 Pattern: Repeat the following performance optimiza-
tion loop: (1) Identify per-VNF critical resources; (2) ob-
tain deployment-specific insights using monitoring tools; (3)
optimize for the most constraining resource by choosing
appropriate software or hardware acceleration; (4) test and
evaluate the results.

7 Antipattern: Rewriting a VNF for using a specific acceler-
ation technique will improve one specific bottleneck resource.
For instance, [102] shows that SGW acceleration with DPDK
improves raw packet-per-second performance while user space
table lookup remains a bottleneck, resulting in poor perfor-
mance as soon as the table is sufficiently populated.

3) Exploit parallelism: Network-related workloads typi-
cally lend themselves readily to a parallel pipelined exe-
cution model, by providing ample opportunities to separate
a workload to multiple threads at the packet level, at the
protocol level, or at the network-function level. Network-
related workloads can be balanced among multiple threads
at packet, protocol, or network function level. Thus, it is
possible to utilize the parallel execution capabilities of modern
hardware devices to execute atomic building blocks in parallel.

3 Pattern: Build and optimize network functions to max-
imize concurrency, by minimizing contention on shared re-
sources and point-to-point synchronization (coherency) be-
tween execution threads.

7 Antipattern: Writing code that is fundamentally serial in
nature causes significant runtime overhead due to synchro-

nization between execution threads. Similarly, resource-hungry
synchronization primitives or frequent memory accesses across
NUMA nodes constitute performance bottlenecks.

4) Use lightweight virtualization & isolation: The choice
of the specific virtualization technique is a careful balancing
act between flexibility, performance, overhead, and degree of
isolation with respect to CPU, network, and storage resources.

3 Pattern: Use of the lightest possible isolation technique
that is still sufficient to provide the required isolation barrier.
This might also include higher layer isolation techniques
for safe zero-cost isolation. Examples are compile-time type
checking and a safe runtime enabled purely in software [103].

7 Antipattern: Using lightweight virtualization across trust
boundaries, e.g., deploying sensitive applications of different
tenants into containers with limited isolation capabilities.

5) Cautious use of hardware offloading: Hardware offload-
ing is very appealing since it allows to perform certain CPU-
intensive operations in hardware, thereby relieving the CPU.
Possible drawbacks, however, are a lack of isolation as well as
additional I/O costs. Furthermore, the network topology should
be taken into account since hardware offloading capabilities
might be limited to a subset of network nodes.

3 Pattern: Careful measurement of critical and reusable
software building blocks that can be effectively realized in
hardware and a step-by-step process to apply offloading grad-
ually to CPU-intensive code.

7 Antipattern: Using hardware offloading in the middle of
a service chain may involve an unnecessary I/O roundtrip
to hardware, possibly slowing execution down instead of
accelerating it.

B. Guidelines for Software Acceleration

Based on our expertise in the software networking domain,
we provide guidelines for the development of VNFs. From
the point of view of a developer, two points should be kept
in mind. First, a trade-off may arise between the acceleration
benefit and the complexity of the implementation of a specific
acceleration technique. Second, some of the acceleration tech-
niques work better in conjunction with some classes of virtual
network functions. We provide a brief list of good practices
and develop each point in the following.

1) Utilize hardware-supported functions when available:
Hardware-supported functions can have a significant perfor-
mance impact and can be easily introduced into existing
software due to widespread driver integration. The two most
important examples from this category include hardware coun-
ters and RSS hash functions. While using the former can
significantly reduce the amount of state and memory accesses,
the latter lowers the number of CPU cycles.

2) Build virtual network functions on top of general-
purpose accelerated frameworks: Nowadays, high-speed
frameworks exploit several state-of-the-art acceleration tech-
niques and also provide mechanisms for interconnecting sev-
eral VNFs at high speed. Hence, developers can focus on their
particular application while leveraging the infrastructure and
flexibility that is offered by such frameworks. The choice of
the specific framework in the wide ecosystem may be dictated



14

by the environment (e.g., pre-existing expertise) or by specific
framework capabilities (e.g., availability of specific functions),
or finally by performance considerations (i.e., which is harder
as of now, since a comprehensive comparison of the available
frameworks is still an open research question).

3) Implement very specific tasks using low-level building
blocks for CPU-intensive tasks, and leverage advanced coding
styles: Finally, when computation-intensive VNFs have to be
deployed on bare metal or on top of an existing high-speed
framework, there may be cases in which the I/O is dominated
by the computation, or situations where the bottleneck of I/O
is negligible. For an overloaded system, i.e., I/O and CPU
bottlenecks in cascade, polling and I/O batching can accel-
erate the packet processing. More generally, memory-related
acceleration, compute batching, and high-level programming
techniques are beneficial for the VNF (paying attention to the
zero-copy approach, that can be useful when there is no further
payload modification). Collectively, the use of these techniques
allow to optimize CPU processing of VNFs in software.

