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We theoretically study the out-of-equilibrium dynamics in momentum space of a weakly inter-
acting disordered Bose gas launched with a finite velocity. In the absence of interactions, coherent
multiple scattering gives rise to a background of diffusive particles, on top of which a coherent
backscattering interference emerges. We revisit this scenario in the presence of interactions, using a
diagrammatic quantum transport theory. We find that the dynamics is governed by coupled kinetic
equations describing the thermalization of the diffusive and coherent components of the gas. This
phenomenon leads to a destruction of coherent backscattering, well described by an exponential
relaxation whose rate is controlled by the particle collision time. These predictions are confirmed
by numerical simulations.

I. INTRODUCTION

When perturbed from an equilibrium situation, iso-
lated many-body systems generally experience a ther-
malization process and eventually return to equilibrium
at sufficiently long time [1]. This process arises because
the interacting system serves as a “bath” for all its sub-
parts, the final state being characterized by a Gibbs
ensemble. A number of works have explored the for-
mation of this thermalized state, with special attention
dedicated to the dynamical emergence of a Bose conden-
sate [2–4]. The out-of-equilibrium dynamics leading to
thermalization can also follow a rich variety of scenarios.
Those have recently raised considerable interest in the
cold-atom community, where the conditions of truly iso-
lated quantum gases can be achieved at an unprecedented
level. Non-integrable systems, for instance, usually dis-
play an intermediate “prethermal” stage where the sys-
tem evolves rather slowly and looks approximately ther-
malized [5, 6]. Prethermalization can be modeled by a
generalized Gibbs ensemble, characterized by a small set
of parameters [7]. The many-body dynamics may also
exhibit universal scaling properties when the system is
quenched through or in the vicinity of a quantum phase
transition [8, 9], or when it is initially prepared in a far
off-equilibrium state [10–13].

Much less is known about the out-of-equilibrium dy-
namics of interacting disordered systems. At the many-
body level, the competition between disorder and inter-
actions may lead to many-body localization (for recent
reviews see [14, 15]), initially addressed in the context
of electron conduction [16]. A consequence of many-
body localization is the absence of thermalization. When
quenched out-of-equilibrium, many-body disordered sys-
tems may or may not reach a universal thermalized state,
depending on the magnitude and properties of the disor-
der and interactions. In weakly interacting Bose gases,
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which can be described at a mean-field level with a non-
linear Schrödinger equation, many-body localization does
not occur and thermalization is the rule. Notwithstand-
ing the relative simplicity of this limit, the combination of
weak interactions and disorder still gives rise to a num-
ber of puzzling phenomena, such as thermalization via
weakly coupled localized states [17, 18] or subdiffusive
spreading of wave packets [19–24].

In this article, we study the interplay between disor-
der and interactions in a dilute Bose gas, in the limit
of weak disorder. This regime has been under the fo-
cus of a number of cold-atom experiments probing, e.g.,
one-dimensional Anderson localization [25, 26], coherent
backscattering (CBS) [27–29] as well as its control over
external dephasing [29, 30]. CBS of cold atoms, in par-
ticular, was probed in an optics-like configuration where
an ultracold Bose gas was initially given a finite mean
velocity, and its subsequent dynamics in the presence of
disorder probed in momentum space. This configuration,
originally introduced in [31], turned also useful to explore
other interference phenomena like coherent forward scat-
tering [32], to achieve an echo spectroscopy of coherent
transport in disorder [30, 33] or to monitor the thermal-
ization and dynamical formation of condensates in mo-
mentum space [34]. In most of these works, disorder –
albeit weak – was the main ingredient driving the atomic
dynamics, so that interactions could be neglected in first
approximation. As is well known, however, particle inter-
actions generally affect significantly coherent transport
and, in particular, coherent backscattering. This ques-
tion was previously addressed in the context of nonlinear
optics of continuous beams [35–38] or of atom lasers [39].
A theoretical description of particle interactions in an
out-of-equilibrium regime where mesoscopic effects like
CBS occur is, on the other hand, still absent. It is the
goal of the present work to fill this gap.

Following [27, 28, 30, 31], we consider the out-of-
equilibrium dynamics of a two-dimensional, weakly inter-
acting Bose gas initially prepared in a plane-wave state
with finite velocity in a random potential. In this config-
uration, the momentum distribution quickly acquires a
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ring-shape profile associated with classical particle diffu-
sion, with an interference, CBS peak emerging on the top.
In the presence of interactions, this picture slowly evolves
in time as the whole distribution thermalizes. Well be-
fore thermalization fully develops however, we observe a
rather fast contrast loss of the CBS peak. To explain
this phenomenon, we develop a microscopic, diagram-
matic perturbation theory of coherent particle transport
including both disorder and interactions. This allows us
to derive coupled kinetic equations for the diffusive and
coherent components of the momentum distribution. By
solving the latter numerically at short time, we achieve
a precise description of the time evolution of CBS in the
presence of interactions. In particular, we find that time-
reversed paths responsible for CBS are quantitatively
more sensitive to particle collisions than diffusive paths.
This leads to a faster relaxation of the interference signal.
This relaxation is well captured by an exponential decay,
whose rate is controlled by the particle collision time.

The article is organized as follows. In Sec. II we for-
mulate the problem and illustrate it through a numerical
simulation. In Sec. III, we recall the main elements of
quantum transport theory in disorder when interactions
are neglected. This approach is extended to the inter-
acting regime in Secs. IV and V, and confronted with
numerical simulations in Sec. VI. Main results are sum-
marized in Sec. VII, and technical details are collected
in two appendices.

II. MOMENTUM-SPACE DYNAMICS

We consider the out-of-equilibrium evolution of a N -
particle disordered interacting Bose gas. Interactions,
assumed weak, are treated at the mean-field level, on the
basis of the Gross-Pitaevskii equation (GPE)

i∂tΨ(r, t) =

[
−∇2

2m
+ V (r) + gN |Ψ(r, t)|2

]
Ψ(r, t) (1)

for the Bose field Ψ(r, t). In Eq. (1) and in the fol-
lowing, we set ~ = 1. From now on we focus on the
two-dimensional geometry, although most results of the
article are valid in dimension 3 as well. V (r) is a random
potential, assumed to follow a Gaussian statistics with
zero mean and no correlation :

V (r) = 0, V (r)V (r′) = γδ(r − r′), (2)

where γ > 0 sets the disorder strength and the overbar
refers to configuration averaging. The assumption of un-
correlated disorder does not imply any loss of generality.
The mean free time (defined below) being the only rele-
vant disorder parameter for the dynamics, the results of
the paper hold as well for a short-range correlated disor-
der. To illustrate the problem we are interested in, we
first study the numerical propagation of an initial plane
wave φ(r) ≡ 〈r |Ψ(t = 0)〉 = 1/

√
V exp(ik0 · r) in the

random potential (V is the volume of the system), by

computing the wave function Ψ(r, t) at different times
on a discretized regular grid of 200× 200 sites with step
a, for periodic boundary conditions. The temporal prop-
agation is performed using a split-step algorithm of time
step ∆t, alternating propagations of the linear part of the
GPE, exp

[
−i(−∇2/2m+ V (r))∆t

]
, and of the nonlinear

part, exp[−igN |Ψ(r, t)|2∆t]. The linear part of the evolu-
tion operator is expanded in a series of Chebyshev poly-
nomials, as described in [40–43]. From the wave function,
we compute its Fourier transform

Ψ(k, t) ≡
∫

d2r e−ik·rΨ(r, t), (3)

from which we infer the disorder-averaged momen-
tum distribution, |Ψ(k, t)|2, normalized according to∫

d2k/(2π)2|Ψ(k, t)|2 = 1. The computed momentum
distribution is shown in Fig. 1 at three different times.
We choose as unit of length the discretization step a in

