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 45 

SUMMARY 46 

The bacterial type VI secretion system (T6SS) system is a contractile secretion apparatus that delivers 47 

proteins to neighbouring bacterial or eukaryotic cells. Antibacterial effectors are mostly toxins that 48 

inhibit growth of other species and help to dominate the niche. A broad variety of these toxins cause 49 

cell lysis of the prey cell by disrupting the cell envelope. Other effectors are delivered into the 50 

cytoplasm where they affect DNA integrity, cell division or exhaust energy resources. The modular 51 

nature of T6SS machinery allows different means of recruitment of toxic effectors to secreted inner 52 

tube and spike components that act as carriers. Toxic effectors can be translationally fused to the 53 

secreted components or interact with them through specialized structural domains. These interactions 54 

can also be assisted by dedicated chaperone proteins. Moreover, conserved sequence motifs in 55 

effector-associated domains are subject to genetic rearrangements and therefore engage in 56 

diversification of the arsenal of toxic effectors. This review discusses the diversity of T6SS secreted 57 

toxins and presents current knowledge about their loading on the T6SS machinery.  58 
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INTRODUCTION 71 

The bacterial type VI secretion system (T6SS) is a protein secretion apparatus usually composed of 72 

a membrane complex that anchors a cytoplasmic tail structurally and functionally similar to 73 

contractile injection systems (Taylor et al., 2018, Wang et al., 2019) (Figure 1). In most T6SSs, the 74 

membrane complex is composed of at least two inner membrane proteins and an outer membrane 75 

lipoprotein assembled in the cell envelope (Rapisarda et al., 2019). The pre-existing membrane 76 

complex recruits an assembly platform called the baseplate (Brunet et al., 2015, Nguyen et al., 2017). 77 

The baseplate is itself composed of six wedges arranged around a hub provided by the N-terminal 78 

domain of the spike protein VgrG (Brunet et al., 2015, Nazarov et al., 2018). The wedges comprise 79 

four proteins, including a phage-like receptor-binding protein that is responsible for baseplate 80 

anchoring to the membrane complex (Zoued et al., 2013, Cherrak et al., 2018). Once docked to the 81 

membrane complex, the baseplate initiates the assembly of a contractile tubular structure by the 82 

polymerization of a tail tube surrounded by a contractile sheath (Leiman et al., 2009, Basler et al., 83 

2012, Zoued et al., 2016). The tail tube-sheath complex assembles in an extended conformation 84 

(Basler et al., 2012, Kudryashev et al., 2015, Wang et al., 2017). Its contraction leads to propulsion 85 

of the tail tube across the envelope of the secreting bacterium and penetration into the target cells. 86 

The inner tube is topped by the spike that is made of the trimeric VgrG protein and sharpened by a 87 

conical PAAR protein. These constitute the needle that is secreted out of the bacterium and delivers 88 

the effector proteins (Pukatzki et al., 2007, Shneider et al., 2013, Silverman et al., 2013). The 89 

effectors can be translationally fused to needle components, can be recruited to the needle via direct 90 

interactions or with help of specific chaperone proteins also known as adaptors (Pukatzki et al., 2007, 91 

Shneider et al., 2013, Bondage et al., 2016, Unterweger et al., 2017, Ma et al., 2017a). The effector 92 

proteins described to date exhibit a broad variety of different, mostly toxic, activities capable of 93 

rapidly eliminating bacterial prey cells or altering the physiology of eukaryotic cells (Durand et al., 94 

2014, Russell et al., 2014, Cianfanelli et al., 2016b, Hachani et al., 2016). To prevent elimination of 95 
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kin cells, the antibacterial T6SS toxin activity is counteracted by cognate immunity proteins acting 96 

as anti-toxins. The acquisition and diversification of the effectors is associated with horizontal gene 97 

transfer, gene duplications and recombination through conserved sequences that locate new toxins 98 

and immunities at specific locations in the genome (Unterweger et al., 2015, Salomon, 2016, 99 

Koskiniemi et al., 2014). The arsenal of effectors and the stockpile of immunities discussed in this 100 

review is key for survival in the ecological niches with intense competition.  101 

 102 

ACTIVITY OF T6SS DELIVERED EFFECTORS 103 

In general, the activity of T6SS antibacterial effectors can be subdivided to lytic toxins that exert their 104 

activity in the periplasm of the bacterial target and toxins active in their cytoplasm (Figure 2). 105 

However, not all proteins delivered by T6SS are toxins, for example metal chelating proteins were 106 

shown to be expelled through T6SS (Wang et al., 2015, Si et al., 2017a, Si et al., 2017b, Han et al., 107 