C. Guidelines for Hardware Acceleration
Due to the required amount of expert knowledge in different

domains such as programming languages, hardware architec-
tures, and verification mechanisms, the design of hardware
accelerated functions requires significantly more effort than the
corresponding process for their software counterpart. There-
fore, the choice of offloading a network function, or part of it,
to a SmartNIC is a careful decision that depends on several
factors that we summarize in the following.

1) Performance gain: Offloading a primitive into the NIC
is recommended when the processing power, e.g., in terms of
CPU cycles, saved by doing so is significant.

2) Primitive adoption: The widespread use of a primitive
is an important factor when deciding whether it is worth to
implement it in the NIC.

3) Complexity: Due to the high cost of non-recurring
engineering of hardware development, the decision about
the offloading heavily depends on the complexity of the
primitive. Furthermore, the expected frequency of updates to
the functionality of network functions should be taken into
account due to the fact that each update induces a development
overhead. Finally, the presence of temporal dynamics that
require frequent migration of VNFs should be carefully con-
sidered since the migration process tends to be more complex
with hardware-accelerated components in contrast to purely
software-based ones.

4) Relation of the primitive to other processing functions:
Offloading to the NIC is only useful if the subsequent opera-
tions are also offloaded to the NIC. Otherwise, costly back and
forth movements between the NIC and the host are required.

Finally, it is worth noting that the use of network-focused
programming abstractions for the design of hardware accel-
erated functions can greatly simplify the development cycle.
In our opinion, this is a important and still immature research
field that could provide a significant advance in network de-
velopment in the future. This is particularly true when dealing
with issues associated with running multiple applications using
the same accelerator and multi-tenancy.

SmartNICs are one of the most discussed and evolving
technologies for accelerating network functions. As mentioned
in Section IV-B there are two main SmartNIC types. Multicore
SoC-based and FPGA-based.

Designing efficient network functions using Multicore NICs
requires to deal with some typical issues of parallel program-
ming. The single core of the SoC can be programmed using
standard programming languages (mainly C/C++ is used) and
does not present specific challenging issues. On the other
hand, the interaction among the cores, the access to shared
resources and the efficient use of the AEs as well as the
distribution of the packet among the cores are hard to manage
and often requires a deep knowledge of the specific hardware
architecture of the SoC. This makes the implementation very
target specific, preventing the porting to a different SoC-
based SmartNIC, and slows down the development of efficient
network functions.

When FPGA-based SmartNICs are programmed using low
level HDL, they demand extremely long development and
verification time. Thus, even if in terms of absolute perfor-
mance they could provide better throughput than SoC-based
SmartNICs, the design effort could make it more convenient
to use more programmable friendly SoC-based SmartNICs. If
the programming abstractions described in Section IV-C will
evolve to mature and easy to use programming paradigm, the
FPGA-based SmartNIC will emerge as the right element to
provide programmable hardware accelerators for NFs.

From the performance point of view, SmartNICs, in partic-
ular FPGA-based ones, provide benefits for both latency and
throughput. For instance, [90] reports a 3-5x improvement
in terms of average and worst case latency as well as a
sixfold increase in throughput when employing an FPGA-
based SmartNIC. While these gains have to be interpreted
as of anecdotal value, since they relate about a performance
comparison of a specific design, they nevertheless are useful to
report, to perceive the expected gains in “order sense” than the
offloading of complex functions to a SmartNIC can bring. In
terms of economic advantage in using SmartNICs, one should
consider that such devices can free valuable CPU cores for
other tasks. For instance, Microsoft reports that in a cloud
datacenter each core has an equivalent value of about 800$
per year [90].

Finally, there are cases is which using a FPGA-based
SmartNIC provides much larger benefits. This is the case
for instance, of applications that require very low-latency
and/or predictable performance, such as high-performance
trading. Another area where SmartNICs can be beneficial is
deployments that are somehow space constrained, e.g., in an
edge datacenter deployed in a big city, where real estate costs
are particularly expensive. In these cases, either the other
approaches are completely ruled out by unmet requirements
(e.g., latency below 1us), or the application-level and the
overall infrastructure-level advantages offset the extra cost paid
in buying a powerful SmartNIC.

D. Potential of Acceleration Techniques for the NGFW
In addition to the above guidelines regarding software-

and hardware-based acceleration techniques, we present an



15

overview of insights that are relevant to the NGFW VNF. To
this end, we first recall the building blocks that are associated
with this VNF in Table I and then illustrate how we can
improve their performance. We note, however, that since the
main focus of this manuscript is not the NGFW, we do
not provide an exhaustive set of guidelines and options but
exemplary demonstrate how three building blocks might be
improved.