FIG. 1. Momentum distribution |Ψ(kx, ky, t)|2 computed nu-
merically at three successive times using the GPE (1), start-
ing from a plane wave of initial momentum k0 = (π/5, 0) in
a Gaussian, uncorrelated random potential. The nonlinear
term in the GPE leads to an early-time decay of the CBS
peak. Here gρ0 = 0.004 and γ = 0.038. Data are averaged
over about 14000 disorder realizations.

our numerics. In order for the discretization to be a good
approximation to the continuous equation (1), one must
simply ensure that the de Broglie wavelength is signifi-
cantly larger than the grid spacing, i.e. 2π/k0 � a. In
the following we typically use k0a = π/5, so that dis-
cretization effects are small. In Fig. 1 and in all other
simulations based on Eq. (1), we express momenta in
units of 1/a, lengths in a, times in ma2 and energies in
1/(ma2). The disorder amplitude, γ, is then in units of
1/(m2a2). In Fig. 1, the three times shown are given in
units of the mean free time τ , i.e. the typical collision
time on the scattering potential. In the Born approxi-
mation, τ = 1/(mγ) [see Eq. (11) below]. We choose
τ ' 26.3, so that the product of k0 with the mean free
path ` ≡ k0τ is k0` ' 10.4, i.e. much larger than one.
This is the so-called limit of weak disorder, where, in
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FIG. 2. Heights of the (a) diffusive ring and (b) CBS peak ver-
sus time for increasing values of g from top to bottom. Data
for the ring height are obtained by computing the maximum
value of |Ψ(k, t)|2 at (kx, ky) = (0,±k0), where no CBS peak
is present. Data for the CBS peak height are obtained by
subtracting the momentum distribution rotated by 90◦ from
|Ψ(k, t)|2. Here k0 = (π/5, 0), γ ' 0.0182, and data are aver-
aged over about 16000 disorder realizations. The solid smooth
black curves are Eqs. (18) and (19), respectively. They both
saturate at a value slightly above 100, which is close to the
analytical estimate τ/(πνε0) ' 98.9 for a numerically com-
puted mean free time τ ' 51.84 and on-shell density of state
νε0 ' 0.167.

the absence of interactions, the momentum distribution
is essentially the sum of two contributions. The first is
a background of diffusive particles scattered elastically
on the random potential. In Fig. 1 this contribution
manifests itself as a ring of radius k0. The second is a
narrow interference peak centered around k = −k0, the
coherent backscattering (CBS) effect. CBS in this con-
figuration was first described theoretically in [31], and
experimentally measured with cold atoms in [27, 28, 30].

In the presence of weak interactions, a main change
compared to this picture is a decay of the CBS peak
amplitude at short time. This decay appears as soon
as interactions are nonzero, as shown in the lower panel
of Fig. 2 for even weaker values of gρ0. Also shown in
the upper panel is the height of the diffusive ring, which
decays as well, albeit more slowly than the CBS peak.
This results in a decay of the CBS contrast, well visible
in Fig. 1. In the simulations of Figs. 1 and 2, the
magnitude of interactions is chosen such that the mean
free path associated with the collisions on the nonlinear

potential gN |Ψ|2 is larger than ` (this condition will be
clarified in Sec. IV). In the rather small time-range of
these figures, this nonlinear potential thus plays the role
of a perturbation for the dynamics, which remains mainly
governed by the disorder.

The observed decays of the diffusive background and
CBS peak constitute the early-time manifestations of a
thermalization process of the whole momentum distribu-
tion. The long-time thermalization properties of the dif-
fusive background have been previously addressed in [34].
In the sequel of the paper, we provide a theoretical basis
for the formalism used in [34], and go one step forward
by constructing a kinetic theory which encompasses both
the incoherent diffusive component and the CBS contri-
bution (neglected in [34]). Equipped with this theory,
we then reproduce and explain the temporal evolutions
observed in Figs. 1 and 2, and in particular confirm that
the CBS peak is more sensitive to particle collisions than
the diffusive background. The relaxation of its contrast is
found to be exponential at short time, with a relaxation
rate controlled by the particle collision time.

III. LINEAR REGIME: THEORY

The theory of diffusion and CBS in momentum space
has been presented in [31]. Here we only recall the main
elements required to introduce the nonlinear diagram-
matic theory in the next sections. We also adopt a
slightly different point of view than in [31], focusing more
on the energy distribution of the particles, which plays a
major role in the thermalization process at work when
interactions are nonzero.

When g = 0, the momentum distribution can be ex-
pressed as [31, 44, 45]

|Ψ(k, t)|2 =

∫ ∞
−∞

dε

2π

∫ ∞
−∞

dω

2π
e−iωtIε,ω(k), (4)

where the density kernel is defined in terms of the energy-
dependent, retarded and advanced Green’s operators
G
R/A
ε and of the initial state |φ〉 as

Iε,ω(k) ≡
∫

d2k′

(2π)2

d2k′′

(2π)2
〈k|GRε+ω/2|k

′〉〈k′′|GAε−ω/2|k〉

× φ(k′)φ∗(k′′). (5)

In the following, we will also work with the disorder-
averaged occupation number fε(t), defined as

fε(t) ≡
1

2πνε

∫
d2k

(2π)2

∫ ∞
−∞

dω

2π
e−iωtIε,ω(k), (6)

where νε is the density of states per unit volume at en-
ergy ε. As a consequence of particle conservation, this
quantity is normalized according to:∫ ∞

−∞
dε νεfε(t) = 1. (7)

This condition identifies the product νεfε(t) as the energy
distribution of the Bose gas [46].
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(a)

(b)

(c)

FIG. 3. (a) Diagrammatic representation of the Bethe-
Salpeter equation for ladder diagrams, Eq. (8). Upper solid
lines with arrows refer to 〈k|GRε+ω/2|k0〉, and lower dashed
lines to 〈k0|GAε−ω/2|k〉. Note that for solid (dashed) lines, ar-
rows coincide with the (opposite of the) direction of propaga-
tion. Dotted vertical lines symbolize the correlation function
in Eq. (2). (b) Series of diagrams describing the interference
between time-reversed paths, responsible for CBS (“crossed
diagrams”). The second equality follows from time-reversal
invariance. (c) In the long-time limit t � τ where low scat-
tering orders have a negligible weight, the series of ladder and
crossed diagrams coincide.

A. Diffusive background at long time

From now on, we focus on the case where the initial
state is a plane wave, |φ〉 = |k0〉. We also assume disorder
to be weak, k0`� 1, so that perturbation theory can be
used. The main contribution to Iε,ω(k) is then given
by the series of ladder diagrams (“Diffuson”), which we
denote by IDε,ω(k). The latter obeys the Bethe-Salpeter
equation [31, 44, 45]

IDε,ω(k) = G
R

ε+ω/2(k)G
A

ε−ω/2(k)× (2π)2δ(k − k0)

+ γ G
R

ε+ω/2(k)G
A

ε−ω/2(k)

∫
d2k′

(2π)2
IDε,ω(k′), (8)

which is shown diagrammatically in Fig. 3a. The average
Green’s function is given by

G
R

ε (k) =
1

ε− k2/2m− Σ(ε,k)
. (9)

In the weak-disorder limit, the self energy Σ(ε,k) can be
evaluated by perturbation theory. We restrict ourselves
to the leading-order contribution provided by the Born
approximation, which coincides with the Fermi golden

rule:

Im Σ(ε,k)=−π
∫

d2q

(2π)2
B(k − q)δ

(
ε− q2

2m

)
(10)

where B(k) = γ is the Fourier transform of the disorder
correlation function (2). Equation (10) defines the mean
free time,

