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Abstract

This paper concerns the estimation of the density function of the solution to a random non-autonomous second-order
linear differential equation with analytic data processes. In a recent contribution, we proposed to express the density
function as an expectation, and we used a standard Monte Carlo algorithm to approximate the expectation. Although
the algorithms worked satisfactorily for most test-problems, some numerical challenges emerged for others, due to
large statistical errors. In these situations, the convergence of the Monte Carlo simulation slows down severely, and
noisy features plague the estimates. In this paper, we focus on computational aspects and propose several variance
reduction methods to remedy these issues and speed up the convergence. First, we introduce a path-wise selection of
the approximating processes which aims at controlling the variance of the estimator. Second, we propose a hybrid
method, combining Monte Carlo and deterministic quadrature rules, to estimate the expectation. Third, we exploit
the series expansions of the solutions to design a multilevel Monte Carlo estimator. The proposed methods are im-
plemented and tested on several numerical examples to highlight the theoretical discussions and demonstrate the
significant improvements achieved.

Keywords: Random linear differential equation; Probability density function; Standard and multilevel Monte Carlo
simulation; Analysis of algorithms

1. Introduction and preliminaries

This paper concerns the analysis of stochastic processesX(t) solution to general random non-autonomous second
order linear differential equations: {

Ẍ(t) +A(t)Ẋ(t) +B(t)X(t) = 0,

X(t0) = Y0, Ẋ(t0) = Y1.
(1)

The time-dependent coefficients A(t) and B(t) are stochastic processes and the initial conditions Y0 and Y1 are
random variables. These random quantities are defined in an underlying complete probability space (Ω,F ,P), where
Ω is the sample space formed by outcomes ω ∈ Ω,F ⊆ 2Ω is the σ-algebra of events, and P is the probability measure.
Problem (1) belongs to a broader class of equations referred to as random differential equations [1, 2, 3]. Random
differential equations are those in which random effects are manifested through input coefficients, initial condition
and/or forcing term, in the form of random variables or regular stochastic processes with any type of probability
distribution; the solution stochastic process is differentiable (not to be confused with stochastic differential equations
of Itô type driven by irregular processes, whose solutions exhibit nondifferentiable sample paths; see [4, pp. 96–98]
for the distinction between random and stochastic differential equations). Random differential equations are generally
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studied with two distinct approaches, based on random calculus and sample paths. For the necessary theory on random
calculus, specifically mean square calculus with the norm ‖Z‖2 = E[Z2]1/2 for random variables Z in the Lebesgue
space L2(Ω), we refer the reader to [1].

In this paper, we assume that A(t) and B(t) are analytic stochastic processes in the mean square sense [1, p. 99],
so they can be expanded as

A(t) =

∞∑
n=0

An(t− t0)n, B(t) =

∞∑
n=0

Bn(t− t0)n, t ∈ (t0 − r, t0 + r), (2)

where A0, A1, . . ., B0, B1, . . . are second order random variables, which may or may not be statistically independent,
given by Ai = A(i)(t0)/i! and Bi = B(i)(t0)/i!, with the i-th derivative considered in the mean square sense. The
Taylor series of A(t) and B(t) in (2) present mean square convergence. It is interesting to observe that the analytic
property in the mean sense of a stochastic process is determined by the ordinary analytic property of its correlation
function [1, Th. 4.4.3]. The regularity of A(t) and B(t) does not allow them to be Brownian motions or white noise
processes, thus the distinct treatment of our problem compared to Itô calculus.

The linear problem (1) with analytic data processes has raised interest in the literature on random differential
equations. The study was initialized in particular equations from Mathematical Physics, such as Airy, Hermite and
Legendre differential equations [5, 6, 7]. The main goal of these contributions was to construct the mean square
analytic solution

X(t) =

∞∑
n=0

Xn(t− t0)n (3)

on (t0 − r, t0 + r) via the Fröbenius method, thus obtaining approximations of the expectation and the variance of
X(t), E[X(t)] and V[X(t)]. Other techniques to study particular cases of (1) are PC expansions [8, 9], homotopy
method [10], variational iteration [11], Adomian decomposition [12], and differential transform method [13, 14].

The general problem (1) was successfully solved in [15, 16] using the Fröbenius method. It was proved that, if
the power series from (2) converge in L∞(Ω) (with the essential supremum norm ‖ · ‖∞) and if Y0, Y1 ∈ L2(Ω), then
there is a unique mean square solution of the form (3). This result is extendable to a more general measure norm,
in the Lebesgue space (Lp(Ω), ‖ · ‖p), 1 ≤ p ≤ ∞: if Y0, Y1 ∈ Lp(Ω), then the series (3) converges in Lp(Ω) and
solves (1) in the Lp(Ω) sense. The convergence is exponentially fast, although not uniformly in t; it deteriorates when
t or the norms of the input coefficients grow.

Throughout the paper, we assume that the power series from (2) converge in L∞(Ω) (withA0, A1, . . ., B0, B1, . . .
bounded) and that Y0, Y1 ∈ L2(Ω), so that the conditions stated above for the existence of mean square stochastic
solution are fulfilled.

The computation of the probability density function of X(t) is a more ambitious goal for quantifying uncertainty.
When X(t) is absolutely continuous, meaning that its probability law is absolutely continuous with respect to the
Lebesgue measure, then there exists a non-negative Borel measurable function fX(t)(x) = d(P◦X(t)−1)(x)

dx character-
ized by P[X(t) ∈ C] =

∫
C fX(t)(x) dx (C ⊆ R is any Borel set). Confidence intervals and statistical moments of the

response X(t) can be computed through the probability density function.
In random differential equation problems, the probability density function is usually computed through transfor-

mation of random variables [17, 18, 19, 20, 21, 22, 23]. This approach was used in [24] for the autonomous version
of (1), when A(t) = A and B(t) = B are time-independent random variables. We extended the computation of the
density function to the general problem (1) in [25].