On the one hand, the NGFW comes with cryptography
support and therefore needs to perform compute-intensive
decryption and encryption tasks on packet payloads. As out-
lined in Section IV-A2, significant amounts of CPU time
can be saved by offloading these tasks to a hardware entity.
Depending on the capabilities in terms of supported encryption
standards, this entity might be a commodity NIC, a specialized
NPU, or an FPGA component inside the NIC.

On the other hand, the NGFW has NAPT and VPN capabil-
ities which require rewriting packet headers. In this context,
switching from plain virtualization to software acceleration
via frameworks like DPDK has been shown to significantly
improve performance [104]. In the referenced work, we com-
pare the performance of an LTE Serving Gateway VNF that
is implemented as a user-space application with a DPDK-
accelerated version of the same VNF. We demonstrate a
throughput improvement of almost factor 8 when using the
latter. These results can be translated to the NGFW since both
functions share the corresponding building block.

Furthermore, the NGFW employs DPI techniques in its
decision making process which require tracking flow and
session states as well as processing header and payload
information. Whereas, as previously introduced we deem a
thorough account of DPI acceleration via FPGA or GPUs to
be out of the scope of this work, it is nevertheless instructive
to consider how the software guidelines expressed above
can boost the performance of a “vanilla” DPI application
in the NGFW. Indeed, even though no packet modification
is performed during these tasks, significant improvements in
terms of maximum throughput are possible when using SR-
IOV-based virtualization in conjunction with an acceleration
framework such as DPDK [102]. When compared to an
implementation based on the default Linux kernel stack and a
libpcap-based DPI application, an up to tenfold throughput
increase is observed. While, again, these gains have to be
interpreted as of anecdotal value, they relate the expected
gains in “order sense” than adopting state-of-the art software
techniques can bring.

VI. CONCLUSION

The rising amount of networked devices and services, the
heterogeneity of their demands and communication patters, as
well as their temporal dynamics pose stringent requirements
that exceed the capabilities of today’s networking architec-
tures. These phenomena call for a new type of scalable and
adaptive systems. Network softwarization, which comprises
networking paradigms such as Software Defined Network-
ing (SDN) and Network Functions Virtualization (NFV), is
seen as a possible solution to fulfill these requirements and to

provide a scalable and adaptive networking infrastructure. As
NFV provides the necessary degree of flexibility by moving
today’s embedded network functions to software running on
common server hardware, recent efforts try to improve the
performance of these software-based solutions.

In this work, we conduct a survey of the evolving re-
search field of performance acceleration techniques for net-
work functions virtualization. First, we categorize a subset of
representative network functions with respect to common low-
level building blocks. In conjunction with information on the
resource usage of individual building blocks, we identify the
corresponding performance bottlenecks.

After that, we review and summarize software-based and
hardware-based acceleration techniques in a holistic manner.
We first highlight pure software acceleration techniques allow-
ing to speed up the the performance of a network function
itself. After that, we cover the software stack as a whole
and discussed the interplay between software and driver-
based hardware access. In the case of hardware acceleration
techniques, we cover offloading strategies based on standard
NICs, programmable SmartNICs, as well as domain-specific
programming abstractions. These mechanisms represent trade-
offs w.r.t. the implementation overhead, performance gains,
and costs.

Based on the survey, we finally derive guidelines which
allow the reader to understand which acceleration techniques
might help to improve the performance of specific network
functions. Our summary includes generic guidelines that rep-
resent best practices when optimizing the performance of a
given deployment scenario, as well as specific guidelines on
how to apply software and hardware acceleration techniques.
Our paper thus gives guidance to potential NFV adopters
on how to improve the performance of their current system,
clearly highlighting the research direction that are still open
and require a community wide attention.

VII. ACKNOWLEDGEMENT

This work benefited from support of NewNet@Paris,
Cisco’s Chair “NETWORKS FOR THE FUTURE” at Telecom
ParisTech (http://newnet.telecom-paristech.fr). This work has
been performed in the framework of the CELTIC EUREKA
project SENDATE-PLANETS (Project ID C2015/3-1), and
it is partly funded by the German BMBF (Project ID
16KIS0474), the BMBF funded project Berlin Big Data Center
BBDC (01IS14013A), and by the European Commission in
the frame of the Horizon 2020 project 5G-PICTURE (grant
#762057). Gábor Rétvári was supported by the MTA-BME
Network Softwarization Research Group, at the Budapest Uni-
versity of Technology and Economics. Any opinion, findings
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of partners
of the Chair and other funding entities.

http://newnet.telecom-paristech.fr


16

REFERENCES

[1] ETSI GR NFV 001 - Use Cases, ETSI Group Report, Rev. 1.2.1, 2017.
[2] B. Yi, X. Wang, K. Li, M. Huang et al., “A comprehensive survey of

network function virtualization,” Computer Networks, 2018.
[3] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,” RFC

3234, 2002.
[4] M. Hoffmann, M. Jarschel, R. Pries, P. Schneider, A. Jukan, W. Bziuk,

S. Gebert, T. Zinner, and P. Tran-Gia, “SDN and NFV as Enabler for
the Distributed Network Cloud,” Mobile Networks and Applications,
2017.