τ ≡ − 1

2 Im Σ(ε,k)
=

1

2πνεγ
, (11)

with, in the Born approximation, νε = m/(2π). In the
long-time limit t � τ , the contribution to the momen-
tum distribution (4) due to IDε,ω can be obtained in the
following way. First we integrate Eq. (8) over k, and ex-
pand the second term in the right-hand side for ωτ � 1
(hydrodynamic limit). This yields∫

d2k

(2π)2
IDε,ω(k) ' −2 ImG

R

ε (k0)

−iω
, (12)

where we used that G
R

ε (k0)G
A

ε (k0) = −2τ ImG
R

ε (k0).
We thus find, according to Eq. (6),

fε(t) =
Aε(k0)

νε
≡ f (0)

ε (13)

for the occupation number, where the superscript (0)
refers to the non-interacting limit and we introduced the
spectral function:

Aε(k) ≡ − 1

π
Im[G

R

ε (k)] =
1/(2πτ)

(ε− k2/2m)2 + 1/4τ2
. (14)

Second, we integrate Eq. (8) over ε and take the Fourier
transform with respect to ω. Using the result (13), we
infer

|ΨD(k, t)|2 =

∫ ∞
−∞

dεAε(k)f (0)
ε . (15)

Eq. (15) is an isotropic function of k, centered at |k| =
k0, which corresponds to the diffusive ring in Fig. 1 [31].
The radial profile of this ring is essentially the one of
the energy distribution νεf

(0)
ε = Aε(k0), which for g = 0

coincides with the spectral function. In the absence of
interactions, this energy distribution does not change in
time. This is of course expected, as the only process at
work is elastic multiple scattering, which does not involve
any energy redistribution.

B. Coherent backscattering at long time

The CBS contribution is deduced from the diffusive
one by making use of time-reversal invariance. The CBS
peak stems from the interference between time-reversed
multiple scattering paths, described by the diagrammatic
series in Fig. 3b (“crossed diagrams”). In the long-time
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limit t� τ where low scattering orders have a negligible
weight, the ladder and crossed series exactly coincide at
k = −k0 due to time-reversal symmetry (see Figs. 3b
and c):

ICε,ω(k = −k0) = IDε,ω(k = −k0), (16)

such that

|ΨC(k = −k0, t)|2 =

∫ ∞
−∞

dεAε(k0)f (0)
ε ' τ

πνε0
, (17)

where ε0 ≡ k2
0/(2m). In the absence of interactions, the

diffusive and CBS amplitudes at −k0 thus coincide, see
Eqs. (15) and (17), and are independent of time. The full
k dependence of the CBS profile can be calculated as well,
as was done in [31]. In the rest of the article however, we
will essentially focus on its amplitude, |ΨC(−k0, t)|2.

C. Full time evolution

Eqs. (15) and (17) have been obtained in the regime
of long times t � τ , where low scattering orders can
be neglected. While an exact calculation of the diffusive
and CBS contributions at any time is a difficult task in
general (see, for instance, [47] where this problem was
tackled for a speckle potential), for the particular model
of uncorrelated disorder we have found that the Bethe-
Salpether equation can be exactly solved, giving:

|ΨD(−k0, t)|2 = ρmax

[
1− e−t/τ

(
1 +

t

τ

)]
(18)

for the diffusive background, and

|ΨC(−k0, t)|2 = ρmax

[
1− e−t/τ

(
1 +

t

τ
+

t2

2τ2

)]
(19)

for the amplitude of the CBS peak, with ρmax ≡∫
dεA2

ε(k0)/νε ' τ/(πνε0). Note that, as expected, the
CBS and diffusive amplitudes coincide at long time, but
not at short time t ∼ τ where low scattering orders – de-
scribed by the terms within square brackets – come into
play. Eqs. (18) and (19) are shown in Fig. 2 (dashed
curves) on top of the results of numerical simulations for
g = 0. The agreement is very good at all times.

IV. INTERACTING DIFFUSIVE PARTICLES:
THEORY

We now turn to the case g 6= 0. While an exact the-
ory accounting for both interactions and disorder is a
formidable task, even at the level of the GPE (1), rela-
tively simple results can be obtained when interactions
are “weak” compared with the disorder. Indeed, in this
regime the effect of interactions can be treated as a per-
turbation of the series of crossed and ladder diagrams.

This approach was previously used in [35–37, 39] to de-
scribe the stationary coherent backscattering effect of
continuous waves in finite media, and in [48–50] to model
the dynamics of interacting wave packets in the diffu-
sive limit. The latter configuration was later extended
to the localization regime in [22, 23], but by taking into
account first-order corrections in g only, see Sec. IV B,
while neglecting second-order corrections responsible for
thermalization.

In this section and the next one, we develop a quan-
tum transport theory describing the effect of interactions
on both the diffusive and CBS signals in the dynamical
scenario of Fig. 1. We show that, because the average
density of the Bose gas is uniform, linear corrections in g
reduce to an irrelevant shift of the mean energy, so that
the physics in momentum space is governed by second-
order corrections. The latter are responsible for two cou-
pled thermalization processes of the diffusive and CBS
components.

A. Weak interactions

A treatment of the nonlinear potential in Eq. (1) as a
perturbation of the ladder and crossed series requires that
scattering events on the nonlinear potential g|Ψ(r, t)|2
are rare compared to scattering events on the random
potential V (r). In terms of time scales, this condition
reads τNL � τ , where τNL is the particle collision time.
To estimate this quantity, we use the Fermi golden rule

1

2τNL
=π

∫
d2q

(2π)2
BNL(k − q)δ

(
ε− q2

2m

)
, (20)

where BNL(k) is the power spectrum of the nonlinear
potential:

BNL(k)≡
∫
d2(r−r′)g2N2|Ψ(r, t)|2|Ψ(r′, t)|2eik(r−r′).

(21)
To leading approximation, the density-density corre-
lator is not modified by interactions, and reads [51]

|Ψ(r, t)|2|Ψ(r′, t)|2 = J0(k0|r − r′|)e−|r−r′|/`/V 2 in two
dimensions. This gives

τNL ∼
ε0

(gρ0)2
, (22)

where we introduced the mean particle density,

ρ0 ≡ N/V . (23)

By defining the mean free path for particle collisions as
`NL ≡ k0τNL/m we then rewrite the criteria of rare par-
ticle collisions and weak disorder as

k0`NL � k0`� 1. (24)

In the following, we will assume these conditions to be
fulfilled. They imply, in particular, that the initial kinetic
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energy typically exceeds the interaction energy, ε0 � gρ0.
Therefore, as long as the energy distribution νεfε(t) does
not deviate too much from its initial value Aε(k0), only
states belonging to the “particle” branch ε� gρ0 of the
Bogoliubov spectrum are populated [52]. In other words,
the low-energy, phonon-like part of the spectrum does
not play any role in the dynamics. This will be always
verified in the sequel of the paper, where we focus on the
short-time evolution of the Bose gas.

B. Leading-order nonlinear corrections

When g 6= 0, the notion of Green’s function can no
longer be utilized to express the momentum distribution,
as we did in Eq. (5). Nevertheless, Eq. (4) can still be
written, with the density kernel defined as

Iε,ω(k) ≡ Ψε+ω/2(k)Ψ∗ε−ω/2(k), (25)

where

Ψε(k) ≡
∫

d2r

∫ ∞
−∞

dt eiεte−ik·rΨ(r, t). (26)

Our diagrammatic quantum transport theory in the pres-
ence of interactions is constructed from the Lippmann-
Schwinger equation associated with the GPE (1):

Ψε(k) =φ(k) +G0
ε(k)

[∫
d2k′

(2π)2
V (k′)Ψε(k − k′)

+ gN

∫
dε1
2π

dε2
2π

∫
d2k1

(2π)2

d2k2

(2π)2
Ψε1(k1)Ψ∗ε2(k2)

×Ψε−ε1+ε2(k − k1 + k2)
]
, (27)

where G0
ε(k) = (ε − k2/2m + i0+)−1 is the free-space

(retarded) Green’s function. Iteration of Eq. (27) leads
to an expansion of Ψε in powers of V and g known as
the Born series. In addition to the usual scattering pro-
cesses on the random potential, this Born series also in-
volves particle collisions. These two elementary processes
are diagrammatically shown in Fig. 4, together with the
conservation rules for energies and momenta.

