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Abstract
Purpose - Optimization processes and movement modeling usually require a
high number of simulations. The authors propose to reduce global central process-
ing unit (CPU) time by decreasing each evaluation time.

Design/Methodology/Approach - Remeshing the geometry at each itera-
tion is avoided in the proposed method. The idea consists in using a fixed mesh on
which functions are projected in order to represent geometry and supply.

Finding - Results are very promising. Central processing unit (CPU) time is
reduced for three dimensional problems by almost a factor two, keeping a low rela-
tive deviation from usual methods. CPU time saving is doable by avoiding meshing
step, and with a better initialization of iterative resolution. Optimization, move-
ment modeling and transient-state simulation are very efficient and give the same
results as the usual FE method.

Research limitations implications - The method is restricted to simple ge-
ometry due to the difficulty of finding spatial mathematical function describing the
geometry. Moreover, a compromise between imprecison - caused by the boundary
evaluation - and time saving must be found.

Originality /Value - The method can be applied to optimize the design of ro-
tating machines. Moreover, movement modeling is performed by shifting functions
corresponding to moving parts.

Keywords - Finite Element Method, Mesh, Projection
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1 Introduction

Nowadays, Finite Element Method (FEM) is widely used in electromagnetic field mod-
eling which provides very accurate results compared to experimentations. It also allows
the description of complex geometries and problems with a very simple implementation.
These advantages explain the spread of FEM in many fields. Nevertheless, for complex
three dimensional problems, it requires huge computational resources and consequently
very long CPU time. Optimization processes usually need a high number of calls of the
objective function. Therefore, FEM does not seem suitable in 3D optimization processes.
In literature, several modeling methods, such as hybrid models which combine finite el-
ement and reluctance network, have been suggested in order to reduce simulation time
Devornique et al. (2017). In this article, the authors propose a method allowing meshing
step saving in any iterative process such as movement modeling. The mesh being fixed,
all physical parameters (properties, supply or armature movement) are implemented by
projecting mathematical functions on the mesh grid. This method is applied to a usual
permanent magnet synchronous machine (PMSM) in 2D and in 3D. Interesting results
are obtained and discussed.

2 Methodology

2.1 A brief overview of the usual way of using FEM

In the FEM method, each elementary part of the initial geometry is implemented in the
software. This discretization is then used to build an adapted mesh in which all nodes
match with material boundaries. Behavior law and physical properties of all materials are
defined based on this mesh. Consequently, we can take the example of the reluctivity v.
It is a piecewise function defined as 1v; with ¢ corresponding to different material regions
;. The same characteristic can be highlighted on the current density j or the remanent
flux density by, both often used in magnetic problems, as seen in Figure 1.

The global weak formulation is applied to the whole domain using all the piecewise
functions as explained by Bastos & Sadowski (2016). For example, a permanent magnet
synchronous machine implies the weak formulation along with vector potential a seen in

(1).
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Figure 1: Principle of the usual method applied on a conventional PMSM

where € is the whole domain (U§2;, @ € [l;number of subdomains|, €2, magnets sub-
domains with | € [1;number of magnet subdomains] and €2, source subdomains with
m € [1;number of source subdomains]. Numerical integration method applied to weak
formulation is strongly linked to spatial discretization of geometry. Some iterative pro-
cesses as optimization problem or movement modeling need to modify the geometry and
consequently the weak formulation support. As iterative processes required a huge num-
ber of steps, all these pre-processing part reevaluations represent a non negligible waste
of time, especially in 3D.

2.2 Proposed approach

The authors propose to develop a simple method to avoid the pre-processing part reeval-
uations in an iterative process, similar to the moving band method in the 2D rotating
movement modeling. In the case of optimization processes only few methods exist to
reduce the time of each evaluation as in Devornique et al. (2018) in which efficient FE
models are developed to find a balance between precision and CPU time. That is why
the authors proposed, by dint of a trick, a different approach in the use of FEM which
mathematically respects the standard weak form. Two crucial points have to be pointed
out concerning the traditional way of using FEM :

e The discretization of material boundaries is a good basis for the mesh. Indeed,
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all nodes and edges perfectly match with boundaries, allowing a good evaluation
of behavior law and physical properties at each node, thus at each boundaries. In
conclusion, discretization is useful to correctly define material boundaries.

e According to the previous spatial discretization, material properties are imple-
mented in each spatial area, defining a piecewise function of the global domain.