[5] ETSI GS NFV-PER 001 - NFV Performance & Portability Best Prac-
tises, ETSI Group Specification, Rev. 1.1.2, 2014.

[6] The Bro Network Security Monitor. [Online]. Available: https:
//www.bro.org/

[7] Snort IDS. [Online]. Available: https://www.snort.org/
[8] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi,

“Traffic Analysis with Off-the-Shelf Hardware: Challenges and Lessons
Learned,” IEEE Communication Magazine, 2017.

[9] V. Addanki, L. Linguaglossa, J. W. Roberts, and D. Rossi, “Controlling
software router resource sharing by fair packet dropping,” in IFIP
Networking, 2018.

[10] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open-
source high-speed deep packet inspection,” in International Wireless
Communications and Mobile Computing Conference (IWCMC), 2014.

[11] ETSI GS NFV-IFA 001 - Report on Acceleration Technologies & Use
Cases, ETSI Group Specification, Rev. 1.1.1, 2015.

[12] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on
concepts, taxonomy and associated security issues,” in International
Conference on Computer and Network Technology (ICCNT), 2010.

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of vir-
tualization,” in ACM SIGOPS operating systems review, 2003.

[14] VMWare ESXi. [Online]. Available: https://www.vmware.com/
products/esxi-and-esx.html

[15] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the
linux virtual machine monitor,” in Proceedings of the Linux symposium,
2007.

[16] J. Hwang, S. Zeng, F. Wu, and T. Wood, “A component-based perfor-
mance comparison of four hypervisors,” in IM, 2013.

[17] G. Lettieri, V. Maffione, and L. Rizzo, “A Survey of Fast Packet I/O
Technologies for Network Function Virtualization,” in International
Conference on High Performance Computing, 2017.

[18] R. Russell, “virtio: towards a de-facto standard for virtual I/O devices,”
ACM SIGOPS Operating Systems Review, 2008.

[19] V. Maffione, L. Rizzo, and G. Lettieri, “Flexible virtual machine net-
working using netmap passthrough,” in IEEE International Symposium
on Local and Metropolitan Area Networks (LANMAN), 2016.

[20] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, 2014.

[21] P.-H. Kamp and R. N. Watson, “Jails: Confining the omnipotent root,”
in International SANE Conference, 2000.

[22] A. Madhavapeddy and D. J. Scott, “Unikernels: the rise of the virtual
library operating system,” Communications of the ACM, 2014.

[23] G. McGrath and P. R. Brenner, “Serverless computing: Design, im-
plementation, and performance,” in International Conference on Dis-
tributed Computing Systems Workshops (ICDCSW), 2017.

[24] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” in Research Advances
in Cloud Computing, 2017.

[25] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtual-
ization,” Computer Networks, 2010.

[26] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on
network virtualization hypervisors for software defined networking,”
IEEE Communications Surveys & Tutorials, 2016.

[27] ETSI GS NFV 002 - Architectural Framework, ETSI Group Specifica-
tion, Rev. 1.2.1, 2014.

[28] N. F. S. de Sousa, D. A. L. Perez, R. V. Rosa, M. A. Santos, and C. E.
Rothenberg, “Network service orchestration: A survey,” arXiv preprint
arXiv:1803.06596, 2018.

[29] H. Guan, Y. Dong, R. Ma, D. Xu, Y. Zhang, and J. Li, “Performance
enhancement for network I/O virtualization with efficient interrupt
coalescing and virtual receive-side scaling,” IEEE Transactions on
Parallel and Distributed Systems, 2013.

[30] L. Rizzo, “Device polling support for FreeBSD,” in BSDConEurope
Conference, 2001.

[31] The Linux Foundation, “Wiki: napi.” [Online]. Available: https:
//wiki.linuxfoundation.org/networking/napi

[32] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-
accelerated software router,” in SIGCOMM, 2010.

[33] J. Kim, S. Huh, K. Jang, K. Park, and S. Moon, “The power of batching
in the click modular router,” in Asia-Pacific Workshop on Systems,
2012.

[34] L. Linguaglossa et al., “High-speed Software Data Plane via Vectorized
Packet Processing (Extended Version),” Telecom ParisTech, Tech. Rep.,
2017.