(a) (b)

FIG. 4. The Born series obtained by iterating the Lippmann-
Schwinger equation (27) generates terms built on scattering
processes on (a) the random potential V and on (b) the non-
linear potential g|Ψ|2. Solid and dashed lines with arrows
refer to the free-space, retarded and advanced Green’s func-
tions, respectively. The cross refers to the random potential
V and the wavy line to the interaction parameter g. For each
vertex, the lower-right line (ε,k) is the outgoing field, and
integrations over ε1, ε2, k′, k1 and k2 are understood.

From the Born series for Ψε, one can construct a Bethe-
Salpeter equation for the density kernel Iε,ω(k). Insofar
as particle collisions are less frequent than collisions on
the random potential – remember condition (24) – two
distinct iterative equations for the diffusive and CBS con-
tributions, IDε,ω and ICε,ω, can still be identified. In this
section we first focus on the Bethe-Salpeter equation for
IDε,ω. The latter is obtained by adding extra terms to the

(a) (b)

(c)

FIG. 5. First-order diagrammatic corrections to the Bethe-
Salpeter equation, involving one particle collision (for each
diagram, one has to add the conjugate version). (a): Correc-
tion to the Bethe-Salpeter equation for IDε,ω. Red boxes refer
to an incoming, ladder-type sequence IDε,ω, where, apart from
particle collision processes, the two paths propagate along
the same sequence of scatterers in the same direction. (b)
and (c): Corrections to the Bethe-Salpeter equation for ICε,ω.
Blue boxes refer to time-reversed scattering sequences. Di-
agrams (a) and (b) boil down to an irrelevant energy shift,
while diagram (c) is compensated by its complex conjugate.
The solid and dashed lines symbolize G

R
ε and G

A
ε , respec-

tively, the vertical lines the correlation function in Eq. (2),
and the wavy lines a particle collision, see Fig. 4.

right-hand side of the iterative equation in Fig. 3a for
g = 0, in which the ladder sequence can be interrupted
by one or several particle collisions.

The leading-order, iterative correction to the Bethe-
Salpeter equation for IDε,ω is given by the diagram in Fig.
5a (plus its complex conjugate). It reads

Iaε,ω(k)=2gρ0γ

∫
dε′

2π

dω′

2π

d2k′

(2π)2

d2k′′

(2π)2
G
R

ε+ω/2−ω′(k)

×GRε+ω/2(k)G
A

ε−ω/2(k)Iε′,ω′(k′)Iε−ω′/2,ω−ω′(k′′)

= 2gρ0γ[G
R

ε (k)]2G
A

ε (k)

∫
d2k′′

(2π)2
Iε,ω(k′′), (28)

where the factor 2 stems from the Wick decomposition
of the average Ψε1Ψ∗ε2Ψε−ε1+ε2Ψ∗ε arising when Eq. (27)
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is multiplied by Ψ∗ε , and the second equality follows from
particle conservation, which imposes that∫ ∞

−∞

dε′

2π

∫
d2k′

(2π)2
Iε′,ω′(k′) =

1

−iω′ + 0+
. (29)

From Eq. (28), it is easy to show that the contribution
of the diagram in Fig. 5a boils down to a constant energy
shift −2gρ0 of G

R

ε in the linear Bethe-Salpeter equation
(8). Indeed, if we perform the substitution ε→ ε− 2gρ0

in the right-hand side of Eq. (8) and expand for small g,
using

G
R

ε−2gρ0(k) ' GRε (k) + 2gρ0[G
R

ε (k)]2, (30)

we get that the right-hand side of Eq. (8) is modified
by an extra term which exactly coincides with Eq. (28).
In other words, first-order nonlinear corrections to the
Bethe-Salpeter equation do not quantitatively affect the
diffusive dynamics. Note that this result is in stark con-
trast with the scenario where one follows the spreading
of a wave packet in position space. In this case, diagrams
of the type of Fig. 5a were shown to significantly modify
the wave-packet density distribution [48–50]. The differ-
ence lies in the behavior of the mean density |Ψ(r, t)|2,
which evolves in time for an initial wave packet, whereas
it always remains uniform for an initial plane wave.

As explained in appendix A, the energy shift obtained
here can in turn be described in terms of a modification
of the real part of the self energy Σ(ε,k) appearing in

average Green’s functions, Eq. (9). In addition to this
shift, there also exist first-order nonlinear corrections
shifting the imaginary part of Σ(ε,k). These corrections
stem from correlations between the disorder and non-
linear potentials in the GPE equation (1), but turn out
to be very small in the weak-disorder limit. From now,
we will thus neglect these self-energy corrections, and
always evaluate average Green’s functions using Eq. (9),
with Σ(ε,k) = −i/2τ .

C. Second-order corrections: thermalization

We now examine interaction corrections to the ladder
Bethe-Salpeter equation (8) that are of second order in g.
Since each vertex g is connected to four field amplitudes
(see Fig. 4), these corrections involve six incoming field
amplitudes, i.e they are proportional to the third power
of the density. Due to the condition (24), we also know
that at least one disorder scattering event occurs before
every particle collision event. Since the disorder scatter-
ing events are described by ladder diagrams (for weak
disorder), we group the six incoming arrows into three
incoming ladder sequences IDεi,ωi

, each of them originat-
ing from different disorder scattering events. Analyzing
all possible non-trivial ways (i.e. those which do not re-
duce to a mere energy shift) of connecting the incoming
arrows to the g vertices, we arrive at the diagrams shown
in Fig. 6. The corresponding Bethe-Salpeter equation
reads:

Iε,ω(k) = G
R

ε+ω/2(k)G
A

ε−ω/2(k)

[
(2π)2δ(k − k0) + γ

∫
d2k′

(2π)2
Iε,ω(k′)

+(gρ0γ)2
[ ∏
i=1,2

∫
dεidωi
(2π)4

d2kid
2k′i

(2π)8
Iεi,ωi

(k′i)G
R

εi+ωi/2(ki)G
A

εi−ωi/2(ki)
]{

2γG
R

ε3+Ω1/2(k3)G
A

ε3−Ω1/2(k3)

∫
d2k′3
(2π)2

Iε3,Ω1
(k′3)

+ γ
(

4G
R

ε4+Ω1/2(k4) + 2G
A

ε3−Ω1/2(k3)
)
G
R

ε+Ω2
(k)

∫
d2k′

(2π)2
Iε5,Ω1(k′)

+ γ
(

4G
A

ε4−Ω1/2(k4) + 2G
R

ε3+Ω1/2(k3)
)
G
A

ε−Ω2
(k)

∫
d2k′

(2π)2
Iε6,Ω1

(k′)

}]
, (31)

where we defined ε3 = ε1 + ε2 − ε, ε4 = ε + ε1 − ε2,
ε5 = ε−(ω1+ω2)/2, ε6 = ε+(ω1+ω2)/2, Ω1 = ω−ω1−ω2,
Ω2 = ω/2− ω1 − ω2 for energies, and k3 = k1 + k2 − k,
k4 = k + k1 − k2 for momenta.