The implementation of piecewise functions (an example is given in (2)) has to be
respected. On the other hand, the fact that nodes do not match with boundaries only
implies some imprecisions. Considering these facts, the authors chose to define mate-
rial properties by projection of mathematical functions on a mesh grid to represent the
geometry. In other words, the first step is to only define the external boundary of the
problem. Using these boundaries, a fixed mesh can be created and used as a support
for physical property functions. Indeed, physical properties are no more implemented in
discrete regions, as seen in Figure 1, but projected on the whole meshed domain by using
space dependent piecewise functions as seen in Figure2. The whole geometry and supply
can be defined thanks to this method.

br(x(t),y(t),z(1))
Jx®y®,2(1)) &
V(|| b x(®),y(0),2(1)

Figure 2: Principle of the proposed method applied on a conventional PMSM

In the case of the previous PMSM, presented in Figure1 and Figure 2, two physical
property functions, the reluctivity v(x, y, z, t, ||b||) and the remanent induction b,(x, v,
z, t), along with a source, the current density j(x, y, z, t), are required to describe the



complete problem. In the example of the current density, it can be described as in (2),
where R; and Ry are inner and outer radii of slots, © the angles origin, 7, the slot pitch,
w the pulsation of slot current, I,,,, the maximum slot current and S,; the slot surface.

(it <\/:c2 +1y2> Ry & Va2 +y? < R2>
for Kk =1:1: Number of slots
if (atan (%) > 0O+ 2k7, & (atan (%) <O+ + 2]67})
g:ﬁ cos(wt + k&) e,
else
j<x>yvz>t) = Oez (2)
endif
endfor
else
Oe,
_ endif

With this approach, defining the external boundary and an adapted fine mesh (dis-
cussed in 2.3) is enough to build the model. The mesh is kept unchanged for all iterations
of any iterative process, which saves CPU time by avoiding pre-processing evaluatation
step. Geometry is defined by projection of physical property functions mentioned above,
as seen in Figure2. Mathematically, the weak formulation seen in (3) is kept unchanged
as in (1). Obviously, both formulations are the same, there are only seen from a different
point of view.

/I/(x(t),y(t), z(t), ||curlal|) curla - curla’d
0

- /V(x(t),y(t),z(t), |curlal]) by (x(t),y(t), 2(t)) - curla’d)
Q
— /j(:v(t), y(t),z(t)) -a'dQ =0, Va' € Ho(curl,Q) (3)

Basically, the aforementioned method has some similarities with the mesh-less method
presented by Belytschko et al. (1994) although finite elements are still used to lead to
well conditioned matrices. Furthermore, the geometry of finite elements in the proposed
method is standard and completely decoupled from the geometry (computer aided design
(CAD)) of the simulated device. Whereas in the meshless method, the geometry of the
elements is arbitrary (no elements, only nodes) but node placements are strongly linked
to the geometry of the device.



2.3 Drawbacks and discussions

In this section, the principal drawbacks of the method will be discussed and some ad-
vantages will be highlighted. The major drawback is directly linked to the spatial dis-
cretization of the usual way of using FEM. As previously mentioned, the interest of the
spatial geometry discretization is every node of mesh corresponds to material boundaries.
The fact that the material properties are evaluated each node of mesh allows for very
well-defined material boundaries. For instance, a crucial boundary for rotating machines
is the air-gap which small variation of thickness deeply impacts both global and local
variables.

To avoid re-meshing step, the spatial discretization is replaced by the projection of
physical properties on a mesh grid. In this condition, mesh nodes do not match anymore
with material boundaries. It gets harder to implement clear and perfect boundaries.
Indeed, between two nodes, the mathematical piecewise function is defined by inducing
an evaluatation of physical properties thanks to a linear interpolation along the edge
Bossavit (1992). This situation leads to irrregular boundaries as seen in Figure3. The
boundary is defined between two nodes, so that it can lead to a deviation of thickness
of one element. It is interesting to point out the fact that a ruled mesh provides more
regular boundaries as seen in Figure4, but there is still a deviation of thickness.
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Figure 3: Nodal linear interpolation of physical properties implying boundary deviation
with projection method
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Figure 4: Nodal linear interpolation of physical properties implying boundary deviation
with projection method using quadrangle elements

A first solution to reduce the deviation is to reduce the size of the elements to converge
to the real boundary. That is to say, an adapted fine mesh can be used to limit the impact
of the linear interpolation deviation. Nevertheless, adapting the mesh grid to the smaller
mesh element size is a nonsense and will raise the CPU time compared with the usual
method because of the high number of Dofs.