[35] “Data plane development kit.” [Online]. Available: http://dpdk.org
[36] L. Rizzo, “netmap: a novel framework for fast packet I/O,” in USENIX

ATC, 2012.
[37] Deri, L. [Online]. Available: https://www.ntop.org/products/

packet-capture/pf ring/pf ring-zc-zero-copy/
[38] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, and Z. Heszberger,

“Compressing IP forwarding tables: Towards entropy bounds and
beyond,” in ACM SIGCOMM, 2013.

[39] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet process-
ing,” in ANCS, 2015.

[40] L. Molnár, G. Pongrácz, G. Enyedi, Z. L. Kis, L. Csikor, F. Juhász,
A. Kőrösi, and G. Rétvári, “Dataplane specialization for high perfor-
mance OpenFlow software switching,” in ACM SIGCOMM, 2016.

[41] A. Beaupré, “New approaches to network fast paths,” 2017. [Online].
Available: https://lwn.net/Articles/719850/

[42] The Linux Foundation, “eXpress Data Path (XDP).” [Online].
Available: https://www.iovisor.org/technology/xdp

[43] J. Corbet, “Zero-copy networking,” Linux Weekly News, 2017.
[44] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising the

bar for using gpus in software packet processing.” in NSDI, 2015.
[45] R. Mansilha, L. Saino, M. Barcellos, M. Gallo, E. Leonardi, D. Perino,

and D. Rossi, “Hierarchical Content Stores in High-speed ICN Routers:
Emulation and Prototype Implementation,” in ICN, 2015.

[46] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE Communication Sur-
veys & Tutorials,, 2014.

[47] I. Marinos, R. N. M. Watson, and M. Handley, “Network stack
specialization for performance,” in SIGCOMM, 2014.

[48] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, and D. Rossi,
“Flowmon-dpdk: Parsimonious per-flow software monitoring at line
rate,” in IFIP Traffic Monitoring and Analysis, 2018.

[49] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mTCP: a Highly Scalable User-level TCP Stack for Multicore
Systems.” in NSDI, 2014.

[50] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of Open vSwitch,” in USENIX NSDI,
2015.

[51] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek, “The Click
Modular Router,” Operating Systems Review, 1999.

[52] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: a software NIC to augment hardware,” EECS Department,
University of California, Berkeley, Tech. Rep., 2015.

[53] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in USENIX Conference on Networked Systems Design and Implemen-
tation, 2014.

[54] M. Gallo and R. Laufer, “Clicknf: a modular stack for custom network
functions,” in USENIX Annual Technical Conference (ATC), 2018.

[55] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mos: A
reusable networking stack for flow monitoring middleboxes,” in NSDI,
2017.

[56] A. Abdelrazik, G. Bunce, K. Cacciatore, K. Hui, S. Mahankali, and
F. Van Rooyen, “Adding speed and agility to virtualized infrastructure
with openstack,” 2017.

[57] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: high per-
formance and flexible networking using virtualization on commodity
platforms,” IEEE Transactions on Network and Service Management,
2015.

[58] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion, “The ix operating system: Combining
low latency, high throughput, and efficiency in a protected dataplane,”
ACM Transactions on Computer Systems (TOCS), 2017.

[59] S. Peter, T. Anderson, and T. Roscoe, “Arrakis: The Operating System
as Control Plane,” ACM Transactions on Computer Systems, 2013.

https://www.bro.org/
https://www.bro.org/
https://www.snort.org/
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://wiki.linuxfoundation.org/networking/napi
https://wiki.linuxfoundation.org/networking/napi
http://dpdk.org
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://lwn.net/Articles/719850/
https://www.iovisor.org/technology/xdp


17

[60] N. Pitaev, M. Falkner, A. Leivadeas, and I. Lambadaris, “Characterizing
the performance of concurrent virtualized network functions with
OVS-DPDK, FD.IO VPP and SR-IOV,” in ACM/SPEC International
Conference on Performance Engineering, 2018.

[61] N. Zilberman, P. M. Watts, C. Rotsos, and A. W. Moore, “Reconfig-
urable network systems and software-defined networking,” Proceedings
of the IEEE, 2015.

[62] Intel, “Intel 10 Gigabit AT Server Adapter.” [On-
line]. Available: https://www.intel.com/content/dam/support/us/en/
documents/network/adapter/10gbe/atserver/sb/318349.pdf

[63] Mellanox, “ConnectX-6 EN IC 200Gb/s Ethernet Adapter
IC.” [Online]. Available: http://www.mellanox.com/related-docs/prod
silicon/PB ConnectX-6 EN IC.pdf

[64] ETSI GS NFV-IFA 002 - Network Functions Virtualisation (NFV);
Acceleration Technologies; VNF Interfaces Specification, ETSI Group
Specification, Rev. 2.1.1, 2017.