A closed equation for the distribution fε(t) – remember
the definition (6) – can be obtained by integrating Eq.
(31) over k and taking the Fourier transform with respect
to ω, in the hydrodynamic limit ωτ, ωiτ � 1 (i = 1, 2).
The details of the calculation are presented in Appendix

B for clarity. They lead to the kinetic equation

∂tfε =

∫
ε1,ε2,ε3≥0

dε1dε2 W (ε, ε1, ε2)×[
(fε + fε1+ε2−ε)fε1fε2 − fεfε1+ε2−ε(fε1 + fε2)

]
(32)

where we recall that ε3 ≡ ε1 + ε2 − ε. The interaction
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FIG. 6. Diagrammatic representation of the Bethe-Salpeter equation for the diffusive contribution to the momentum dis-
tribution, IDε,ω(k), taking into account second-order interaction corrections (first-order interaction diagrams are discarded, as
explained in Sec. IV B). Symbols have the same meaning as in Fig. 5. The numerical prefactors account for the possible
combinations of propagation lines connecting to the vertex g.

kernel is given, in two dimensions, by

W (ε; ε1, ε2) =
m3(gρ0)2

2π4νε

K
(

2 4
√
εε1ε2ε3√

ε1ε2+
√
εε3

)
√
ε1ε2 +

√
εε3

, (33)

where K is the complete elliptic integral of the first kind.
The kinetic equation should be complemented by an ini-
tial condition, which is here provided by the “coherent
mode”, i.e. the first term in the right-hand side of Eq.
(31). The latter gives (see Appendix B):

fε(t = 0) =
Aε(k0)

νε
≡ f (0)

ε , (34)

which is nothing but the occupation number for g = 0,
Eq. (13). The fact that the non-interacting value of fε
plays the role of the initial condition for the interacting
problem is due to our assumption that particle collisions
are less frequent than scattering events on the disorder,
Eq. (24). Indeed, in this regime the diffusive ring first
establishes, and only then do interactions come into play.

Once fε(t) is known for g 6= 0, the diffusive contribu-
tion to the momentum distribution follows by integrat-
ing Eq. (31) over ε and taking the Fourier transform
with respect to ω. As the effect of interactions is already
included in the second term of the right-hand side via
Iε,ω(k), the third term is typically of order g4 and can
be neglected. In the hydrodynamic regime ωτ � 1, this
finally gives:

|ΨD(k, t)|2 =

∫ ∞
−∞

dεAε(k)fε(t). (35)

This formula differs from its non-interacting counterpart,
Eq. (15), in that the distribution fε(t) is no longer con-
stant in time, leading to an evolution of the diffusive
background. Equations (32) and (35) have been used,
in particular, in [34], to qualitatively discuss the emer-
gence of a Bose condensate at very long time, but with-
out microscopic justification. We note that the kinetic
equation (32) has also been derived in [53] by means of
a non-equilibrium classical field theory in the presence of
disorder.

By multiplying the kinetic equation (32) by νε and in-
tegrating over ε, we readily obtain ∂t

∫
dε νε fε(t) = 0.

This implies that
∫

dε νε fε(t) =
∫

dε νεf
(0)
ε = 1, which

is nothing but the normalization condition (7). It fol-
lows that the diffusive contribution (35) is normalized,∫

d2k/(2π)2|ΨD(k, t)|2 = 1, very much like in the non-
interacting limit [51].

The attentive reader will notice that Eq. (32) in fact
coincides with the free-space Boltzmann kinetic equation
for Bose gases in the limit of large occupation numbers
[54]. Indeed, the kernel (33) is independent of any disor-
der parameter (in particular, the diffusion coefficient or
even the mean free path do not appear). This result is dif-
ferent from the case of electrons in low-temperature dis-
ordered conductors, where the diffusive motion strength-
ens the effect of interactions [55]. This difference stems
from the mechanism of dynamical screening of electron-
electron interactions, which is absent for low-temperature
bosons. [56] For weakly interacting diffusive bosons, dis-
order thus only manifests itself through the spectral func-
tion, involved both in the initial condition fε(0) and
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(a) (b)

FIG. 7. (a) Example of interference sequence generated by
the diagram in Fig. 5c (for a better visualization we mo-
mentarily change the definition of arrows, which here always
indicate the direction of propagation). The direct path, start-
ing at t = 0, undergoes a particle collision at tcol, and the time
reversed-path at t − tcoll. Since the collision is local in time,
we must have tcoll = t/2. (b) Example of interference se-
quence between time-reversed paths involving two collisions.
As for diagram (a), the collision processes involve both the
direct and the reversed paths. This imposes them to occur
almost simultaneously, at tcoll ' t/2, which is very unlikely.
This diagram is therefore negligible.

in Eq. (35). The situation would of course change at
stronger disorder or in the localization regime [18].

V. CBS OF INTERACTING PARTICLES:
THEORY

A. Leading-order nonlinear corrections

We now come to the central part of our work and exam-
ine the effect of interactions on the series of time-reversed
paths, responsible for coherent backscattering. As for
the diffusive background, we first address the first-order
nonlinear corrections to the Bethe-Salpeter equation of
Fig. 3b. These corrections are displayed in Fig. 5b and
5c. The diagram 5b has the very same property as its
incoherent counterpart 5a: it can be recast as an en-
ergy shift −2gρ0 of the linear Green’s function, and thus
does not play any role in the dynamics. The building
block 5c, on the other hand, turns out to cancel with its
conjugate counterpart. At this stage, an important com-
ment is in order. In the stationary scenario considered in
[35, 36, 39], it was shown that specific concatenations of
the diagram 5c was leading to a dephasing between the
reversed amplitudes, which could even change the sign of
the coherent backscattering cone. It turns out, however,
that in the present dynamical setup these combinations
have a negligible weight. To see this, we show in a more
visual fashion in Fig. 7a one example of interference se-
quence between time-reversed paths built from diagram
5c. The peculiarity of this sequence is that both the di-
rect (solid) path and its time-reversed (dashed) partner
are involved in the particle collision process. If the direct
path undergoes the collision at a certain time tcoll, and
thus the time-reversed path at time t−tcoll, the temporal
locality of the collision imposes that tcoll = t − tcoll, i.e.
that tcoll = t/2. In other words, the collision must oc-

FIG. 8. Second-order corrections to the Bethe-Salpeter equa-
tion for the CBS contribution to the momentum distribution,
ICε,ω(k). Symbols have the same meaning as in Fig. 5. Recall
that the two wave paths involved in the blue boxes propagate
in opposite directions (the incoming and outgoing momenta
k0 and k are explicitly indicated for clarity). The numerical
prefactors account for the possible combinations of propaga-
tion lines connecting to the vertex g.

.

cur at a very specific time (more precisely, within a time
window of width τ , centered around t/2). Within such
a short time window, and given the condition (24), it is
highly unlikely that two (or more) collisions occur. Any
concatenation of diagrams 5c can thus be safely neglected
here, and an examination of second-order corrections is
again required.

B. Second-order corrections

All non-negligible second-order corrections to the
Bethe-Salpeter equation for time-reversed sequences are
depicted in Fig. 8. Note that, as compared to the dif-
fusive corrections in Fig. 6, there are only four different
topologies, and not five. These topologies are the same
as those of the four last diffusive diagrams in Fig. 6.
It turns out, indeed, that the interference counterpart
of the upper-right diagram in Fig. 6 is negligible in the
long-time limit. This can be understood from Fig. 7b,
which shows the interference sequence that would cor-
respond to the upper-right diagram in Fig. 6 in which
an amplitude is time-reversed. Because the two collision
processes involve both the direct and the reversed paths,
they must occur almost simultaneously, at tcoll ' t/2,
which is extremely unlikely given the rarity of particle
collisions assumed here. This type of diagram is thus
negligible.