The procedure presented in [25] to derive the probability density function fX(t)(x) is briefly summarized. Let
{S0(t), S1(t)} be the fundamental set of solutions to (1) satisfying the deterministic initial conditions S0(t0) = 1,
Ṡ0(t0) = 0, S1(t0) = 0 and Ṡ1(t0) = 1. Both S0(t) and S1(t) are given by infinite random power series, converging
in L∞(Ω). The solution X(t) is expressed as X(t) = Y0S0(t) + Y1S1(t). If S0(t) 6= 0 almost surely and Y0 has a
density fY0

, we obtain
fX(t)(x) = E [Z0(x, t)] , (4)

where

Z0(x, t) = fY0

(
x− Y1S1(t)

S0(t)

)
1

|S0(t)|
. (5)
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Similarly, if S1(t) 6= 0 almost surely and Y1 possesses a density fY1 , then

fX(t)(x) = E [Z1(x, t)] , (6)

where

Z1(x, t) = fY1

(
x− Y0S0(t)

S1(t)

)
1

|S1(t)|
. (7)

When a simple closed-form expression for S0(t) and S1(t) is not available, truncating the power series S0(t) and S1(t)
to the N ≥ 0 first terms is necessary. We denote SN0 (t) and SN1 (t), the partial sums which converge respectively to
S0(t) and S1(t), in L∞(Ω), as N → ∞. The truncated series of X(t) is given by XN (t) = Y0S

N
0 (t) + Y1S

N
1 (t),

which converges to X(t) as N → ∞ in the mean square sense. The probability density function of XN (t) is,
whenever SN0 (t) 6= 0 almost surely or SN1 (t) 6= 0 almost surely,

fXN (t)(x) = E
[
ZN0 (x, t)

]
(8)

or
fXN (t)(x) = E

[
ZN1 (x, t)

]
, (9)

where

ZN0 (x, t) = fY0

(
x− Y1S

N
1 (t)

SN0 (t)

)
1

|SN0 (t)|
, ZN1 (x, t) = fY1

(
x− Y0S

N
0 (t)

SN1 (t)

)
1

|SN1 (t)|
. (10)

Several theoretical results from [25] justify that fXN (t)(x) tends to the target density function fX(t)(x) as N →∞ in
a neighborhood of t0. The convergence is pointwise and in Lp(R), for 1 ≤ p <∞. Convergence in terms of the total
variation and the Hellinger distances also holds. The hypotheses set to establish the convergence are mainly related
to the continuity of fY0

or fY1
. If fY0

or fY1
are Hölder continuous, then exponential convergence holds, albeit not

uniform in t and x.
In [25], the expectation from (8) and (9) is approximated using Monte Carlo (MC) simulation, via an explicit

algorithm. Either (8) or (9) are selected, and realizations of the involved random variables are generated to compute the
sample average. This introduces an error due to sampling, apart from the bias error θN (x, t) = fX(t)(x)−fXN (t)(x).
The convergence rate of the MC procedure towards fXN (t)(x) depends on the finite number of realizations and on
the variances V

[
ZN0 (x, t)

]
, V
[
ZN1 (x, t)

]
. If these variances are large or infinite, the convergence rate of the MC

simulation deteriorates severely and noisy estimates of fXN (t)(x) are produced, thus invalidating the results. This
phenomenon was observed in the numerical experiments from [25, Example 5.3]. It is highly related to having small
denominators |SN0 (t)| and |SN1 (t)| at certain realizable paths, as this may produce higher dispersion of 1/|SN0 (t)| and
1/|SN1 (t)|.

The main goal of this paper is to improve the algorithm from [25] via several variance reduction methods to achieve
good convergence of the MC simulation and prevent noisy features. All the proposed methods are implemented and
tested using the software Mathematica R©, version 11.2 [26].

In Section 2, we propose a path-wise selection of the initial condition to avoid the smallest denominator, |SN0 (t)|
or |SN1 (t)|, used in (4)–(6) . In this manner, we control the variance of the sampling error, and we improve the quality
of the numerical results significantly. An important assumption to apply this selection is that the two initial conditions
have probability density functions.

In Section 3, we improve further the algorithm of Section 2 with a deterministic quadrature to approximate the
expectation with respect to Y0–Y1. It allows for a reduction of variance when Y0 and Y1 are responsible for most of
the estimator variability (this can be checked using Sobol indices). A detailed comparison with the methodology of
Section 2, in terms of variance reduction, density approximation, and error versus complexity, is carried out.

In Section 4, the MC approach from Section 2 is extended considering a multilevel strategy. Originally introduced
in [27, 28], the idea of multilevel MC is to accelerate the convergence of the MC simulation by decomposing the tar-
get expectation into the sum of expectations of increments (through a telescopic sum identity) whose variances decay
rapidly. Multilevel MC simulation is an improved sampling strategy that balances the bias and sampling errors, to
obtain an overall reduction of the computational complexity compared to the standard MC algorithm. Multilevel sam-
pling strategies have been employed for the approximation of statistics in stochastic differential equations and random
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partial differential equations, where the bias classically arises from a mesh discretization [29, 30, 31]. However, to our
knowledge, the application to the density estimation of random differential equations solution is completely original.

Finally, Section 5 draws the main conclusions of the paper and discusses potential avenues for future research on
algorithmic improvements, linear random differential equations, and density approximations.

The proofs of the mathematical results (propositions and lemmas) are postponed to the Appendix.

2. Variance reduction by path-wise selection of the initial condition used in the density expression

In [25], the density function fXN (t)(x) is approximated using a standard MC sampling strategy, by initially se-
lecting either ZN0 (x, t) or ZN1 (x, t) (see (10)), and only one of these processes. The convergence rate of the sample
average towards E[ZN0 (x, t)] or E[ZN1 (x, t)] depends on V[ZN0 (x, t)] or V[ZN1 (x, t)], respectively. If V[ZN0 (x, t)]
and V[ZN1 (x, t)] are large or infinity, the convergence rate deteriorates severely and noisy features may plague the
statistical approximation to fXN (t)(x). This issue was observed in [25, Example 5.3].

In this section we propose a variance reduction method by combining the choices of ZN0 (x, t) and ZN1 (x, t).
Consider one realization of SN0 (t) and SN1 (t). These realizations are computed recursively in the computer from
realizations of A0, . . . , AN−2, B0, . . . , BN−2, see [25]. If |SN0 (t)| ≥ |SN1 (t)| then we pick ZN0 (x, t), and vice versa
otherwise. In such a way, we avoid the smallest denominator in the expressions of ZN0 (x, t) and ZN1 (x, t).

We assume that Y0, Y1 and (A0, A1, . . . , B0, B1, . . .) are independent. We also suppose that Y0 and Y1 are
absolutely continuous random variables (otherwise this method is no longer applicable). Given the events G0(t) =
{|S0(t)| ≥ |S1(t)|}, G1(t) = {|S1(t)| > |S0(t)|}, GN0 (t) = {|SN0 (t)| ≥ |SN1 (t)|} and GN1 (t) = {|SN1 (t)| >
|SN0 (t)|}, we define the random processes

Z(x, t) = Z0(x, t)1G0(t) + Z1(x, t)1G1(t), (11)

ZN (x, t) = ZN0 (x, t)1GN
0 (t) + ZN1 (x, t)1GN

1 (t). (12)

These processes correspond to path-wise selecting fY0
or fY1

according to |S0(t)| ≥ |S1(t)| or |S1(t)| > |S0(t)|
(in (11)), and |SN0 (t)| ≥ |SN1 (t)| or |SN1 (t)| > |SN0 (t)| (in (12)). By path-wise selection, we refer to generate real-
izations of SN0 (t) and SN1 (t) (the paths/trajectories of the stochastic processes) and then select ZN0 (x, t) or ZN1 (x, t)
accordingly. The density functions of XN (t) and X(t) are then expressed as follows.