[65] “openNFP,” 2016. [Online]. Available: http://open-nfp.org/
[66] Netronome, “AgilioTM CX 2x40GbE intelligent server adapter.”

[Online]. Available: https://www.netronome.com/media/redactor files/
PB Agilio CX 2x40GbE.pdf

[67] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as Research Commodity,” IEEE
Micro, 2014.

[68] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2015.

[69] A. Kaufmann, S. Peter, T. Anderson, and A. Krishnamurthy, “FlexNIC:
rethinking network DMA,” in USENIX HotOS, 2015.

[70] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G.
Andersen, O. Seongil, S. Lee, and P. Dubey, “Architecting to achieve
a billion requests per second throughput on a single key-value store
server platform,” in Annual International Symposium on Computer
Architecture, 2015.

[71] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman,
“Be fast, cheap and in control with switchkv,” in USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2016.

[72] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis,
L. Koromilas, and G. O’Shea, “Enabling end-host network functions,”
SIGCOMM Computer Communications Review, 2015.

[73] D. Firestone, “VFP: A virtual switch platform for host SDN in the
public cloud,” in USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017.

[74] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and
H. Weatherspoon, “P4fpga: A rapid prototyping framework for p4,” in
Symposium on SDN Research, 2017.

[75] G. Brebner and W. Jiang, “High-speed packet processing using recon-
figurable computing,” IEEE Micro, 2014.

[76] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and
S. Ioannidis, “Regular expression matching on graphics hardware for
intrusion detection,” in International Workshop on Recent Advances in
Intrusion Detection, 2009.

[77] S. Pontarelli, G. Bianchi, and S. Teofili, “Traffic-aware design of a high-
speed FPGA network intrusion detection system,” IEEE Transactions
on Computers, 2013.

[78] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep packet inspection using parallel bloom filters,” in Symposium
on high performance interconnects, 2003.

[79] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. H. Katz, “Fast
and memory-efficient regular expression matching for deep packet
inspection,” in ACM/IEEE Symposium on Architecture for Networking
and Communications systems, 2006.

[80] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
fpgas,” in Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, 2001.

[81] R. Antonello, S. Fernandes, C. Kamienski, D. Sadok, J. Kelner,
I. GóDor, G. Szabó, and T. Westholm, “Deep packet inspection
tools and techniques in commodity platforms: Challenges and trends,”
Journal of Network and Computer Applications, 2012.

[82] Intel, “Intel Pro/100S Network Adapters. IPSec
Offload Performance and Comparison.” [Online].
Available: https://www.intel.com/content/dam/doc/performance-brief/
etesting-labs-report-intel-pro-100-s-network-adapters-brief.pdf

[83] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proceedings of the 2017
Internet Measurement Conference. ACM, 2017, pp. 78–85.

[84] S. Pontarelli, G. Bianchi, and M. Welzl, “A programmable hardware
calendar for high resolution pacing,” in High Performance Switching
and Routing (HPSR), 2018 IEEE 19th International Conference on.
IEEE, 2018.

[85] M. G. Adrian Caulfield, Paolo Costa, “Beyond smartnics: Towards a
fully programmable cloud,” in IEEE International Conference on High
Performance Switching and Routing, 2018.

[86] “Cavium LiquidIO II Network Appliance Smart NICs.” [Online].
Available: http://www.cavium.com/LiquidIO-II Network Appliance
Adapters.html

[87] “BlueField Multicore System on Chip.” [Online]. Available:
http://www.mellanox.com/related-docs/npu-multicore-processors/PB
Bluefield SoC.pdf

[88] “Open vSwitch Offload and Acceleration with Agilio CX SmartNICs.”
[Online]. Available: https://www.netronome.com/media/redactor files/
WP OVS Benchmarking.pdf

[89] “BlueField Multicore System on Chip.” [Online]. Available: http://
www.mellanox.com/related-docs/prod multi core/PB TILE-Gx72.pdf

[90] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure
Accelerated Networking: SmartNICs in the Public Cloud,” in USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2018.

[91] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” ACM SIGCOMM CCR, 2008.

[92] Intel, “Intel FlowDirector.” [Online]. Available: https://software.intel.
com/en-us/articles/setting-up-intel-ethernet-flow-director

[93] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in ACM
SIGCOMM, 2013.

[94] R. Duncan and P. Jungck, “packetc language for high performance
packet processing,” in IEEE International Conference on High Perfor-
mance Computing and Communications (HPCC), 2009.

[95] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane,” in ACM SIGCOMM work-
shop on Hot topics in software defined networking, 2013.