The Bethe-Salpeter equation for ICε,ω is similar to Eq.
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(31) except for the missing diagram. The latter is respon-
sible for the term ∝ fε1+ε2−εfε1fε2 in Eq. (32). Since this
term is now absent, the fε(t) present in each of the other
terms can be factored out. We thus obtain, for the “co-
herent” occupation number

fCε (t) ≡ 1

2πνε

∫
d2k

(2π)2

∫ ∞
−∞

dω

2π
e−iωtICε,ω(k), (36)

the kinetic equation

∂tf
C
ε = fCε

∫
ε1,ε2,ε3≥0

dε1dε2 W (ε, ε1, ε2)

×
[
fε1fε2 − fε1+ε2−ε(fε1 + fε2)

]
, (37)

where the kernel is still given by Eq. (33), and the
initial condition is again set by the non-interacting
limit, fCε (t = 0) = f

(0)
ε . The amplitude of the coherent

backscattering peak then follows from:

|ΨC(−k0, t)|2 =

∫ ∞
−∞

dεAε(k0)fCε (t). (38)

The asymmetry between the kinetic equations for fCε and
fε explains the different dynamic evolution of the CBS
peak and diffusive background observed in numerical sim-
ulations, Fig. 2 [57]. This asymmetry is a major differ-
ence with the non-interacting regime. We show in Fig. 9
the evolution of fε(t) and fCε (t) at short time, obtained
by solving the kinetic equations (32) and (37) with the
initial condition (34) evaluated numerically for g = 0.
To find the latter, we have computed the spectral func-
tion and the density of states numerically as explained
in [58, 59]. The thermalization mechanism is well visible
in the upper graph: the distribution fε(t) broadens as
time grows. A different behavior is observed for fCε (t),
which does not broaden but rather flattens out. This
phenomenon is already visible at the level of Eq. (37),
in which fCε (t) factorizes out of the collision integral. It
is also emphasized by the inset of Fig. 9, which shows
that the norm

∫
dε νεf

C
ε (t) decays in time. This is in

contrast with
∫

dε νεfε(t), which is unity at all times; see
the discussion following Eq. (35). This difference im-
plies that time-reversed paths are more sensitive to par-
ticle collisions that diffusive paths, as we will show more
quantitatively in the next section.

Note, in passing, that the energy corresponding to
the maximum of the distributions in Fig. 9 lies always
slightly below ε = ε0. This effect, also seen in exper-
iments [60], is mainly due to the real part of the self-
energy (see appendix A).

VI. COMPARISON WITH NUMERICAL
SIMULATIONS

In order to test our theoretical approach, we now con-
front the predictions of the last section to numerical simu-
lations of plane-wave propagation based on the GPE (1).
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FIG. 9. Distributions (a) fε(t) and (b) fCε (t) at increasing
times from top to bottom, obtained by solving the kinetic
equations (32) and (37) for k0 = (π/5, 0), gρ0 = 0.002, and
γ = 0.0182, with the initial condition (34) evaluated numeri-
cally for g = 0. The different evolutions reflect the asymme-
try of the kinetic equations: as time grows the distributions
fε broaden, whereas the fCε flatten out. This is emphasized
by the inset, which shows that the norm of the energy distri-
bution

∫∞
−∞ dε νεf

C
ε (t) decays in time (whereas

∫∞
−∞ dε νεfε(t)

is unity at all times).

For this purpose, we integrate numerically the collision
integrals in the kinetic equations (32) and (37).

A. Diffusive ring and CBS peak amplitudes

In Fig. 10, we reproduce the simulation results of Fig.
2 for the heights of the diffusive ring and CBS peak. For
g 6= 0, we fit them with Eqs. (35) and (38), with fε
and fCε computed from the kinetic equations (32) and
(37), using gρ0 as a fit parameter. To describe the times
t ≤ τ , we multiply the right-hand side of Eqs. (35) and
(38) by the same short-time corrections as in the linear
case [terms within the square brackets in Eqs. (18) and
(19)]. This is a very good approximation in the regime
τNL � τ considered here. As seen in Fig. 10, the agree-
ment between theory and simulations is excellent at all
times. We note, however, that for the ring height the
fitted values of gρ0 differ by ∼ 10% compared to those
chosen in numerical simulations, and for the CBS height
by ∼ 30%. One possible reason for this difference might
come from the numerical uncertainties in the resolution
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FIG. 10. Heights of the (a) diffusive ring and (b) CBS peak
versus time for increasing values of gρ0 from top to bottom
(these are the same simulation data as in Fig. 2). Solid
smooth black curves are fits to the theory, Eqs. (35) and
(38), and dotted curves are the approximate laws (42) and
(43). The same value gfit ' 1.1g (resp. gfit ' 1.3g) was used
for all the diffusive (resp. CBS) curves. Solid curves at g = 0
are obtained from Eqs. (18) and (19).

of the collision integrals. Evaluating the latter indeed
turns particularly challenging in two dimensions, where
the kernel W exhibits a number of logarithmic singu-
larities over the integration domain. This discrepancy
could also stem from higher-order interaction contribu-
tions that renormalize the interaction strength g and not
taken into account in the present work. Further inves-
tigation would however be required to clarify this point.

B. Decay rates

An important information one may extract from the
time-dependent evolutions in Fig. 10 are the character-
istic time scales τD,CNL governing the decay of the diffu-
sive ring and of the CBS amplitude. Theoretically, these
characteristic times can be obtained from a short-time
expansion of the solution of the kinetic equations (32)
and (37), fD,Cε (t) ' fε(t = 0) − αD,C(ε)t + O(t2), from

inverse disorder strength
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FIG. 11. Decay rates (τD,CNL )−1 for the diffusive background
(lower orange dots) and CBS (upper blue dots) amplitudes,
at fixed gρ0 = 0.001. Dots are obtained from numerical sim-
ulations of the Gross-Pitaevskii equation, by computing the
slope of the simulation curves in Fig. 10 for several values
of γ (error bars originate from the fitting of the slopes by a
straight line). From right to left: γ = 0.0036, 0.0056, 0.0081,
0.0121, 0.0182, 0.0256, 0.0324, 0.0506. Data are displayed as
a function of the dimensionless disorder parameter k0`. They
confirm the theoretical predictions (41), shown as solid lines,
and in particular the independence of the decay rates on the
disorder strength.

which we obtain, using Eq. (35) and (38):

|ΨD,C(−k0, t)|2 '
τ

πνε0

[
1− t

τD,CNL

+O(t2)

]
, (39)

where

(τD,CNL )−1 ≡ πνε0
τ

∫
dεAε(k0)αD,C(ε). (40)

Here we used – see Eq. (17) – that
∫

dεAε(k0)fε(t = 0) =
τ/(πνε0). By inserting the Taylor expansions for fε and
fCε in the kinetic equations, we find the functions αD,C(ε)
numerically and, from Eq. (40), infer the sought out time
scales by numerical integration over ε. This leads to

(τD,CNL )−1 =
(gρ0)2

ε0
βD,C , (41)

where βD ' 2.27 and βC ' 7.17 are numerical prefactors
which include the adjustment of the interaction strength
used for the fits in Fig. 10. The characteristic times gov-
erning the decay of the diffusive background and CBS
peak are therefore both proportional to the particle col-
lision time, which we previously introduced in Eq. (20).
This is quite a natural result, but it should be noted
that the decay time for CBS is approximately three times
smaller than the decay time for the diffusive background.
In other words, the CBS peak is way more sensitive to
interactions, as clearly seen in Fig. 10.
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To confirm these results, we also compare the theoret-
ical prediction (41) to the decay rates extracted from nu-
merical simulations based on the GPE. For this purpose,
we compute numerically the CBS and diffusive signals
versus time for several values of the disorder amplitude γ.
We then extract the slope of these curves within a narrow
time window following the curve maxima (located near
t = 15τ in Fig. 10). The results are shown in Fig. 11 as a
function of the disorder parameter k0` (lower points are
obtained from the decay of the diffusive ring and upper
points from the decay of the CBS peak). The theoretical
predictions (41) are shown on the same graph, and they
match very well the simulations. These results confirm,
in particular, the independence of the collision time on
the disorder. By computing numerically the slopes for
several values of g, we have also verified the g2 depen-
dence of (τD,CNL )−1.