2019). Similarly, effectors delivered into eukaryotic cells can alter the prey cells in more sophisticated 108 

and subtle manners and therefore deserve a separate discussion (for reviews see (Hachani et al., 2016, 109 

Monjarás Feria & Valvano, 2020)). Some effectors target molecules that are conserved in both 110 

bacterial and eukaryotic cells (e.g. phospholipids or DNA) and are therefore called trans-kingdom 111 

effectors. The T6SS delivered repertoire is highly enriched in toxins inducing cell lysis (Zhang et al., 112 

2012, Smith et al., 2020). Achieving rapid lysis of the prey cells can be beneficial in static 113 

environments where prey cells can form colonies, as a layer of dead cells would otherwise form a 114 

"corpse barrier" and limit access to the remaining prey cells (Borenstein et al., 2015, Smith et al., 115 

2020). Moreover, lysis provides quick access to the released DNA of the prey and can therefore 116 

stimulate horizontal gene transfer (Borgeaud et al., 2015, Ringel et al., 2017, Lin et al., 2019). 117 

Cytoplasmic acting toxins do not cause rapid cell lysis, nevertheless most of these toxins are very 118 

efficient targeting highly conserved substrates, such as DNA or energy molecules like ATP or NAD+ 119 

(Alcoforado Diniz & Coulthurst, 2015, Whitney et al., 2015, Ahmad et al., 2019).  120 
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Periplasmic acting effectors 121 

 Phospholipases. Type VI lipase effectors (Tle) cause cell lysis of competing bacteria by 122 

hydrolyzing phospholipids (Russell et al., 2013, Jiang et al., 2014, Ma et al., 2014a, Jiang et al., 2016, 123 

Flaugnatti et al., 2016). Tle toxins can be divided into five phylogenetically distinct families named 124 

Tle1-Tle5 (Russell et al., 2013). Tle1-4 members hydrolyze bonds between the glycerol and fatty 125 

acid tails. They possess phospholipase A1 activity – cleaving at first (sn1) glycerol position, 126 

phospholipase A2 activity – cleaving at second (sn2) position, or both (Russell et al., 2013, Hu et al., 127 

2014, Jiang et al., 2016, Flaugnatti et al., 2016). These enzymes typically bear a GxSxG motif and a 128 

putative S-H-D catalytic triad. All of the currently described Tle effectors comprise domains from 129 

AB_hydrolase clan (CL0028), but can encode an additional membrane anchoring domain or domains 130 

of unknown function  (Hu et al., 2014, Flaugnatti et al., 2016, Jiang et al., 2016, Berni et al., 2019, 131 

Wood et al., 2019b). Tle5 members hydrolyze phospholipids between the phosphate and the head 132 

group (at the sn3 position) and therefore possess phospholipase D activity. They are structurally 133 

distinct from Tle1-4 and bear dual HxKxxxxD motifs (Russell et al., 2013, Jiang et al., 2014, Spencer 134 

& Brown, 2015). Cleavage of phospholipid tails causes shrinking, inflating and eventual lysis of the 135 

target cell (Ringel et al., 2017). The Tle5 activity affects the phospholipid composition and can be 136 

toxic due to accumulation of phosphatidic acid generated by cleavage of the head groups of 137 

phospholipids (Russell et al., 2013, Lery et al., 2014). In addition to their antibacterial activities, 138 

some Tle can target eukaryotic cells and act as transkingdom effectors. The Pseudomonas aeruginosa 139 

PldB/Tle5b effector facilitates intracellular invasion of eukaryotic cells by activation of the PI3 kinase 140 

pathway, while TplE/Tle4 activity leads to endoplasmic reticulum disruption, triggering autophagy 141 

(Jiang et al., 2016, Jiang et al., 2014).  142 

 Membrane disrupting / pore-forming toxins. T6SS membrane disrupting effectors (Tme) or 143 

pore-forming toxins exert their toxicity from the periplasm of the target cells, by inserting into the 144 

inner membrane and causing membrane depolarization. Unlike other effectors, Tme effectors do not 145 
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possess catalytic activity and induce growth inhibition rather than cell lysis (Miyata et al., 2013, 146 