[96] “Linux Socket Filtering aka Berkeley Packet Filter (BPF).”
[Online]. Available: https://www.kernel.org/doc/Documentation/
networking/filter.txt

[97] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Bal-
akrishnan, G. Varghese, N. McKeown, and S. Licking, “Packet trans-
actions: High-level programming for line-rate switches,” in ACM
SIGCOMM, 2016.

[98] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate: Pro-
gramming platform-independent stateful openflow applications inside
the switch,” ACM SIGCOMM CCR, 2014.

[99] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-
level state transition as a new switch primitive for sdn,” in Workshop
on Hot Topics in Software Defined Networking, 2014.

[100] G. Bianchi, M. Bonola, S. Pontarelli, D. Sanvito, A. Capone, and
C. Cascone, “Open packet processor: a programmable architecture for
wire speed platform-independent stateful in-network processing,” arXiv
preprint, 2016. [Online]. Available: http://arxiv.org/abs/1605.01977

[101] A. Caulfield, P. Costa, and M. Ghobadi, “Beyond SmartNICs: Towards
a Fully Programmable Cloud,” in IEEE HPSR, 2018.

[102] M.-A. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Pe-
tralia, H. Koumaras, G. Gardikis, and F. Liberal, “Enhancing VNF
performance by exploiting SR-IOV and DPDK packet processing
acceleration,” in IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN), 2015.

[103] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” in USENIX OSDI, 2016.

[104] S. Lange, A. Nguyen-Ngoc, S. Gebert, T. Zinner, M. Jarschel,
A. Koepsel, M. Sune, D. Raumer, S. Gallenmüller, G. Carle, and
P. Tran-Gia, “Performance Benchmarking of a Software-Based LTE
SGW,” in International Workshop on Management of SDN and NFV
Systems (ManSDN/NFV), 2015.

https://www.intel.com/content/dam/support/us/en/documents/network/adapter/10gbe/atserver/sb/318349.pdf
https://www.intel.com/content/dam/support/us/en/documents/network/adapter/10gbe/atserver/sb/318349.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
http://open-nfp.org/
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.intel.com/content/dam/doc/performance-brief/etesting-labs-report-intel-pro-100-s-network-adapters-brief.pdf
https://www.intel.com/content/dam/doc/performance-brief/etesting-labs-report-intel-pro-100-s-network-adapters-brief.pdf
http://www.cavium.com/LiquidIO-II_Network_Appliance_Adapters.html
http://www.cavium.com/LiquidIO-II_Network_Appliance_Adapters.html
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
https://www.netronome.com/media/redactor_files/WP_OVS_Benchmarking.pdf
https://www.netronome.com/media/redactor_files/WP_OVS_Benchmarking.pdf
http://www.mellanox.com/related-docs/prod_multi_core/PB_TILE-Gx72.pdf
http://www.mellanox.com/related-docs/prod_multi_core/PB_TILE-Gx72.pdf
https://software.intel.com/en-us/articles/setting-up-intel-ethernet-flow-director
https://software.intel.com/en-us/articles/setting-up-intel-ethernet-flow-director
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
http://arxiv.org/abs/1605.01977


18

Leonardo Linguaglossa Leonardo Linguaglossa is
a post-doctoral researcher at Télécom ParisTech
(France). He received his master degree in telecom-
munication engineering at University of Catania
(Italy) in 2012. He pursued a Ph.D. in Computer
Networks in 2016 through a joint doctoral program
with Alcatel-Lucent Bell Labs (nowadays Nokia),
INRIA and University Paris 7. Leonardo’s research
interests focus on architecture, design and proto-
typing of systems for high-speed software packet
processing, future Internet architecture and SDN.

Stanislav Lange Stanislav Lange studied computer
science at the University of Würzburg, Germany,
where he received his MSc degree in 2014. Cur-
rently, he is a researcher in the “Next Generation
Networks” research group at the Chair of Commu-
nication Networks in Würzburg and is pursuing his
PhD. His research is focused on software defined
networking, performance analysis, system modeling,
as well as multiobjective optimization.

Salvatore Pontarelli Salvatore Pontarelli received a
master degree in electronic engineering at University
of Bologna and the PhD degree in Microelectron-
ics and Telecommunications from the University
of Rome Tor Vergata. Currently, he works as Se-
nior Researcher at CNIT (Italian National Inter-
University Consortium for Telecommunications), in
the research unit of University of Rome Tor Vergata.
His research interests include hash based structures
for networking applications, use of FPGA for high
speed network monitoring and hardware design of

software defined network devices.