Proposition 1. The following relationships hold:

fX(t)(x) = E [Z(x, t)] , fXN (t)(x) = E
[
ZN (x, t)

]
,

where Z(x, t) and ZN (x, t) are defined in (11) and (12).

The expectation fXN (t)(x) = E[ZN (x, t)] may be approximated via a standard MC sampling strategy. A key
feature here is the uniform boundedness of V[ZN (x, t)] with N , as shown in Proposition 2.

Lemma 1. Given any T > t0, there exists a constant α > 0 such that

max{|S0(t)|, |S1(t)|} ≥ 2α (13)

holds almost surely, for all t ∈ [t0, T ]. In particular, there exists an integer NT,α ≥ 0 such that

max{|SN0 (t)|, |SN1 (t)|} ≥ α (14)

holds almost surely, for all t ∈ [t0, T ] and N ≥ NT,α.

Proposition 2. Suppose that fY0
and fY1

are bounded density functions. Given any T > t0, the L2(Ω) norms of
Z(x, t) and ZN (x, t) are controlled as follows:

‖Z(x, t)‖2 ≤
max{‖fY0

‖∞, ‖fY1
‖∞}

2α
, ‖ZN (x, t)‖2 ≤

max{‖fY0
‖∞, ‖fY1

‖∞}
α

,

for x ∈ R, t ∈ [t0, T ] and N ≥ NT,α, where α is the constant from Lemma 1.
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As a consequence, the variance here is well controlled, in contrast with [25]. The estimate of fXN (t)(x) =

E[ZN (x, t)] using MC simulation does not present convergence problems.

Remark 1. Lemma 1 is not only important from a numerical point of view, but also for the following theoretical fact.
Our paper [25] justified the pointwise convergence of {fXN (t)(x)}∞N=0 towards fX(t)(x) in a neighborhood of t0.
The neighborhood was constructed in such a way that S0(t) and/or S1(t) are greater than a positive constant almost
surely (see [25, Remarks 3.5, 3.10]), so that the denominators from (10) are controlled. Lemma 1 shows that

1

|S0(t)|
1G0(t) +

1

|S1(t)|
1G1(t) =

1

max{|S0(t)|, |S1(t)|}
is upper bounded by a finite constant almost surely, for every t in the domain of definition of (1). Hence, the theoretical
results from [25] justifying the convergence of fXN (t)(x) = E[ZN (x, t)] to fX(t)(x) = E[Z(x, t)] as N → ∞ do
hold for every t where X(t) is well-defined, not just on a neighborhood of t0. Notice that this statement requires both
Y0 and Y1 to be absolutely continuous, and Y0, Y1 and (A0, A1, . . . , B0, B1, . . .) to be independent. These are the
hypotheses under which the methodology from this section is supported.

Given a time variable t, a point x in the density domain of XN (t), a truncation order N and a number M , the
whole procedure described in this section is structured as follows:

PROCEDURE 1.

Part 1 Generate M realizations of SN0 (t) and SN1 (t).

Part 2 For each realization, if |SN0 (t)| ≥ |SN1 (t)|, set a realization of Y1 ∼ fY1
to obtain the realization of ZN (x, t)

given by ZN0 (x, t) (see (10), (12)). Otherwise set a realization of Y0 ∼ fY0
to obtain the realization of ZN (x, t)

given by ZN1 (x, t).

Part 3 Compute the sample mean of theM realizations ofZN (x, t). This value estimates the expectation fXN (t)(x) =

E[ZN (x, t)] with MC simulation. We denote the estimate (output function) by fN,MX (x, t), which tends to
fXN (t)(x) as M →∞.

The complexity (or cost, or work, which is defined in this paper as the total number of arithmetic operations) of
Procedure 1 is O(MN2), in general. Recall that each realization of SN0 (t) and SN1 (t) is computed recursively with
N and requires O(N2) operations [25].

As discussed in [25], when A(t) and B(t) are random polynomials instead of infinite random series, the cost
per realization of SN0 (t) and SN1 (t) is reduced to O(N) operations. Then the global complexity of Procedure 1 is
O(MN) only.

Obviously, in the case where S0(t) and S1(t) are known in closed-form expression (this occurs for simple prob-
lems (1), such as the autonomous case), Procedure 1 can be run with N = ∞, that is, by computing realizations of
S0(t) and S1(t) directly. The complexity of the algorithm is O(M) in such a case. The error is statistical and only
due to the finite sampling.

Procedure 1 may be run symbolically on the variable x, thus having a symbolic expression for the output fN,MX (x, t)
in the end. The algorithm from [25] was run symbolically. However, symbolic computations do not allow a large num-
ber of simulations M . Thus, in cases where M needs to be large enough to achieve convergence, we recommend to
discretize x in a domain of interest for the target density.

In the following two examples, we illustrate and assess the theoretical discussion from this section. The main
goal is to highlight the improvement of Procedure 1 compared with [25], in terms of variance reduction of the MC
estimator and accuracy of the density estimation. The first example, Example 1, focuses on a simple autonomous
problem with exact solution, so that N = ∞. The second example, Example 2, deals with a more complex problem,
where A(t) and B(t) are one-degree random polynomials and the series solution is truncated to a finite number N of
terms.

Example 1. We start by considering a very simple problem (1):{
Ẍ(t) +B2X(t) = 0, t ∈ R,
X(t0 = 0) = Y0, Ẋ(t0 = 0) = Y1.

(15)
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Despite its simplicity, (15) is a useful example to illustrate the theoretical discussion from this section.
The following probability distributions are considered: B ∼ Uniform(1, 2.5), Y0, Y1 ∼ Normal(1, σ = 0.1), all

of them independent. As B is bounded and the initial conditions Y0 and Y1 have absolute moments of any order,
there exists an analytic solution X(t) in the Lp(Ω) sense, for 1 ≤ p < ∞. The fundamental system is explicitly
known: S0(t) = cos(Bt), S1(t) = sin(Bt)/B, t ∈ R. Thus, Procedure 1 can be applied with N = ∞, by taking
realizations from S0(t) and S1(t) directly. We consider time t = 10, and the goal is to approximate the density
function fX(t=10)(x) using MC methods.

In Figure 1, left panel, we estimate E[Z0(x, t = 10)] and E[Z1(x, t = 10)] with the MC procedure from [25],
by generating M = 100, 000 realizations of the random inputs. These expectations correspond to fX(t=10)(x).
Observe that noisy features plague the estimates of the density function. In Figure 1, right panel, we plot estimates
of the variances V[Z0(x, t = 10)] and V[Z1(x, t = 10)]. Their large values slow down the convergence of the MC
simulation, thus explaining the noisy behavior of the estimates in the left plot. In fact, at the points x where the
variance is larger, more noise is perceived in the estimate of the expectation.