LaCourse et al., 2018, Mariano et al., 2019, Fridman et al., 2020). These effectors share homologies 147 

with pore-forming colicins or have predicted transmembrane helices (TMH) in their C-terminal 148 

region (Miyata et al., 2011, LaCourse et al., 2018, Fridman et al., 2020). These TMH can bear glycine 149 

zipper motifs (LaCourse et al., 2018), a motif commonly found in channel proteins or amyloid 150 

proteins and known to promote homo-dimerization (Kim et al., 2005, LaCourse et al., 2018). P. 151 

aeruginosa Tse4 and Serratia marcescens Ssp6 effectors form ion-selective pores, but are not 152 

permeable to larger compounds (LaCourse et al., 2018, Mariano et al., 2019). In contrast, the 153 

activities of VasX and Vibrio parahaemolyticus Tme1 and Tme2 induce permeability to larger 154 

compounds such as propidium iodide or ONPG (Miyata et al., 2013, Fridman et al., 2020). However, 155 

the precise molecular mechanisms underlying pore formation and/or membrane disruption induced 156 

by these different toxins remain to be determined. 157 

 Peptidoglycan hydrolases. A broad spectrum of T6SS effectors cause cell lysis by degrading 158 

peptidoglycan. They can be subdivided into those that hydrolyze the glycan backbone (glycoside 159 

hydrolases, Tge family) and those that hydrolyze the peptide sidechains (amidases or peptidases, Tae 160 

family). Tge effectors hydrolyze the N-acetylmuramic acid (NAM)- N-acetylglucosamine (NAG) 161 

glycan strands (Hood et al., 2010, Russell et al., 2011, Whitney et al., 2013, Ma et al., 2018). 162 

Pseudomonas protegens Tge2 presents a lysozyme-like fold and is neutralized by an immunity 163 

protein similar to proteinaceous lysozyme inhibitors (Whitney et al., 2013). In some cases, a 164 

lysozyme-like effector is fused to VgrG, such as in Vibrio cholerae VgrG3 (Dong et al., 2013b, 165 

Brooks et al., 2013). This is reminiscent of the VgrG homologue gp5 from phage T4 which also 166 

carries a lysozyme domain to facilitate cell penetration. (Leiman et al., 2009). The Tae (for Type VI 167 

amidase effector) family of peptidoglycan hydrolases cleave the peptide stems or the peptidoglycan 168 

cross-links. They bear different cleavage bond specificities: Tae1 and Tae4 are D,L-endopeptidases 169 

whereas Tae2 and Tae3 are D,D-endopeptidases (Russell et al., 2011, Russell et al., 2012, 170 
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Srikannathasan et al., 2013). In addition, amidase effectors specific to the NAM-L-Ala1 bond have 171 

been characterized (Ma et al., 2018, Wang et al., 2020). Recently, a novel Salmonella enterica 172 

effector Tlde1 (Type 6 L-D-transpeptidase effectors) was characterized. It comprises a L-D 173 

transpeptidase-like domain. However, Tlde1 does not crosslink NAM-NAG tetrapeptides, but retains 174 

L,D-transpeptidase exchange activity (exchanging D-Ala4 by a non-canonical D-amino-acid) and 175 

possesses an additional L,D-carboxypeptidase activity, cleaving tetrapeptides between mDAP3 and 176 

D-Ala4. These modifications in peptide stems impair the biosynthesis of the peptidoglycan (Sibinelli-177 

Sousa et al., 2020). 178 

 Metallopeptidases. Periplasmic-acting Type VI peptidase effectors (Tpe) belong to zinc 179 

dependent metallopeptidases (Peptidase_MA, CL0126) that bear a HExxH zinc-binding motif (Zhang 180 

et al., 2012, Wood et al., 2019a). P. aeruginosa Tpe1 is not active against peptidoglycan and was 181 

rather suggested to cleave the lipoprotein anchors since it induced release of lipoproteins from the 182 

membrane (Wood et al., 2019a). A large variety of predicted T6SS peptidase effectors may present 183 

diverse activities against periplasmic as well as cytoplasmic targets (Zhang et al., 2012, Ma et al., 184 

2017b). 185 

 186 

Cytoplasmic acting effectors  187 

 DNases. Most of the T6SS DNase effector (Tde) toxins belong to HNH superfamily, also 188 

known as His-Me finger endonucleases (Zhang et al., 2012, Koskiniemi et al., 2013, Alcoforado 189 

Diniz & Coulthurst, 2015, Pissaridou et al., 2018, Pei et al., 2020). A His-Me finger is a short 30-190 

amino acid motif formed by a β-hairpin followed by an α-helix (ββα) that constitute a binding site for 191 

a divalent metal ion (Jablonska et al., 2017). The His-Me finger fits its α-helix into the DNA minor 192 

groove aligning the β-hairpin with the catalytic histidine against the DNA backbone in a conformation 193 

efficient for non-specific DNA hydrolysis. Although additional structural motifs can provide 194 

specificity for nucleic acid structure or sequence (Jablonska et al., 2017), no sequence specificity has 195 
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been demonstrated for any Tde proteins. Target cells exposed to DNase toxins form filaments due to 196 

induction of the SOS response and eventually lose DAPI staining indicating complete degradation of 197 

chromosomal DNA (Pissaridou et al., 2018, Ma et al., 2017a, Jana et al., 2019). Apart from the HNH 198 

family, other DNase domains have been identified in Tde effectors, such as those belonging to 199 

families PoNe, Ntox and Tox-Rease (Ma et al., 2014b, Bondage et al., 2016, Bernal et al., 2017, 200 