While we have not been able to find an exact analytical
prediction for the whole time decay of the CBS peak, a
simple, approximate expression can be inferred from the
kinetic equation for fCε , Eq. (37). Indeed, since the time-
dependence of the diffusive background – encoded in the
fεi functions in the right-hand side of Eq. (37) – is rather
slow, in first approximation the occupation number fCε (t)
decays exponentially. This suggests the simple form

|ΨC(−k0, t)|2 '
τ

πνε0
exp

(
−t/τCNL

)
(42)

×
[
1− exp(−t/τ)

(
1 + t/τ + t2/2τ2

)]
for the CBS peak amplitude (the second line is the short-
time evolution, which, we recall, is not modified by inter-
actions). Eq. (42) is shown in Fig. 10 (dashed curves of
the lower plot) on top of the exact solutions of the kinetic
equation, and turns out to be a rather good approxima-
tion. We also noticed that a similar formula describes
well the decay of the diffusive ring, provided τDNL is sub-
stituted for τCNL and the short-time terms are modified
according to Eq. (18):

|ΨD(−k0, t)|2 '
τ

πνε0
exp

(
−t/τDNL

)
(43)

× [1− exp(−t/τ) (1 + t/τ)] .

Eq. (43) is also shown in Fig. 10 (dashed curves of the
upper plot) on top of the exact solutions of the kinetic
equation. As a consequence of Eqs. (42) and (43), the
contrast of the CBS peak decays exponentially at long
time as

|ΨC(−k0, t)|2

|ΨD(−k0, t)|2
' exp(−t/τφ), (44)

with a relaxation rate τ−1
φ ≡ (τC

NL)−1 − (τD
NL)−1 '

5(gρ0)2/ε20 controlled by the particle collision time.

VII. CONCLUSION

In this article, we have constructed a microscopic dia-
grammatic theory describing the out-of-equilibrium evo-

lution of a weakly interacting disordered Bose gas in mo-
mentum space. Assuming weak disorder and rare particle
collisions, we have derived coupled kinetic equations for
the two main physical processes at work in this regime,
particle diffusion and coherent backscattering. Our ap-
proach has revealed a noticeable asymmetry in the kinetic
equations for these two contributions, implying a faster
decay of the CBS peak at short time and thus a loss of
CBS contrast. We have shown that this contrast loss is
very well described by an exponential relaxation, whose
rate is governed by the particle-particle collision time.
This phenomenon ressembles the smoothing of the weak
localization correction to the conductivity due to the fi-
nite electronic coherence time associated with electron-
electron interactions in disordered conductors, but it here
occurs in a non-equilibrium context. Natural extensions
of our work concern the role of interactions in the local-
ization regime, where the phenomenon of coherent for-
ward scattering shows up in momentum space [32], or
the properties of the Kosterlitz-Thouless transition ex-
pected in the equilibrium state reached at long time [61].
Related open questions also include the exploration of
the opposite regime of a disorder weaker than interac-
tions – where the phononic part of the boson spectrum
is expected to come into play –, the possible existence of
nonthermal fixed points in the presence of disorder, or the
out-of-equilibrium dynamics in the many-body regime.
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Appendix A: Self-energy

As discussed in Sec. IV B, leading-order nonlinear cor-
rections to the Bethe-Salpeter equation boil down to an
irrelevant energy shift. This shift can thus be alterna-
tively described in terms of a self-energy correction, lin-
ear in g. The corresponding expansion of Σ(ε,k) is dis-
played in Fig. 12. The first diagram is the usual Born
approximation for the disorder potential,

Σ(0)(ε,k) =

∫
d2q

(2π)2
B(k − q)G(0)(q), (A1)

with G0
ε(k) = (ε−k2/2m+i0+)−1 the free-space Green’s

function. The imaginary part of Eq. (A1) defines the
scattering mean free time (11). As visible in Fig. 9, the
average energy of bosons in the disorder potential is also
shifted, which is due to the real part of the self-energy. In
two dimensions, the latter is divergent within the Born
approximation (A1), but it can be regularized via more
refined approximations which will not be discussed here.
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FIG. 12. Leading-order contributions to an expansion of the
self energy when g 6= 0. Symbols have the same meaning as
in Fig. 5.

The second self-energy diagram is the nonlinear correc-
tion corresponding to the density diagram in Fig. 5a. It
is purely real, simply given by

Σ(1)(ε,k) = 2gρ0, (A2)

and indeed describes a shift of the energy by −2gρ0 in
the Green’s function (9). At first order in g however,
another type of self-energy diagram comes into play. The
latter follows from the observation that the two random
potentials V (r) and g|Ψ(r, t)|2 in the GPE (1) may be
correlated. This defines an analogous version of Eq. (A1),

Σ(2)(ε,k) =

∫
d2q

(2π)2
B

(2)
NL(k − q)G(0)

ε (q), (A3)

with the power spectrum

B
(2)
NL(k)≡

∫
d2(r−r′)4gN |Ψ(r, t)|2V (r′)eik(r−r′). (A4)

In the factor 4 added, one factor 2 stems from the two
possibilities to pair the incoming fields into ladder inten-
sities [same factor as in Eq. (A2)], and another factor 2
counts the other combination |Ψ(r′, t)|2V (r). The self-
energy diagrams corresponding to Eq. (A3) are shown in
the lower-right part of Fig. 12.

The self energy Σ(2) corresponds to a screening effect
where fluctuations of the random potential are smoothed
by the nonlinearity, and is well known in the Thomas-
Fermi regime of strong interactions [62]. The hybrid cor-
relator is conveniently expressed in position space as fol-
lows:

|Ψ(r, t)|2V (r′) = γ2

∫
d2r′′

∫
dε′

2π

dω′

2π
e−iω

′tIε′,ω′(r′′)

× [G
(0)∗
ε′ (r′′−r)G

(0)
ε′ (r′′−r′)G(0)

ε′ (r′−r) + c.c.]. (A5)

This simplifies to:

|Ψ(r, t)|2V (r′) =

iγ

2πνε0V
[G(0)

ε0 (r − r′)2 −G(0)∗
ε0 (r − r′)2], (A6)

where we invoked particle conservation and used that the
energy remains peaked around ε ' ε0 ≡ k2

0/2m at short
time. The self energy (A3) can then be rewritten as

Σ(2)(ε,k) '4gρ0γi

2πνε0

∫
d2r e−ik·rG(0)

ε (r)

× [G(0)
ε0 (r)2 −G(0)∗

ε0 (r)2]. (A7)

Evaluating the integral on-shell, i.e. for ε = ε0 and k =
k0, we obtain the following estimate for the imaginary
part of Σ(2):

Im Σ(2)(ε0,k0) ∼ gρ0

k0`
� gρ0. (A8)

In the weak-disorder regime considered throughout the
paper, this contribution to the self energy is thus negli-
gible. A similar decay with k0` is also expected for the
real part of Σ(2), though its precise form requires a reg-
ularization beyond the Born approximation, as for Σ(0).