[Z0(x,t=10)]



[Z1(x,t=10)]

-2 -1 1 2
x

0.2

0.4

0.6

0.8

1.0 

[Z0(x,t=10)]



[Z1(x,t=10)]

-2 -1 1 2
x

100

200

300

400

Figure 1: Left: approximations of fX(t=10)(x) using estimates Ê[Z0(x, 10)] and Ê[Z1(x, 10)]. Right: estimates
V̂[Z0(x, 10)] and V̂[Z1(x, 10)]. This figure corresponds to Example 1.

In Figure 2, left panel, we approximate fX(t=10)(x) via E[Z(x, t = 10)], by using the proposed Procedure 1
with M = 100, 000 realizations. Observe that now the estimate is smooth, thus resolving the convergence challenge.
In Figure 2, right panel, we depict an estimate for V[Z(x, t = 10)]. This variance is shown to be small compared
to V[Z0(x, t = 10)] and V[Z1(x, t = 10)] in Figure 1, thus allowing for faster convergence of the MC simulation.
Hence, Procedure 1 improves [25] significantly.

It is interesting to observe the different behaviors of Z0(x, 10), Z1(x, 10) and Z(x, 10) = Z0(x, 10)1G0(10) +
Z1(x, 10)1G1(10) as real functions of B, Y0 and Y1. Figure 3 depicts the 3D graphs of the real functions Z0(0, 10),
Z1(0, 10), Z0(0, 10)1G0(10) and Z1(0, 10)1G1(10) (obviously, any other point x different from 0 can also be taken).
The functionsZ0(0, 10) andZ1(0, 10) have singularities (because of vanishing denominators | cos(10B)| and | sin(10B)/B|)
and are strongly peaked. On the contrary, although Z0(0, 10)1G0(10) and Z1(0, 10)1G1(10) possess discontinuity
points, their peaks are not that sharp. As we are getting rid of small denominators, the sharp peaks are avoided.

Example 2. We consider a more complex example now, based on degree one polynomial coefficients. Let{
Ẍ(t) + (A0 +A1t)Ẋ(t) + (B0 +B1t)X(t) = 0, t ∈ R,
X(t0 = 0) = Y0, Ẋ(t0 = 0) = Y1,

(16)

where A0 = 4, A1 ∼ Uniform(0, 1), B0 ∼ Gamma(2, 2)|[0,4], B1 ∼ Bernoulli(0.35) and Y0, Y1 ∼ Normal(2, 1), all
of them independent. Since the random coefficients A0, A1, B0 and B1 are bounded and the initial conditions Y0 and
Y1 have finite absolute moments, there is an analytic solution X(t) in the Lp(Ω) sense, 1 ≤ p <∞.

According to [25], the probability density function fX(t)(x) can be approximated pointwise using fXN (t)(x)
(with exponential convergence with N because fY0

and fY1
are Lipschitz continuous on R). We focus on the order of
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x
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0.2

0.3

0.4

0.5

0.6



[Z(x,t=10)]

-2 -1 1 2
x

0.5

1.0

1.5

2.0



[Z(x,t=10)]

Figure 2: Left: approximation of fX(t=10)(x) using estimate Ê[Z(x, 10)]. Right: estimate V̂[Z(x, 10)]. This figure
corresponds to Example 1.

Figure 3: 3D plots of the integrands Z0(0, 10), Z1(0, 10) (their vertical axes have been restricted to [0, 50]),
Z0(0, 10)1G0(10) and Z1(0, 10)1G1(10). This figure corresponds to Example 1.
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truncation N = 10 to highlight the improvement of Procedure 1 compared with [25]. We estimate fXN=10(t=1.5)(x)
with both approaches.

In Figure 4, left panel, we estimate E[ZN=10
0 (x, t = 1.5)] and E[ZN=10

1 (x, t = 1.5)] with the algorithm described
in [25]. WithM = 20, 000 realizations, we observe noise in both estimates. This phenomenon is accurately explained
by the plots of V[ZN=10

0 (x, t = 1.5)] and V[ZN=10
1 (x, t = 1.5)] in the right panel. It is very interesting to observe

that the points x where the variances are larger correspond to higher noise in the left plot. Indeed, large variance
affects the rate of convergence of the MC simulation severely.



[Z0
N=10(x,t=1.5)]



[Z1
N=10(x,t=1.5)]
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Figure 4: Left: approximations of fXN=10(t=1.5)(x) using estimates Ê[ZN=10
0 (x, 1.5)] and Ê[ZN=10

1 (x, 1.5)]. Right:
estimates V̂[ZN=10

0 (x, 1.5)] and V̂[ZN=10
1 (x, 1.5)]. This figure corresponds to Example 2.

Procedure 1 has been designed to fix this issue. Figure 5, left panel, shows the smooth estimate of fXN=10(t=1.5)(x)

with E[ZN=10(x, t = 1.5)] and M = 20, 000 realizations. This good convergence is due to the small variance
V[ZN=10(x, t = 1.5)] compared to V[ZN=10

0 (x, t = 1.5)] and V[ZN=10
1 (x, t = 1.5)], see the right panel of Figure 5.

Hence, Procedure 1 shows significantly superior to a mere MC approach as in [25].
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Figure 5: Left: approximation of fXN=10(1.5)(x) using estimate Ê[ZN=10(x, 1.5)]. Right: estimate
V̂[ZN=10(x, 1.5)]. This figure corresponds to Example 2.

3. Variance reduction by using quadrature rule for the expectation with respect to the initial conditions

By Proposition 1, the probability density function of the truncated series XN (t) is expressed as fXN (t)(x) =

E[ZN (x, t)], where ZN (x, t) was defined in (12). The randomness in ZN (x, t) comes from the initial conditions,
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Y0 and Y1, and from the truncated series from the fundamental set, SN0 (t) and SN1 (t). An MC sampling procedure
generates M independent realizations from these random quantities and approximates fXN (t)(x) using the sample
average, see Procedure 1.

The convergence rate of the sample mean towards the true expectation depends heavily on the variance ofZN (x, t)
(which is uniformly bounded on N by Proposition 2). In this section, we present a method for variance reduction.
Each time we generate a realization of SN0 (t) and SN1 (t) and check whether |SN0 (t)| ≥ |SN1 (t)| or |SN1 (t)| > |SN0 (t)|,
now we do not generate a realization of Y0–Y1, but compute the expectation with respect to Y0–Y1 with a numerical
integration method, instead.