Zhang et al., 2012, Jana et al., 2019). The HNH motif in the Tde effector from the uropathogenic 201 

Escherichia coli is preceded by an additional Pyocin_S DNase domain (Ma et al., 2017a, Nipic et al., 202 

2013). This effector is active against eukaryotes, where toxicity manifests in typical signs of DNA-203 

damage provoked apoptosis such as cell rounding and membrane blebbing (Nipic et al., 2013).  204 

 Deaminases. Numerous families of deaminase toxins associated with the T6SS have been 205 

predicted (Iyer et al., 2011, Zhang et al., 2012). Recently, an example of deaminase of the SCP1.201-206 

like family has been characterized (Mok et al., 2020). Burkholderia cenocepacia DddA toxin 207 

catalyzes deamination of cytosine to uracil in double-stranded DNA. The generated uracil is then a 208 

substrate for base excision repair and results in C-G to T-A base pair transition (Mok et al., 2020). 209 

DddA toxin shows a preference for cytidine bases preceded by thymidine (5’-TC), and due to such 210 

modest specificity it is extremely mutagenic (Mok et al., 2020).  211 

 NAD-glycohydrolases (NADases). NAD(P) + glycohydrolase toxins (Tne, for Type 6 212 

NADase Effector) degrade NAD(P) + to nicotinamide and ADP-ribose at the rate of ten to one 213 

hundred thousand molecules per minute therefore quickly depleting the cellular pools of essential 214 

NAD(P) + coenzymes primarily used for redox reactions (Whitney et al., 2015, Tang et al., 2018). 215 

Drastically reduced NAD(P) + concentrations in the intoxicated cell lead to general growth inhibition 216 

with cells maintaining structural integrity (Whitney et al., 2015).  217 

 (p)ppApp synthetases. Tas1 effector secreted by a virulent clinical isolate of P. aeruginosa 218 

structurally resembles RSH domain (RelA-SpoT homologue) enzymes that synthesize (p)ppGpp, a 219 

signaling molecule that responds to nutritional stress (Ahmad et al., 2019, Hauryliuk et al., 2015). 220 
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Typical RSH enzymes phosphorylate GDP or GTP to yield ppGpp. Tas1 however is a pyrophosphate 221 

kinase for adenosine nucleotides that phosphorylates ATP, ADP or AMP (Ahmad et al., 2019). Due 222 

to a high synthesis rate, reaching up to 180,000 phosphorylated ATP molecules per minute, attacked 223 

cells are quickly depleted in ATP and ADP and accumulate (p)ppApp (Ahmad et al., 2019). ATP and 224 

ADP depletion have a pleiotropic impact on energy production as well as anabolic and catabolic 225 

processes. In addition, (p)ppApp resembles (p)ppGpp and blocks purine synthesis by direct 226 

interaction with PurF (Ahmad et al., 2019). The accumulation of (p)ppApp could also contribute to 227 

toxicity by binding a multitude of other (p)ppGpp targets (Ahmad et al., 2019).   228 

 ADP-ribosyltransferase effectors. Serratia proteamaculans Tre1 is an antibacterial ADP-229 

ribosyltransferase, transferring the ADP-ribose moiety on protein targets upon hydrolysis of NAD + 230 

(Ting et al., 2018). Tre1 comprises a characteristic RSE-motif common to ADP-ribosyl transferases. 231 

It exclusively ribosylates arginine residues and its main target is FtsZ – a bacterial tubulin-like protein 232 

essential for cell division. Ribosylated FtsZ fails to polymerize, and hence cells are unable to septate, 233 

form filaments and eventually lyse (Ting et al., 2018). Another example of T6SS ADP-234 

ribosyltransferase effector is the Aeromonas hydrophila VgrG1 C-terminal domain that targets the 235 

eukaryotic cytoskeleton (Suarez et al., 2010). The C-terminal domain of VgrG1 ribosylates actin and 236 

impedes its polymerization, leading to cell rounding, activation of caspases and eventually apoptosis 237 