Appendix B: Derivation of the kinetic equation

To obtain the kinetic equation (32), we proceed as fol-
lows. First, we integrate the Bethe-Salpeter equation
(31) over k. This leads to a closed equation for the quan-
tity:

Iε,ω ≡
∫

d2k

(2π)2
Iε,ω(k). (B1)

In the hydrodynamic regime ωτ � 1 (long times), we
also simplify the second term in the right-hand side of
Eq. (31), using that

γ

∫
d2k

(2π)2
G
R

ε+ω/2(k)G
A

ε−ω/2(k) ' 1 + iωτ. (B2)

Within the same limit, we also set all ω, ω1 and ω2 to
zero in the frequency arguments of the Green’s functions
in the interaction term of the right-hand side. To perform
the remaining integrals over k, k1 and k2, finally, we use
several times the identity:

G
R

ε (k)G
A

ε (k)=
i

2πνεγ

∫
d2re−ik·r[G

R

ε (r)−GAε (r)] (B3)

and systematically neglect products of the type
G
R

ε (r)G
R

ε (r) and G
A

ε (r)G
A

ε (r), which give contributions
smaller by a factor 1/(k0`)� 1. Eq. (31) becomes:
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−iωIε,ω= i[G
R

ε (k0)−GAε (k0)] +
(gρ0)2

(2π)3

∏
i=1,2

∫
dεidωi
(2π)2

Iεi,ωi

νεi

∫
d2r[G

R

ε1(r)−GAε1(r)][G
R

ε2(r)−GAε2(r)][G
R

ε (r)−GAε (r)]

×
{

2
Iε1+ε2−ε,ω−ω1−ω2

νε1+ε2−ε
[G

R

ε1+ε2−ε(r)−GAε1+ε2−ε(r)] + 2
Iε,ω−ω1−ω2

νε
[G

R

ε1+ε2−ε(r)−GAε1+ε2−ε(r)]

−4
Iε,ω−ω1−ω2

νε
[G

R

ε+ε1−ε2(r)−GAε+ε1−ε2(r)]

}
. (B4)

We then Fourier transform with respect to ω and use that

1

2πνε

∫
dω

2π
e−iωtIε,ω ≡ fε(t). (B5)

This finally yields

∂tfε = δ(t)
Aε(k0)

νε
+

∫
dε1dε2 W (ε, ε1, ε2)×[

(fε + fε1+ε2−ε)fε1fε2 − fεfε1+ε2−ε(fε1 + fε2)
]
, (B6)

which is the kinetic equation (32). The Dirac-delta term
originates from the first term in the right-hand side of
Eq. (B4) (coherent mode), and sets the initial condition,
fε(t = 0) = Aε(k0)/νε. The integration range of ε1 and

ε2 covers all energies allowed by the densities of states
νε1 , νε2 and νε1+ε2−ε contained in the definition of the
occupation numbers. At weak disorder, the density of
states coincides, at leading order, with the free-space one,
which imposes ε1, ε2, ε3 ≥ 0. The kernel derived from
Eq. (B4) is given by:

W (ε, ε1, ε2) =
(gρ0)2

4π3νε

∫
d2r [G

R

ε (r)−GAε (r)]

× [G
R

ε1(r)−GAε1(r)][G
R

ε2(r)−GAε2(r)]

× [G
R

ε1+ε2−ε(r)−GAε1+ε2−ε(r)]. (B7)

The expression (33) follows by computing the integral
over r, keeping only the leading-order contribution in
k0`� 1 [63].
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[13] M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Lin-
nemann, C.-M. Schmied, J. Berges, T. Gasenzer, and
M. K. Oberthaler, “Observation of universal dynamics
in a spinor Bose gas far from equilibrium,” Nature 563,
217–220 (2018).

[14] D. A. Huse, R. Nandkishore, and V. Oganesyan,
“Phenomenology of fully many-body-localized systems,”
Phys. Rev. B 90, 174202 (2014).

[15] F. Alet and N. Laflorencie, “Many-body localization:

http://dx.doi.org/ 10.1103/RevModPhys.83.863
http://dx.doi.org/ 10.1103/RevModPhys.83.863
http://dx.doi.org/ https://doi.org/10.1016/S0167-2789(01)00211-1
http://dx.doi.org/ https://doi.org/10.1016/S0167-2789(01)00211-1
http://dx.doi.org/10.1103/PhysRevLett.95.263901
http://dx.doi.org/10.1038/nphys2278
http://dx.doi.org/ 10.1126/science.1224953
http://dx.doi.org/ 10.1126/science.1224953
http://dx.doi.org/10.1038/s41586-018-0674-1
http://dx.doi.org/10.1038/s41586-018-0674-1
http://dx.doi.org/10.1126/science.1257026
http://dx.doi.org/10.1126/science.1257026
http://dx.doi.org/ 10.1103/PhysRevLett.115.245301
http://dx.doi.org/ 10.1103/PhysRevLett.115.245301
http://dx.doi.org/ 10.1126/science.1258676
http://dx.doi.org/10.1103/PhysRevLett.101.041603
http://dx.doi.org/10.1103/PhysRevLett.101.041603
http://dx.doi.org/10.1103/PhysRevD.92.025041
http://dx.doi.org/10.1103/PhysRevD.92.025041
http://dx.doi.org/ 10.1038/s41586-018-0667-0
http://dx.doi.org/ 10.1038/s41586-018-0667-0
http://dx.doi.org/10.1038/s41586-018-0659-0
http://dx.doi.org/10.1038/s41586-018-0659-0
http://dx.doi.org/10.1103/PhysRevB.90.174202


15

An introduction and selected topics,” Comptes Rendus
Physique 19, 498 – 525 (2018).

[16] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, “Metal–
insulator transition in a weakly interacting many-electron
system with localized single-particle states,” Ann. Phys.
(N.Y.) 321, 1126–1205 (2006).

[17] M. Mulansky, K. Ahnert, A. Pikovsky, and D. L. Shep-
elyansky, “Dynamical thermalization of disordered non-
linear lattices,” Phys. Rev. E 80, 056212 (2009).

[18] D. M. Basko, “Weak chaos in the disordered nonlinear
schrödinger chain: Destruction of Anderson localization
by Arnold diffusion,” Annals of Physics 326, 1577 – 1655
(2011), july 2011 Special Issue.

[19] A. S. Pikovsky and D. L. Shepelyansky, “Destruction
of Anderson localization by a weak nonlinearity,” Phys.
Rev. Lett. 100, 094101 (2008).

[20] Ch. Skokos, D. O. Krimer, S. Komineas, and S. Flach,
“Delocalization of wave packets in disordered nonlinear
chains,” Phys. Rev. E 79, 056211 (2009).

[21] S. Flach, D. O. Krimer, and Ch. Skokos, “Universal
spreading of wave packets in disordered nonlinear sys-
tems,” Phys. Rev. Lett. 102, 024101 (2009).

[22] N. Cherroret, B. Vermersch, J. C. Garreau, and D. De-
lande, “How nonlinear interactions challenge the three-
dimensional Anderson transition,” Phys. Rev. Lett. 112,
170603 (2014).

[23] N. Cherroret, “A self-consistent theory of localization
in nonlinear random media,” Journal of Physics: Con-
densed Matter 29, 024002 (2016).

[24] I. Vakulchyk, M. V. Fistul, and S. Flach, “Wave packet
spreading with disordered nonlinear discrete-time quan-
tum walks,” Phys. Rev. Lett. 122, 040501 (2019).

[25] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht,
P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer,
and A. Aspect, “Direct observation of Anderson local-
ization of matter waves in a controlled disorder,” Nature
453, 891–894 (2008).

[26] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort,
M. Zaccanti, G. Modugno, M. Modugno, and M. In-
guscio, “Anderson localization of a non-interacting Bose-
Einstein condensate,” Nature 453, 895–898 (2008).

[27] F. Jendrzejewski, K. Müller, J. Richard, A. Date, T. Plis-
son, P. Bouyer, A. Aspect, and V. Josse, “Coherent
backscattering of ultracold atoms,” Phys. Rev. Lett. 109,
195302 (2012).

[28] G. Labeyrie, T. Karpiuk, J.-F. Schaff, B. Grémaud,
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