We write fXN (t)(x) as fXN (t)(x) = E[E[ZN (x, t)|SN0 (t), SN1 (t)]], by the law of total expectation. By an MC
sampling procedure, we approximate the outer expectation as

fXN (t)(x) ≈ 1

M

M∑
i=1

E[ZN (x, t)|SN0 (t) = sN0,i, S
N
1 (t) = sN1,i], (17)

where {(sN0,i, sN1,i)}Mi=1 are M independent realizations of (SN0 (t), SN1 (t)).
The variance of the sampling error from the approximation (17) is always smaller than in the standard MC ap-

proach from Procedure 1. Indeed, by the law of total variance,

V
[
E
[
ZN (x, t)|SN0 (t), SN1 (t)

]]
= V

[
ZN (x, t)

]
− E

[
V
[
ZN (x, t)|SN0 (t), SN1 (t)

]]
≤ V

[
ZN (x, t)

]
. (18)

Equality holds only when V[ZN (x, t)|SN0 (t), SN1 (t)] = 0. Essentially, using (17) we gain more reduction in the
sampling error when Y0–Y1 produce high variability in ZN (x, t). The extreme case occurs when A(t) and B(t)
are deterministic functions, as in such a case a deterministic integration rule for Y0–Y1 makes the method sampling
error-free.

The influence of the variability of Y0, Y1, SN0 (t) and SN1 (t) on ZN (x, t) (variance-based sensitivity analysis)
can be assessed using Sobol indices [32, 33]. The random process ZN = ZN (x, t) has the following orthogonal
decomposition:

ZN = E
[
ZN
]

+ Z̃NSN
0 (t),SN

1 (t) + Z̃NY0,Y1
+ Z̃NSN

0 (t),SN
1 (t),Y0,Y1

,

where
Z̃NSN

0 (t),SN
1 (t) = ZNSN

0 (t),SN
1 (t) − E

[
ZNSN

0 (t),SN
1 (t)

]
, ZNSN

0 (t),SN
1 (t) = E

[
ZN |SN0 (t), SN1 (t)

]
,

Z̃NY0,Y1
= ZNY0,Y1

− E
[
ZNY0,Y1

]
, ZNY0,Y1

= E
[
ZN |Y0, Y1

]
,

Z̃NSN
0 (t),SN

1 (t),Y0,Y1
= ZNSN

0 (t),SN
1 (t),Y0,Y1

− E
[
ZNSN

0 (t),SN
1 (t),Y0,Y1

]
,

ZNSN
0 (t),SN

1 (t),Y0,Y1
= ZN − Z̃NSN

0 (t),SN
1 (t) − Z̃

N
Y0,Y1

.

Applying squared L2(Ω) norms, we derive the ANOVA-Hoeffding decomposition of the variance of ZN (x, t):

V
[
ZN
]

= V
[
ZNSN

0 (t),SN
1 (t)

]
+ V

[
ZNY0,Y1

]
+ V

[
ZNSN

0 (t),SN
1 (t),Y0,Y1

]
,

where V[ZN
SN
0 (t),SN

1 (t)
], V[ZNY0,Y1

] and V[ZN
SN
0 (t),SN

1 (t),Y0,Y1
] measure the contribution to ZN (x, t) of (SN0 (t), SN1 (t))

alone, (Y0, Y1) alone, and the interactions between them, respectively. The standardization of the variance decompo-
sition gives rise to the Sobol indices:

SNSN
0 (t),SN

1 (t) =
V
[
ZN
SN
0 (t),SN

1 (t)

]
V [ZN ]

, SNY0,Y1
=

V
[
ZNY0,Y1

]
V [ZN ]

, (19)

SNSN
0 (t),SN

1 (t),Y0,Y1
=

V
[
ZN
SN
0 (t),SN

1 (t),Y0,Y1

]
V [ZN ]

, (20)
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which are scaled in [0, 1]. When SNY0,Y1
is near 1, we expect more variance reduction in the MC estimate (17).

Fix the index of the realizations i = 1, . . . ,M . If |sN0,i| ≥ |sN1,i|, then

E
[
ZN (x, t)

∣∣ SN0 (t) = sN0,i, S
N
1 (t) = sN1,i

]
= E

[
ZN0 (x, t)

∣∣ SN0 (t) = sN0,i, S
N
1 (t) = sN1,i

]
=

1

|sN0,i|

∫
SY1

fY0

(
x− y1s

N
1,i

sN0,i

)
fY1(y1) dy1, (21)

where SY1
denotes the support of the random variable Y1. If |sN1,i| > |sN0,i|, then

E
[
ZN (x, t)

∣∣ SN0 (t) = sN0,i, S
N
1 (t) = sN1,i

]
= E

[
ZN1 (x, t)

∣∣ SN0 (t) = sN0,i, S
N
1 (t) = sN1,i

]
=

1

|sN1,i|

∫
SY0

fY1

(
x− y0s

N
0,i

sN1,i

)
fY0(y0) dy0, (22)

being SY0
the support of Y0. These integrals (21), (22), can be approximated using numerical integration schemes.

For instance, Gaussian quadrature rules [9, pp. 39–41] are appropriate since the density functions fY1
(y1) and fY0

(y0)
act as integration weights. In the case of (21) (the case of (22) is analogous), one considers orthogonal polynomials
{Pj(y1)}∞j=0 (the degree of Pj is j) with respect to the inner product of L2(SY1

) with weight function fY1
(y1). For

example, if Y1 has a Normal or Uniform distribution, then {Pj(y1)}∞j=0 corresponds to the family of Hermite and
Legendre polynomials, respectively. In other cases where Y1 does not possess a standard probability distribution from
the Askey scheme, {Pj(y1)}∞j=0 may be constructed through a Gram-Schmidt orthogonalization procedure from the
canonical basis {1, y1, y

2
1 , y

3
1 , . . .}. The integral (21) is approximated as follows:

1

|sN0,i|

∫
SY1

fY0

(
x− y1s

N
1,i

sN0,i

)
fY1

(y1) dy1 ≈
1

|sN0,i|

Q∑
j=1

w
(Q)
1,j fY0

(
x− y(Q)

1,j s
N
1,i

sN0,i

)
. (23)

Here, Q is the finite degree of the quadrature, the nodes {y1,j}Qj=1 are the zeros of PQ(y1), and {w(Q)
1,j }

Q
j=1 are the

weights so that the integration rule is exact for polynomials of degree less than or equal to 2Q− 1

The nodes {y0,j}Qj=1, {y1,j}Qj=1, and the weights {w(Q)
0,j }

Q
j=1, {w(Q)

1,j }
Q
j=1, only depend on fY0 and fY1 , therefore

they are independent of the realization (sN0,i, s
N
1,i), the number of simulations M and the truncation order N . Hence,

the nodes and the weights should always be computed once for all at the beginning.
As more regularity we demand on fY0

and fY1
, faster convergence the quadrature rule will achieve with Q. The

extreme case appears when fY0 and fY1 are analytic real functions: the quadrature rule converges exponentially with
Q and therefore the bias error θN (x, t) = fX(t)(x) − fXN (t)(x) is not seriously affected by the deterministic error
arisen from the finite degree Q. Nonetheless, numerical problems in the quadrature approximations may arise when
the integrands are strongly peaked. In this case, the degree Q must be taken larger, otherwise the bias error may
increase dramatically.