(Suarez et al., 2010).  238 

 239 

Extracellular effectors 240 

As a metal scavenging strategy T6SS can secrete metallophore effectors directly into the extracellular 241 

medium. This secretion strategy is contact-independent and allows metal acquisition. Proteins with 242 

binding specificity for zinc, manganese and copper have been shown to be secreted by T6SS (Wang 243 

et al., 2015, Si et al., 2017a, Si et al., 2017b, Han et al., 2019, DeShazer, 2019). P. aeruginosa 244 

secreted TseF effector doesn’t bind metals directly but binds the iron-loaded extracellular signaling 245 
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molecule PQS (Pseudomonas Quinolone System) (Lin et al., 2017). Scavenged metals are then 246 

imported back to the secreted bacterium by specific TonB-dependent transporters and provide a 247 

growth advantage in scarce conditions in the host or in the environment or are used for specific 248 

purposes such as oxidative stress resistance (Si et al., 2017a, Si et al., 2017b, Lin et al., 2017). 249 

 250 

IMMUNITY PROTEINS 251 

To protect themselves from intoxication T6SS+ bacteria possess immunity genes adjacent to the 252 

cognate toxin genes. As a rule, the immunity proteins protecting from periplasm-active toxins are 253 

themselves located in the periplasm, being membrane anchored lipoproteins, periplasmic, or inner 254 

membrane proteins (Russell et al., 2013, Flaugnatti et al., 2016, Fridman et al., 2020, Wood et al., 255 

2019a). Effectors can also be encoded without adjacent immunity genes when they are active against 256 

targets not found in the effector producing bacterium, for instance targets only found in eukaryotes 257 

(Zhang et al., 2012). Importantly, some bacteria can be intrinsically resistant to the anti-bacterial 258 

toxins due to absence or difference of the target or due to specific responses (Hersch et al., 2020, 259 

Kamal et al., 2020, Le et al., 2020). Most immunity proteins are small single domain proteins that 260 

typically engage in highly specific interactions with their cognate toxins and occlude their active sites 261 

(Zhang et al., 2012, Zhang et al., 2013a, Zhang et al., 2013b, Dong et al., 2013a, Ding et al., 2012, 262 

Wang et al., 2013, Whitney et al., 2013, Robb et al., 2016), or lock them in a dysfunctional 263 

conformation (Lu et al., 2014). However, some immunities have a dual function, as demonstrated for 264 

Tri1, which binds the Tre1 toxin and also removes the ADP-ribosylation from toxin-modified proteins 265 

via its ADP-ribosyl hydrolase domain (Ting et al., 2018). As a result, Tri1 immunity was shown to 266 

be rather promiscuous, able to neutralize various ADP-ribosylating toxins (Ting et al., 2018). 267 

Interestingly, multiple immunity genes can be organized into poly-immunity loci that are thought to 268 

permit “cheating” in ecosystems charged with different bacterial species such as soil or microbiome 269 

(Zhang et al., 2012, Kirchberger et al., 2017, Ross et al., 2019, Barretto & Fowler, 2020). The 270 
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acquisition of new immunity genes is associated with horizontal gene transfer and recombination 271 

(Zhang et al., 2012, Kirchberger et al., 2017). 272 

 273 

EFFECTOR LOADING AND DELIVERY 274 

T6SS effectors can be translationally fused to secreted T6SS core components - VgrG, PAAR or Hcp. 275 

Otherwise, when encoded as separate genes, the effectors locate to VgrG, PAAR or Hcp through 276 

specific interactions. These interactions can be assisted by dedicated chaperones or structural motifs 277 

(Unterweger et al., 2015, Unterweger et al., 2017, Shneider et al., 2013, Silverman et al., 2013, Ma 278 

et al., 2017a) (Figure 3).  279 

Core components carrying effectors 280 

The VgrG spike protein forms trimers consisting of a cylinder shaped base followed by a -helical 281 

prism extension (gp5 needle-like domain) (Uchida et al., 2014, Spinola-Amilibia et al., 2016). The 282 

gp5 needle domain can be followed by additional effector domains or effector-recruitment domains 283 

(Pukatzki et al., 2007, Flaugnatti et al., 2016). PAAR domain proteins form cone shaped structures 284 

(Shneider et al., 2013, Rigard et al., 2016). The base of the cone complements the C-terminal -285 

strands of VgrG, however the termini of PAAR are surface exposed and therefore are apt for 286 

extensions and are often C-terminally fused to various effector domains as well as recruitment 287 

domains (Shneider et al., 2013, Rigard et al., 2016). Hcp proteins form hexameric rings that are 288 

stacked to build a tube upon sheath formation. The central channel of an Hcp ring has a diameter of 289 

roughly 40 Å which can accommodate small effector proteins (Mougous et al., 2006, Silverman et 290 

al., 2013). Additionally, Hcp can also provide stability for its effectors and thus may contribute 291 

chaperone functions (Silverman et al., 2013). 292 

Different effector groups may prefer certain types of core component carrier. For example, 293 

phospholipase effectors are usually transported by VgrG (Russell et al., 2013). Likely, due to their 294 

relatively large size (60-100 kDa), they would not fit inside the lumen of the Hcp tube (Liang et al., 295 
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2015, Unterweger et al., 2015, Flaugnatti et al., 2016, Wettstadt et al., 2019, Ma et al., 2020, 296 