Thus, the authors propose to adapt the mesh grid defining some spatial discretizations
whose only purpose is to allow a control on the mesh. These geometrical elements are
not correlated with real geometry but can be placed wherever the users want to set a fine
mesh. Indeed, in the pre-processing part in which external boundaries of the problem are
defined (so before the projection step), some non physical points or lines can be placed
in interesting areas. Those geometrical elements allow for implementing mesh size near
points or number of nodes on lines. Taking the example of Figure 3, the size of the mesh
element of the whole domain is about 1p.u., leading to a deviation of the boundary of
1p.u. compared to the expected boundary. Defining a line near the boundary allows for
reducing the mesh element size only close to the boundary while letting it wide elsewhere.
For instance, the mesh element size is reduced by a factor 3 on Figure 5, leading to a more
precise evaluation of the boundary, with a deviation of 0.33 p.u. only. Obviously, it is
more time-consuming and the meshing time between Figure 3 and Figure 5 is increased by
a factor 2. This technique can be illustrated on an electrical machine: the boundary at



the air-gap of a PMSM is clearly important, which is why the mesh has to be controlled,
but a low deviation at the external boundary of the yoke will not have a deep impact on
performance.

Domain 1
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Linear

interpolation
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Figure 5: Nodal linear interpolation of physical properties implying boundary deviation
with projection method using non physical line to control mesh element size

According to the previous paragraph, there is no mathematical compensation to the
nodal linear interpolation. Resulting irregular boundaries can be seen as rough surfaces.
This lies in the fact that the used software evaluates pre-processing properties and sources
only on the mesh nodes. The linear interpolation between two nodes is quite unavoidable
in this case, nevertheless it is imaginable to evaluate properties and sources along mesh
edges with a higher order of interpolation of pre-processing functions using maybe another
software.

In addition to the pre-processing time saving, the proposed method is mathematically
interesting. The iterative process of resolution (the Newton-Raphson method for example)
is better initialized than in a multi-static resolution. Indeed, since the mesh is kept
unchanged, the solution of non-linear timestep n can be easily used as initialization of
non-linear timestep n + 1. So the CPU time saving is expected to be higher than the
saving of pre-processing part.



3 Tests on an application

In order to compare both methods, the same software is used : Onelab interface based
on the finite element mesh generator Gmsh Geuzaine & Remacle (2009) and the general
finite element solver GetDP Dular & Geuzaine (2019). It was chosen for its flexibility
with weak formulations and physical property definitions. All simulations are run with
vector magnetic unknowns and magnetostatic formulation.

3.1 Permanent Magnet Synchronous Machine

The study of a usual permanent magnet synchronous machine, 12 slots and 4 poles, is
carried out. The first method lies in drawing geometry by CAD and then implement all
physical properties in every subdomain created, as seen in Figure 1. The same machine is
then implemented by projection of physical functions, as seen in Figure2. In both cases,
particular attention is paid to implement a fine mesh near the airgap. Indeed, the rotation
step and mesh element size are equalized and three nodes are placed in radial length of
the airgap. In the first method, 15 nodes are implemented on a half slot pitch whereas
in the second one, 360 nodes are implemented on the circumference. That is to say, both
models have 360 nodes on their circumference with a one-degree rotation step. But the
second model implies a constant mesh element size, as in the first one, the number of
nodes on a half slot pitch is constant.

Flux density maps of both machines, in magnetostatics 2D and 3D, are compared
first. Qualitative correspondence are observed on Figure6 and Figure 7, which represents
an encouraging first step for the validation of the proposed method. Nevertheless, an
iterative process has to be carried out to check the expected advantages of projection
method and a complete statistical study is required to try to avoid any confirmation
bias. Comparisons are made between the proposed method and a basic approach without
any special technique (as a moving band or a sliding surface) which can be considered
as a "naive” method. In the case of basic movement modeling, a pre-processing part
(geometry and mesh) is performed at each position and the system is solved. For a
number of positions Nbppsitions, the system is meshed and solved Nbppsitions times, so:

CPUrime = Nbpositions * (Meshingrime + Resolutionim.)