The procedure is described in the following steps:

PROCEDURE 2.

Part 1 Generate M realizations of SN0 (t) and SN1 (t).

Part 2 For each realization, if |SN0 (t)| ≥ |SN1 (t)|, consider the realization E[ZN (x, t)|SN0 (t), SN1 (t)] approximated
by the quadrature

∑Q
j=1 w

(Q)
1,j Z

N
0 (x, t)|

Y1=y
(Q)
1,j

(see (10), (12), (21), (23)). Otherwise consider the realization

E[ZN (x, t)|SN0 (t), SN1 (t)] approximated by
∑Q
j=1 w

(Q)
0,j Z

N
1 (x, t)|

Y0=y
(Q)
0,j

.

Part 3 Compute the sample mean of the M realizations of E[ZN (x, t)|SN0 (t), SN1 (t)]. This value estimates the
expectation fXN (t)(x) = E[ZN (x, t)] = E[E[ZN (x, t)|SN0 (t), SN1 (t)]] with MC simulation. We denote the
estimate (output function) by fN,M,Q

X (x, t).

10



The complexity of Procedure 2 isO(M(N2 +Q)), in general. Recall that one realization of SN0 (t) and SN1 (t) re-
quiresO(N2) operations when A(t) and B(t) are given by infinite random expansions. The quadrature rule demands
O(Q) operations.

When A(t) and B(t) are random polynomials, one realization of SN0 (t) and SN1 (t) requires O(N) operations
only. The complexity of the whole algorithm thus becomes O(M(N +Q)).

In the case of simple problems (1) in which S0(t) and S1(t) are exactly known, Procedure 2 is run with N =∞,
that is, by computing exact realizations of S0(t) and S1(t). The error in this case comes from the MC simulation and
the finite degree of the quadrature rule. The total complexity is given by O(MQ).

We finish this section with numerical experiments concerning the methodology and Procedure 2. In the following
three examples, we will compare Procedure 1 and Procedure 2 in terms of variance reduction, density approximation
and error against complexity. The first two examples, Example 3 and Example 4, deal with problems having closed-
form expressions for the fundamental sets (N = ∞). In Example 3, the initial conditions Y0 and Y1 have large
dispersion compared to S0(t) and S1(t) (this is checked using Sobol indices), so a significant variance reduction of
the MC estimator is achieved by employing quadrature rules with respect to fY0

and fY1
. On the contrary, Example 4

presents two initial conditions with small dispersion compared to S0(t) and S1(t), hence the crude MC approach from
Procedure 1 is more efficient. The third example, Example 5, deals with orders of truncation N <∞, which implies
that computing the fundamental set {S0(t), S1(t)} of the problem takes certain computational burden. This entails
that, albeit the initial conditions have small dispersion compared to S0(t) and S1(t), both Procedure 1 and Procedure 2
present similar efficiency. After the three examples, we will conclude the section with specific recommendations
regarding the use of Procedure 1 or Procedure 2.

Example 3. Consider (15) with input data B ∼ Uniform(1, 1.01) and Y0, Y1 ∼ Normal(1, σ = 2), all of them
independent. As the fundamental set {S0(t), S1(t)} is known with closed-form expressions, S0(t) = cos(Bt) and
S1(t) = sin(Bt)/B, we take N =∞, by sampling from S0(t) and S1(t) directly.

Here the randomness mainly comes from the initial conditions. This is checked using the Sobol indices from (19)
and (20). As proposed in [34, 35], the Sobol indices are computable using MC simulation with the formulas

V
[
ZS0(t),S1(t)

]
≈ 1

M

M∑
i=1

Z(sIi , y
I
i )Z(sIi , y

II
i )− 1

M

M∑
i=1

Z(sIi , y
I
i )Z(sIIi , y

II
i ), (24)

V [ZY0,Y1
] ≈ 1

M

M∑
i=1

Z(sIi , y
I
i )Z(sIIi , y

I
i )− 1

M

M∑
i=1

Z(sIi , y
I
i )Z(sIIi , y

II
i ), (25)

where {sIi }Mi=1 ⊆ R2 and {sIIi }Mi=1 ⊆ R2 denote two sets of joint realizations of (S0(t), S1(t)), and {yIi }Mi=1 ⊆ R2

and {yIIi }Mi=1 ⊆ R2 denote two sets of joint realizations of (Y0, Y1), being all of them independent. The notation used
here, for instance Z(sIi , y

I
i ), means evaluating Z(x, t) (given by (11)) at those specific realizations. In Figure 6, we

report the estimates of the Sobol indices for t = 10. We observe that SY0,Y1 is very close to 1, therefore indicating
that the variability of Z(x, t) is dominated by the initial conditions. Thus we expect Procedure 2 to be superior to
Procedure 1 in terms of variance reduction.

In this example, the Gaussian quadrature rule is based on Hermite polynomials. We work at time t = 10, with
degree of quadrature Q = 30. Essentially, the quadrature rule approximation is error-free. In Figure 7 we plot esti-
mates V̂[Z(x, 10)] and V̂[E[Z(x, 10)|S0(10), S1(10)]]. Observe that the magnitude of V̂[E[Z(x, 10)|S0(10), S1(10)]]

is smaller than V̂[Z(x, 10)], due to the law of total variance (18). Anyway, none of the variances becomes large at any
point x, therefore good estimates of fX(t=10)(x) are obtained with any of the two algorithms.

In Figure 8 we depict the estimates for fX(t=10)(x) with Procedure 1 (legend “Density MC”) and Procedure 2
(legend “Density MCQ”). Very similar smooth estimates are obtained, in fact they overlap, with Q = 30 and M =
10, 000 realizations. We also compare the two estimates with the exact density function (legend “Exact density”).
The exact density function is computable using a cubature rule for the double integral (4) (cubature rule constructed
using a tensor product approach based on univariate Gauss-Hermite and Gauss-Legendre quadrature rules), because
the integrand is smooth with no peaks (see Figure 9), thus posing no difficulties. The second panel of the figure shows
the plot in logarithmic scale, to better appreciate the agreement at the tails.
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Figure 6: Estimated Sobol indices of the random inputs for Z(x, t = 10). This figure corresponds to Example 3.
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Figure 7: Estimates of V̂[E[Z(x, 10)|S0(10), S1(10)]] and V̂[Z(x, 10)]. This figure corresponds to Example 3.
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Figure 8: Estimates of fX(t=10)(x) with MC simulation, MC simulation plus quadrature rule (MCQ), and exact
density function. The right panel shows the plot in logarithmic scale. This figure corresponds to Example 3.