Flaugnatti et al., 2020). Nevertheless, some Tle effectors fused to PAAR or Hcp were identified and 297 

await characterization (Ma et al., 2017a, Flaugnatti et al., 2020). On the contrary, cytoplasmic acting 298 

toxins are almost exclusively fused to PAAR, Hcp or specialized recruitment domains (Ma et al., 299 

2017a, Koskiniemi et al., 2013, Pissaridou et al., 2018, Bernal et al., 2017, Jana et al., 2019, Tang et 300 

al., 2018, Ting et al., 2018, Ahmad et al., 2019, Mok et al., 2020). Structural motifs encoded in these 301 

domains might facilitate translocation of these toxins to the cytoplasm of the prey. 302 

 303 

Adaptors/chaperones 304 

T6SS chaperones (also called adaptors) are accessory proteins that share several common features – 305 

they are encoded adjacent to the toxin and are specific and indispensable for secretion of their cognate 306 

effector, although not secreted themselves (Bondage et al., 2016, Unterweger et al., 2015, Cianfanelli 307 

et al., 2016a, Whitney et al., 2015). While these proteins may facilitate proper folding of the effector, 308 

their main function is to load their cognate toxin on the T6SS elements. 309 

Eag (for Effector associated gene) family chaperones comprise a DcrB (previously DUF1795) 310 

domain. They are required for complex formation between VgrG and their specific cognate N- 311 

terminal PAAR-domain containing effectors (Whitney et al., 2015, Cianfanelli et al., 2016a, Quentin 312 

et al., 2018). Eag family chaperones are often encoded adjacent to evolved PAAR-toxins that bear 313 

transmembrane domains and provide stability by direct interactions that cover the TM domains 314 

(Quentin et al., 2018). Specific Eag chaperones encoded in tandem with different toxins can recruit 315 

them to the same VgrG spike and therefore facilitate diversification of effector load (Cianfanelli et 316 

al., 2016a).  317 

Agrobacterium tumefaciens Atu3641 is required for the secretion of the PAAR-fused Tde2 DNase. It 318 

is so far the only example of DUF2169-containing chaperone family that seems to be associated with 319 

the secretion of PAAR-fused effectors (Bondage et al., 2016).  320 
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Tec/Tap family adaptors specifically interact with toxic effectors and with VgrG extensions or PAAR 321 

extensions (Unterweger et al., 2015, Liang et al., 2015, Bondage et al., 2016, Burkinshaw et al., 322 

2018). The P. aeruginosa TecT chaperone additionally requires a co-chaperone that is displaced upon 323 

binding to PAAR protein extension (Burkinshaw et al., 2018). Tec/Tap proteins share a structurally 324 

uncharacterized DUF4123 domain (Unterweger et al., 2015, Liang et al., 2015). These chaperones 325 

are encoded upstream their cognate effectors and have C-terminal ends specific to the N-terminal 326 

domains of their cognate effectors (Unterweger et al., 2015, Liang et al., 2015). The central regions 327 

of these chaperones are highly conserved and were proposed to be involved in recombination 328 

generating diverse chimeras (Unterweger et al., 2015).  329 

Finally, P. aeruginosa DUF2875-containing Tla3 protein interacts with the Tle3 effector and with 330 

the C-terminal extension of VgrG2b and was proposed to belong to a novel T6SS chaperone family 331 

(Berni et al., 2019). 332 

Recruitment domains and motifs 333 

While chaperones are usually stand-alone proteins, some domains decorating the VgrG-PAAR spike 334 

perform a similar function, likely related to effector delivery. They range from smaller domains like 335 

MIX (Marker for type sIX effectors) or FIX (Found in type sIX effectors) sequence motifs, TTR 336 

(Transthyretin-like domains) or DUF2345 domains to larger structures like Rhs (Rearrangement hot 337 

spot) core domains. 338 

MIX and FIX are N-terminal sequences preceding the toxic domains in some T6SS effectors, but can 339 

also be found embedded into VgrG or PAAR proteins (Salomon et al., 2014, Jana et al., 2019). MIX 340 

are predicted to be primarily  stranded structures that consist of a highly hydrophobic central motif 341 

and less conserved termini (Salomon et al., 2014). MIX domains are of modular nature, can be 342 

duplicated or associated to transposable elements, which suggests they serve for effector pool 343 

diversification (Salomon, 2016, Salomon et al., 2014). TTR domains exist as C-terminal VgrG or 344 