Gábor Rétvári Gábor Rétvári received the M.Sc.
and Ph.D. degrees in electrical engineering from the
Budapest University of Technology and Economics
in 1999 and 2007. He is now a Senior Research Fel-
low at the Department of Telecommunications and
Media Informatics. His research interests include
all aspects of network routing and switching, the
programmable data plane, and the networking appli-
cations of computational geometry and information
theory. He maintains several open source scientific
tools written in Perl, C, and Haskell.

Dario Rossi Dario Rossi received his MSc and
PhD degrees from Politecnico di Torino in 2001
and 2005 respectively, and his HDR degree from
Université Pierre et Marie Curie (UPMC) in 2010.
He is currently a Professor at Telecom ParisTech
and Ecole Polytechnique and is the holder of Cisco’s
Chair NewNet@Paris. He has coauthored 9 patents
and over 150 papers in leading conferences and
journals, that received 8 best paper awards, a Google
Faculty Research Award (2015) and an IRTF Ap-
plied Network Research Prize (2016). He is a Senior

Member of IEEE and ACM.

Thomas Zinner Thomas Zinner is visiting professor
and head of the research group ”Internet Network
Architectures” at the Technical University of Berlin,
Germany, since 2018. He received his PhD in 2012
and his professorial thesis (habilitation) in 2017 from
the University of Würzburg.He has published more
than 80 research papers in major conferences and
journals, receiving six best paper and best student
paper awards. His research focuses on QoE man-
agement, network softwarization and programmable
data planes, and performance evaluation.

Roberto Bifulco Roberto Bifulco is a senior re-
searcher in the Systems and Machine Learning
group at the NEC Laboratories Europe. His main
research interests are the design of high-performance
networked systems and the exploration of novel
solutions at the crossroad of systems and machine
learning. Before joining NEC in 2012, he worked
as consultant for small technological enterprises
and start-ups in the field of server virtualization
and cloud computing. Roberto holds a Ph.D. from
University of Napoli “Federico II”, Italy.

Michael Jarschel Michael Jarschel is working as
a research engineer in the area of Network Soft-
warization and Connected Driving at Nokia Bell
Labs in Munich, Germany. He finished his Ph.D.
thesis, titled “An Assessment of Applications and
Performance Analysis of Software Defined Network-
ing”, at the University of Würzburg in 2014. His
main research interests are in the applicability of
SDN and NFV concepts to next generation networks
as well as distributed telco cloud technologies and
their use cases.

Giuseppe Bianchi Giuseppe Bianchi is Full Profes-
sor of Networking at the Univ. of Roma Tor Ver-
gata. His research activity includes programmable
network systems, wireless networks, privacy and
security, traffic control. He has been general or
technical co-chair for several major IEEE and ACM
conferences and workshops, and has held general or
technical coordination roles in six European projects
so far. He has been editor for IEEE/ACM Trans.
on Networking, IEEE Trans. on Wireless Commun.,
IEEE Trans. on Network and Service Management,

and Elsevier Computer Communications.


	Introduction
	Network Function Virtualization Ecosystem
	Set of Network Functions and Building Blocks
	Individual functions and blocks
	Next Generation Firewall

	Virtualization Techniques
	Hardware Virtualization.
	Network Virtualization.

	Integration into the Orchestration Context

	Software Acceleration Techniques
	Software Acceleration
	Pure Software Acceleration
	Hardware–supported Functions in Software

	The Ecosystem of Software Stacks
	Low-level Building Blocks
	Monolithic Network Functions
	Modular Network Function Composition Frameworks


	Hardware Offloading
	Offloading in Commodity NICs
	CRC/Checksum Computation
	Encryption/Decryption
	Large Send/Receive Offloading

	SmartNIC Architectures
	Multicore SoC-based SmartNICs
	FPGA-Based SmartNICs

	Programming Abstractions
	Stateless Abstractions
	Stateful Abstractions


	Key Derivations and Guidelines
	Guidelines for Design and Development of Network Functions
	Know relevant performance metrics
	Optimize for the most constraining resource
	Exploit parallelism
	Use lightweight virtualization & isolation
	Cautious use of hardware offloading

	Guidelines for Software Acceleration
	Utilize hardware-supported functions when available
	Build virtual network functions on top of general-purpose accelerated frameworks
	Implement very specific tasks using low-level building blocks for CPU-intensive tasks, and leverage advanced coding styles

	Guidelines for Hardware Acceleration
	Performance gain
	Primitive adoption
	Complexity
	Relation of the primitive to other processing functions

	Potential of Acceleration Techniques for the NGFW

	Conclusion
	Acknowledgement
	References
	Biographies
	Leonardo Linguaglossa
	Stanislav Lange
	Salvatore Pontarelli
	Gábor Rétvári
	Dario Rossi
	Thomas Zinner
	Roberto Bifulco
	Michael Jarschel
	Giuseppe Bianchi