A further analysis is performed by studying the relation between the error and the complexity of Procedure 1 and
Procedure 2. In Figure 10 we show plots of mean relative error versus complexity in log-log scale for Procedure 1
(legend “MC”) and Procedure 2 (legend “MCQ”), at different points x. Here we consider the complexity of Pro-
cedure 1 as M , while the complexity of Procedure 2 as MQ, being Q = 30 (recall that M denotes the number of
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Figure 9: 3D plots of the integrand Z0(x, t = 10) at different points x. This figure corresponds to Example 3.

realizations). The relative error is defined as the absolute error divided by the value of the exact density function.
We run both algorithms up to complexity floor(1.444), and we keep the relative errors for complexities floor(1.4i),
i = 14, 15, . . . , 44 (a geometric progression makes equidistant complexities in log-scale). This gives a discretized
realizable path of relative errors. We repeat this demanding process n = 20 times with parallel computing to obtain an
estimate of the mean relative error (so that the analysis performed does not depend upon a specific realizable relative
error). A 95% confidence interval of Gaussian-type for the mean relative error is constructed (this is justified by the
central limit theorem), as mean plus/minus 1.96 times the standard error, where the standard error is the standard de-
viation of the original sample of length n divided by

√
n 1. The relative error descends with slope 1/2 approximately,

because the error of the MC simulation goes down with M at rate 1/
√
M . The mean relative error of Procedure 2 is

shifted down the mean relative error of Procedure 1, due to the variance reduction of the estimators, thus indicating
higher efficiency. Similar plots have been obtained for the points x ∈ {−1, 3}. Indeed, the effect of the initial condi-
tions on the variability of Z is homogeneous in x, according to the Sobol indices from Figure 6, therefore a similar
performance of the algorithm is expected for the different x’s.

Example 4. We consider the same setting as Example 1: (15) withB ∼ Uniform(1, 2.5) and Y0, Y1 ∼ Normal(1, σ =
0.1), all of them independent.

In this case, the variability of Z is mainly due to B. This is deduced from Figure 11, where we report the Sobol
indices (19) and (20) for t = 10, using the MC estimates (24) and (25). The variance decomposition of Z is dominated
by the effect of the fundamental set and the interactions, being the estimated Sobol index corresponding to the initial
conditions very close to 0. Therefore, we do not expect much variance reduction from the quadrature rule.

We work at t = 10, with degree of quadrature Q = 30 and Hermite polynomials. In Figure 12, left panel,
we plot the variances of the statistical estimators from Procedure 1 and Procedure 2. We observe that the variances
are greater than in Example 3. Also, in contrast with Example 3, the variance is not much reduced now with the
quadrature rule. This was already expected when analyzing the effect of the inputs on the variability of Z using Sobol
indices. Figure 12, right panel, depicts the estimated density function fX(t=10)(x) with Procedure 1 (legend “MC”)
and Procedure 2 (legend “MCQ”), by setting M = 40, 000 realizations and Q = 30. Both algorithms show similar
estimates.

1Here n might not be that large to apply the central limit theorem. Other types of confidence intervals may be considered, for instance those
constructed via bootstrapping [36] with b samples with replacement from the original sample of length n. The percentile confidence interval has as
left endpoint the empirical 0.025 percentile, and as right endpoint the empirical 0.975 percentile [36, p. 170], [37, p. 203]. The pivotal confidence
interval generated by bootstrapping has left endpoint given by twice the mean minus the empirical 0.975 percentile, and right endpoint given
by twice the mean minus the empirical 0.025 percentile [37, p. 194]. Finally, another Gaussian-type confidence interval may consider the mean
plus/minus 1.96 times the bootstrap standard deviation of the mean. In all our examples, we checked that these confidence intervals are coinciding,
thus showing robustness of our estimates. As n increases, better estimates for the mean are obtained.
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Figure 10: Plots in log-log scale of mean relative error versus complexity, at t = 10. The dashed lines represent 95%
confidence intervals. This figure corresponds to Example 3.
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Figure 11: Estimated Sobol indices of the random inputs for Z(x, t = 10). This figure corresponds to Example 4.
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Figure 12: Left: estimates of V̂[E[Z(x, 10)|S0(10), S1(10)]] and V̂[Z(x, 10)]. Right: estimates of fX(t=10)(x) with
MC simulation, and MC simulation plus quadrature rule (MCQ). This figure corresponds to Example 4.

Figure 13 reports the log-log relationship between the relative error and the complexity at t = 10, for different
points x. The setting is analogous to Example 3. We consider the complexities of Procedure 1 and Procedure 2 as M
and MQ, respectively, where Q = 30 and M is the number of realizations. The “absolute error” is calculated with
respect to the density function obtained from Procedure 1 with 100, 000, 000 realizations (this is considered as our
“exact density function”). We define the relative error as such absolute error divided by the value of the “exact density
function”. We run both algorithms up to complexity floor(1.444), while keeping the relative errors for complexities
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floor(1.4i), i = 14, 15, . . . , 44. The procedure is repeated n = 20 times to determine an estimate for the mean relative
error. A 95% Gaussian confidence interval for the mean relative error is constructed. See Example 3 for further details.
We observe that the relative errors decay approximately with slope 1/2, due to the rate of convergence proportional
to 1/

√
M of the MC simulation. In this example, the decay rate with slope 1/2 is true for both algorithms as long

as the sampling error of the “exact density function” does not become dominant. In the figure, we observe that the
estimated relative error of Procedure 1 tends to be constant sometime after 106 complexity, as it becomes of similar
order of magnitude to the sampling error of the “exact density function”. Procedure 1 shows superior to Procedure 2
in this example: in the plots, the depicted relation between the error and the complexity of Procedure 2 is shifted to
the right, because of the multiplication by Q of the number of realizations M in the complexity. As the effect of the
initial conditions on the variability of Z is small, the potentiality of Procedure 2 is lessened.
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Figure 13: Plots in log-log scale of mean relative error versus complexity, at t = 10. The dashed lines represent 95%
confidence intervals. This figure corresponds to Example 4.

In the two Examples 3, 4 presented until now, we studied two cases. When Y0–Y1 produce high variability on
V[Z(x, t)], then Procedure 2 clearly wins Procedure 1 in terms of error versus complexity. On the contrary, when
the dispersion of Y0–Y1 is small compared to S0(t) and S1(t), Procedure 2 does no longer beat Procedure 1. But in
general, when the cost of obtaining realizations of S0(t) and S1(t) is larger (because we are working with truncated
power series in N , for instance), the cost due to the MC procedure alone is comparable with the whole complexity.
In such a case, Procedure 1 never defeats Procedure 2 by a big difference. This is the case studied in the following
Example 5.