PAAR extensions and were shown to bind effectors (Shneider et al., 2013, Flaugnatti et al., 2016, 345 
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Wood et al., 2019b, Wettstadt et al., 2019, Flaugnatti et al., 2020). Bacterial TTR-like domains are 346 

globular structures composed of two small -sheets structurally resembling the eukaryotic TTR  -347 

sandwich structure (Flaugnatti et al., 2020). In enteroaggregative E. coli VgrGEAEC, the TTR is fused 348 

to the VgrG gp5 needle-like domain through highly flexible loops (Flaugnatti et al., 2020). TTR 349 

interacts with the flexible N-terminal extension of Tle1 effector which inserts its -sheets to form a 350 

-barrel with TTR (Flaugnatti et al., 2020). In addition to recruitment function, TTRs can also provide 351 

stability to the effectors as well as participate in effector neutralization (Wettstadt et al., 2019, 352 

Flaugnatti et al., 2020). DUF2345 domain forms an extension of VgrG by continuing a  -prism 353 

structure of the C-terminal gp5 domain of the VgrG spike (Flaugnatti et al., 2020). DUF2345, as well 354 

as long -helices aligned against the length of the needle, make numerous contacts with loaded 355 

effector. Together with the TTR domain, they can be considered an internal adaptor domain for direct 356 

recruitment of the effectors (Flaugnatti et al., 2020). DUF2345 domains can perform additional 357 

functions. In Acinetobacter baumannii, the DUF2345 of VgrG is essential for T6SS assembly, while 358 

the VgrG4 DUF2345 domain of Klebsiella pneumoniae is itself an antibacterial and antifungal toxic 359 

effector inducing response to reactive oxygen species (Lopez et al., 2020, Storey et al., 2020). Rhs 360 

are large proteins that were first identified as recombination-prone loci in chromosomes (Lin et al., 361 

1984). Certain classes of Rhs proteins are secreted through T6SS (Koskiniemi et al., 2013, 362 

Alcoforado Diniz & Coulthurst, 2015, Pei et al., 2020). They are encoded downstream of VgrG or 363 

T6SS chaperones (Eag or Tec/Tap) and comprise N-terminal PAAR or other VgrG interacting 364 

(VIRN) domains (Cianfanelli et al., 2016a, Pei et al., 2020). The  Rhs core region comprised of 365 

spiralling -sheets forms a shell-like structure that likely encloses the C-terminal toxin domain 366 

(Jackson et al., 2009, Zhang et al., 2012, Alcoforado Diniz & Coulthurst, 2015, Jackson et al., 2019). 367 

It has been recently demonstrated that a T6SS secreted Rhs protein undergoes two autocleavages – 368 

one at the N-terminus and one at the C-terminus (Pei et al., 2020). These conserved autocleavages 369 

were suggested to be a part of the toxin release mechanism (Pei et al., 2020). Remarkably, Rhs-370 
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associated toxins commonly act on targets within the cytoplasm, with the most common target 371 

predicted to be nucleic acids (Zhang et al., 2012). This in turn suggests that Rhs core could provide 372 

a mechanism for the effectors to reach the cytoplasm. Rhs undergoes complex genetic rearrangements 373 

to diversify the C-terminal sequences (Poole et al., 2011). New Rhs toxins could be acquired by HGT 374 

via recombination at conserved core regions (Jackson et al., 2009, Koskiniemi et al., 2014).  375 

 376 

CONCLUDING REMARKS AND FUTURE DIRECTIONS  377 

Discovering the myriad of the effectors. Bacteria can encode multiple T6SS loci and a plethora of 378 

effectors. The disposition of different toxic effector-immunity pairs as well as cheating by collection 379 

of the stand-alone immunities helps both hide and seek in the dense and diverse communities ( Zhang 380 

et al., 2012, Kirchberger et al., 2017, Ross et al., 2019, Barretto & Fowler, 2020). Highly diverse 381 

effector repertoire continues to be uncovered in different clinical and environmental isolates. 382 

Comparative genomic strategies combined with genetic screening helps identifying novel T6SS 383 

effectors and their targets (Fridman et al., 2020). We are only beginning to learn about the acquisition 384 

and integration of the novel effectors into the T6SS pathway. Bioinformatics studies suggest that 385 

inherent conserved regions of the effector recruitment domains such as Rhs, DUF4123 or MIX have 386 

diversifying capacity as they are prone to genetic rearrangements (Koskiniemi et al., 2014, 387 

Unterweger et al., 2015, Salomon, 2016). However, only a few genetic studies have demonstrated the 388 

engagement of distantly located so-called orphan-toxins (Koskiniemi et al., 2014, Ma et al., 2017a). 389 