In the case of the proposed movement modeling, the meshing step is avoided at each
iteration. Moreover, due to the low complexity of the fixed mesh grid, the meshing
step is faster than the usual method for same Dofs number. This saved time is hard to
evaluate because it depends of the problem geometry but it can be represented by the &
variable (€]0; 1]) in the following. The non-linear convergence algorithm being also better
initialized in the case of the proposed method, the resolution time is reduced by a factor
depending on geometry and supply. CPU time with expected time saving are sum up in
Table 1.
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Figure 7: 3D flux density map for usual method (left) and proposed method (right)
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Comparison of 2D models
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Figure 8: Torque comparison for 2D models
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Figure 9: Torque comparison for 3D models
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CPUrime = € ¥ Meshingrime + Nbpositions ¥ Resolutiongim.

Table 1: Time saving

Usual method Proposed method

Linear problem

Meshing time 1 ex1/ Nbposition
Resolution time 1 1
Non-Linear problem
Meshing time 1 ex1/Nbposition

—_

Resolution time 1/2

Multistatic torque is computed for both models in 2D and 3D as it can be seen on
Figure8 and Figure9. The relative deviation between black and red curves is kept under
1% for 2D case. But as expected, the observed saved time is very low because of the
unsignificant meshing time. 2D results being encouraging, 3D models are developed in
order to have same number of Dofs (around 130,000). The CPU time is divided by a
factor 1.7 for our proposed method, keeping a relative deviation under 5% using a Intel
Core i7 2.70GHz with 32Gb of RAM.

To implement the proposed model in an optimization process, a statistical validation is
needed. 500 randomized 3D machines are generated. 4 geometrical parameters vary in a
limited range given in Table 2. Airgap, external radius and bore radius remain constants.

Table 2: Geometrical variation

Variable parameters Variation range
Slot opening (%) [15 ; 85]% of slot pitch
Magnet opening (%)  [15 ; 85]% of pole pitch
Armature radius (mm) [72...108]
Yoke radius (mm) (140 ... 172]

(without magnet)

For each machine, the average torque of both methods is computed and compared.
Results are shown in Figure 10 for 130,000 Dofs first.

The average relative deviation is around 13% with a standard deviation of 17%. It is
interesting to highlight the fact that deviations are centered on a positive value, which
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R(ie}l%tive deviation on torque between both models for 130,000 Dofs
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Figure 10: Robustness of proposed method for 130,000 Dofs

means that the proposed method tends to underestimate the "usual torque”. Considering
average and standard deviation, 75% of the simulated machines have a relative deviation
below 25% in absolute value. Moreover, it can be observed that refining mesh tends to
change the histogram as it can be seen in Figure11.

Knowing the mean value, the standard deviation and the population size, the confi-
dence interval at 95% on mean value can be estimated. This interval is represented on
Figure 12. As expected, refining mesh seems to reduce the relative deviation between both
methods by improving the boundary implementation.

Concerning the € value mentioned in Table1, the same statistical analysis can be
carried out on the 500 machines sample both for 130,000 Dofs and 260,000 Dofs. As a
reminder, ¢ is defined in (4).

MeshingTime,projection
82 ()

MeShzngTime,usual

It turns out that the average is 0.132 with a standard deviation of 0.003 for 130,000 Dofs
and the average is 0.239 with a standard deviation of 0.005 for 260,000 Dofs. That is
to say, meshing time can almost be 10 times faster with projection method than with
traditional method but it seems to decrease with Dofs number. However, saved time
represented by ¢ is strongly linked to the geometry discretization (CAD). The analysis of
¢ only make sense for this particular geometry with our particular choice of discretization.

Nevertheless, according to previous results, the proposed model seems to be suitable for
3D optimization processes. According to Réisénen et al. (2013), there are some additional
advantages using a fixed mesh in optimization processes, such as:
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Rgllg&ive deviation on torque between both models for 260,000 Dofs
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Figure 11: Robustness of proposed method for 260,000 Dofs
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Figure 12: Evolution of confidence interval of mean relative deviation on torque
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e Mesh generation might be difficult or even fail for certain configurations;

e Changing the mesh influences the discretization error. For instance, if optimization
algorithms are applied, the target function will be polluted with re-meshing noise.

3.2 Optimization problem

Previous results show that multistatic movement of rotating machine is well-modeled by
the proposed method. The authors wanted to study the efficiency of the proposed method
in some optimization processes. As 2D projected models do not present a real interest,
a 3D PMSM geometry optimization will be carried out. The same models as robustness
study are used in this section, that is to say the 130,000 Dofs models for time saving
purpose. Geometry optimization is applied to the vector solution presented in Table 2.
The process consists of a torque ripple Ar minimisation with minimum mean torque
reference I'yeqn,rey and maximum current density reference Jmax,ret-

1 = Fmean,ref - Fmean(X) S 0

{ minyer (AF) under { Cy = Jmax — Jmax,ref S 0

Torque ripple Ar is defined according to (5) in which T',,,, is the maximum of in-
staneaous torque, I',,;, is the minimum of instaneaous torque and I'j,.., is the mean
value of instaneaous torque.