Other polymorphic toxic systems that were found to share some toxic domains with T6SS are 390 

considered to be an alternative reservoir for novel toxic activities (Zhang et al., 2012, Salomon, 2016). 391 

The co-regulation of the T6SS expression with the DNA uptake could provide genetic material for 392 

acquisition of novel effectors (Borgeaud et al., 2015, Ringel et al., 2017). Nevertheless, further 393 

research is needed to gain full picture of the evolution of new effectors.    394 
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Variations and limitations of T6SS based delivery. In theory, some T6SS assemblies could 395 

accommodate several different effectors at once, leading to the secretion of a cocktail of effectors in 396 

one T6SS shot. Moreover, the same VgrG spike can accommodate different effectors using different 397 

PAAR or adaptor proteins, and some effectors could be recruited to several different assemblies 398 

(Whitney et al., 2014, Cianfanelli et al., 2016a, Burkinshaw et al., 2018, Wood et al., 2019b). 399 

Processes that could coordinate the secretion of different effectors and the bases for the selection of 400 

the effectors are so far unclear. First high-resolution Cryo-EM structures of T6SS secretion 401 

spike/effector complexes revealed networks of highly specific interactions (Quentin et al., 2018, 402 

Flaugnatti et al., 2020). These examples represent only a few out of many possible secretion complex 403 

architectures. Moreover, to date we lack understanding of how spike/effector complex accommodates 404 

in the baseplate and passes across the membrane complex. High resolution structures of different 405 

architectures and different steps of assembly are needed to understand the molecular determinants of 406 

this process. This information is crucial in order to design inhibitors that could block T6SS based 407 

translocation of clinically important effectors. On the other hand, first attempts to use the T6SS for 408 

delivery of heterologous proteins were successful but revealed some important limitations likely 409 

related to steric hindrances (Ma et al., 2009, Ho et al., 2017, Wettstadt et al., 2019, Wettstadt et al., 410 

2020). Therefore, better understanding of effector translocation at the molecular level could help 411 

harness T6SS for therapeutic interests, such as injection of antibodies or antibiotics directly into the 412 

target cells.  413 
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 753 

 754 

FIGURE LEGENDS 755 

Figure 1. Schematic representation of the mechanism of action of Type VI secretion machinery.   756 

A membrane complex (1) recruits the baseplate (2) which allows the polymerization of the tail tube 757 

surrounded by the sheath (3) until it reaches a complete elongated state (4). Upon contraction of the 758 

sheath (5), the inner tube and the spike decorated with effectors are propelled into the target cell (6). 759 

The membrane complex is shown in yellow, the baseplate in brown, the sheath in light blue. The 760 
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secreted components are shown in dark blue – the tail tube consists of a stack of hexameric Hcp rings 761 

and spike consists of VgrG and PAAR. The effectors are shown in red.  762 

 763 

Figure 2. Anti-bacterial toxic activities of T6SS effectors. The scheme shows the mode of action 764 

of the different families of T6SS toxins. All toxins are shown in red.  765 

Tle degrade membrane phospholipids (in light blue). Tae and Tge effectors degrade the 766 

peptidoglycan (in golden) through amidase or glycoside hydrolase activities respectively. Tme form 767 

pores in the inner membrane, leading to membrane depolarization (ions in black). One member of the 768 

Tpe family was proposed to hydrolyze the lipid anchor of outer membrane lipoproteins (in green). 769 

Tas1 phosphorylates ATP and ADP (shown in yellow) leading to accumulation of (p)ppApp (shown 770 

in orange). Tne degrade NAD(P) + (shown in pink) to nicotinamide (brown) and ADP-ribose (dark 771 

purple), leading to the depletion of NAD(P) + cellular pools. Tde catalyze non-specific hydrolysis of 772 

DNA (shown in black). DddA deaminates cytosine to uracil in the double stranded DNA. DddA 773 

caused mutations are depicted in red, ammonia released as reaction product in grey. Tre ADP-774 

ribosylates protein target (here FtsZ) upon NAD + hydrolysis. FtsZ proteins are shown in blue, NAD 775 

+ in pink, ADP-ribose in dark purple.  776 

 777 

Figure 3: Currently described modes of effector loading on VgrG, Hcp or PAAR. Effectors 778 

(shown in red) can be fused to Hcp, VgrG or PAAR components or be encoded separately and interact 779 

with these components directly or with the help of chaperones/adaptors. Chaperones can be either 780 

encoded separately (shown in green) or constitute recruitment motifs that are integral parts of VgrG 781 

or PAAR. Chaperones (Eag, Tep/Tec), Rhs domain, as well as a TTR domain are indicated. 782 
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