Fmax - me
Ap = ——— (5)

Fmean

This optimization problem is applied to the usual model and to the proposed model
as seen in the previous section. NOMAD software Audet et al. (2009) is used to run these
optimizations linked to the Onelab interface to solve the magnetic problem. NOMAD is
based on a mesh adaptive direct search (MADS) algorithm and is useful for a few variables
and a time consuming blackbox evaluation. Both optimization models have been identi-
cally parametrized with the same algorithm, objective, constraints and solution vector.
Models are investigated by means of three problems, presented in Table 3, in which con-
vergence and stop criteria are modified. Indeed, Problem I is a usual case of optimization
process which stops when the relative deviation on the objective function is lower than a
fixed limit Deviation,,;,. Problems II and III represent two optimization processes in a
given maximum time and in a given maximum number of blackbox evaluations.

Results of optimization processes are presented in Table 4. It is very interesting to
point out some observations. Problem I shows that both methods converge to the same
solution. Compared to the usual method, time saving is observed and the amount of
blackbox evaluations increased in the proposed method. Conclusion is that one blackbox
evaluation is made twice as fast as the usual method. Thus, the domain is more widely
explored in the same period of time with the projection method. Problem II and III
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Table 3: Summary of optimization processes
Problem I Problem II Problem I11

Objective AF AF A[‘
Constraints C1, Co C1,Co C1,Co
Convergence  Deviationy;, - -

Stop criterion - Timey,, BB Evaluation;,,

confirm this fact, the proposed method can be a little more efficient in a time limited or
a blackbox evaluation limited optimization. Both methods converge to a different vector
solution and results are re-calculated with the complete model.

Table 4: Results of optimization processes

Problem I
Usual Model Proposed Model
Ar 1p.u. 1.01p.u.
CPU Time 52h 38h
Iterations 115 145
Problem II
Usual Model Proposed Model
Ar 1p.u. 0.99p.u.
CPU Time 10h 10h
Iterations 20 40

Problem III
Usual Model Proposed Model

Ar 1p.u. 0.98p.u.
CPU Time 7.5h 3.8h
Tterations 15 15

3.3 Coupled-circuit simulation

Optimizations on magnetostatic resolution show the efficiency of the proposed method.
Nevertheless, transient-state simulation are often useful for machine design, which is why
the authors wanted to include in the proposed model the possibility of taking back-
electromotive force (EMF) into account. Usually, the magnetic flux is computed by inte-
gration on the correct surface, from spatial discretization, using vector magnetic potential
a
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As the proposed model has no surface defined, the normal vector to the wire cross-
section dl (tangential to current density) is implemented as a piecewise function through
a scalar field ¢;. The flux term is kept unchanged :

t; = 1. in slot
vi = j{)a Htidl, where{ t; = 0. elsewhere (7)

Phase A Magnetic Flux

——Proposed Method
Usual Method

Phase A Magnetic Flux (p.u.)
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Position

Figure 13: Transient-state magnetic flux computation comparison.

Numerically and mathematically, there is no difference in flux computation between
both methods, thus it is not suprising that transient-state fluxes are correctly evaluated,
as seen in Figure 13. The low relative deviation observed in flux computation is due to
the boundary issue applied to the normal vector dl;. The back-EMF can be calculated
using some numerical derivation method.

4 Conclusion & Future Work

This paper presents the first step of an original method which accurately models magnetic
devices by avoiding iterative meshing step. Results are very promising as CPU time is
reduced in 3D keeping low relative deviation. CPU time saving is performed by avoiding
meshing step, and also by a better initialization of iterative resolution. Optimization,
movement modeling and transient-state simulation are very efficient and give same results
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as the usual FE method. Nevertheless, the use of a fixed mesh grid leads to boundaries
issues, therefore to some imprecision in very specific cases. Several advices and solutions
are given to overcome this problem. The real interest lies in a kind of mixed model using
the usual method for static parts and the projection method for moving and deforming
parts. In other words, the purpose of future works is to a develop model in which static
parts of the system are discretized using the usual method and moving parts are projected
on a fine structured mesh, allowing time saving in iterative processes. In conclusion, this
paper represents the first step of a promising method which can be used in several domains
of finite element method.
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