Example 5. Consider (16) with inputsA0 = 4,A1 ∼ Uniform(0, 1),B0 ∼ Triangular(−1, 0),B1 ∼ Bernoulli(0.35)
and Y0, Y1 ∼ Normal(1, σ = 0.1), all of them independent. The random coefficients A0, A1, B0 and B1 are bounded
and the initial conditions Y0 and Y1 have finite absolute moments, therefore there is an analytic solution X(t) in the
Lp(Ω) sense, 1 ≤ p <∞.

In this example, the fundamental set cannot be written with simple closed-form formulas. One needs to perform a
dimensionality reduction of the problem by truncating the random power series at certain order N . We work at time
t = 1.5 with order of truncation N = 15. The goal is to compare the approximations to the density fXN=15(t=1.5)(x)
offered by Procedure 1 and Procedure 2.

In Figure 14 we show the Sobol indices (19) and (20) for t = 1.5, computed with the MC estimates (24) and (25).
The Sobol indices demonstrate that the effect of Y0–Y1 on the variability of ZN=15(x, t = 1.5) is very small.

Hence, the variance reduction due to the quadrature rule is not very significant. This is confirmed by Figure 15,
left panel, where we depict the variances of the statistical estimators. We use quadrature degree Q = 30, so that
the expectation with respect to Y0–Y1 is practically error-free. In the right plot, we estimate the density function
fXN=15(t=1.5)(x) using Procedure 1 and Procedure 2, in logarithmic scale. We generated M = 10, 000 realizations.

An analogous analysis to Example 4 of relative error versus complexity is carried out here. The complexity of
Procedure 1 isMN , whereas the complexity of Procedure 2 isM(N+Q). Recall thatM is the number of realizations,
N is the truncation order for the power series, and Q is the quadrature degree. We work at the point x = 1.4, which
belongs to the density domain (any other point is equally valid). We consider as our “exact density function” the output
of Procedure 1 withM = 10, 000, 000 realizations, i.e., complexityMN = 150, 000, 000. We run both algorithms for
complexities floor(1.437), and keep the relative errors for complexities floor(1.4i), i = 14, 15, . . . , 37. The procedure
is repeated n = 20 times (in parallel) to obtain the mean relative error. A 95% Gaussian confidence interval for
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Figure 14: Estimated Sobol indices of the random inputs for ZN=15(x, t = 1.5). This figure corresponds to Exam-
ple 5.
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Figure 15: Left: estimates of V̂[E[Z15(x, 1.5)|S0(1.5), S1(1.5)]] and V̂[Z15(x, 1.5)]. Right: estimates of fX15(1.5)(x)
(the legend MCQ refers to MC plus quadrature rule), in logarithmic scale. This figure corresponds to Example 5.

the mean relative error has been constructed. Procedure 2 is run with Q = 10 and Q = 30 degrees of quadrature.
Figure 16 shows the results. Notice that, although Y0–Y1 have small dispersion compared with the fundamental set,
both Algorithms show similar performances. Indeed, as each realization of the truncated fundamental set requires
now more expense (cost N ), Procedure 1 cannot defeat Procedure 2 by a big difference. The relative errors decrease
with slope 1/2, but for Q = 10 we perceive constant error for complexities greater than 105. This is because the bias
error caused by the quadrature rule of degree Q = 10 has been attained, in contrast to the case Q = 30. This reflects
the importance of selecting a sufficiently large quadrature degree, especially when fY0 and fY1 are peaked by small
dispersion of Y0 and Y1.

The conclusion of this section is summarized as follows:

Case 1 When the dispersion of Y0–Y1 is large compared with S0(t) and S1(t) (this is checked with Sobol indices),
then Procedure 2 should be used. See Example 3.

Case 2 When the variability of Y0–Y1 is small compared with S0(t) and S1(t) (Sobol indices), and each realization of
S0(t) and S1(t) takes certain computational burden (for instance, because we are dealing with truncated power
series), then Procedure 1 and Procedure 2 are similar in terms of error versus complexity. See Example 5.

Case 3 Finally, if the variability of Y0–Y1 is small compared with S0(t) and S1(t) (Sobol indices), and each realiza-
tion of S0(t) and S1(t) is immediately computed (when S0(t) and S1(t) are known with simple closed-form
expressions), then Procedure 1 beats Procedure 2. See Example 4.
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Figure 16: Plots in log-log scale of mean relative error versus complexity, at t = 1.5 and N = 15. The dashed lines
represent 95% confidence intervals. This figure corresponds to Example 5.

In any of the three cases, Q should be taken large enough to avoid a quadrature error greater than the sampling error.

4. Multilevel MC simulation

The idea of multilevel MC [27, 28] is to speed up the convergence of the MC simulation by decomposing the
target expectation into the sum of expectations of increments (through a telescopic sum identity), whose variances
decay rapidly. In our case, we consider the following increments:

∆Zl0(x, t) = Zl+1
0 (x, t)− Zl0(x, t), ∆Zl1(x, t) = Zl+1

1 (x, t)− Zl1(x, t), (26)

for each level l ≥ 0, where each term was defined in (10). If we start from the level l0 ≥ 0, these increments yield the
following telescopic sum identities, for i ∈ {1, 2}:

fX(t)(x) = E
[
Zl0i (x, t)

]
+

∞∑
l=l0

E
[
∆Zli(x, t)

]
≈ fXN (t)(x) = E

[
Zl0i (x, t)

]
+

N−1∑
l=l0

E
[
∆Zli(x, t)

]
.

Each one of these expectations is approximated with MC simulation. The rate of convergence of the MC simulation
depends on the number of realizations and V[Zl00 (x, t)], V[∆Zl0(x, t)], and V[Zl01 (x, t)], V[∆Zl1(x, t)]. If Zl0(x, t) or
Zl1(x, t) tend to Zl(x, t) in the mean square sense, then the variances of the increments, V[∆Zl0(x, t)], V[∆Zl1(x, t)],
converge to 0, which makes the convergence of the MC procedure faster. The first level l0 is usually chosen satisfying
that, for l ≥ l0, the variances of the increments per level l are decaying monotonically and rapidly.

However, as we are selecting either fY0 or fY1 (as in [25]), this may lead to numerical instabilities due to small
denominators and large or infinite variance, which causes noisy features and slows down the convergence of the MC
procedure. This may hide the potential of multilevel MC.

To sort out this issue, we path-wise select ∆Zl0(x, t) or ∆Zl1(x, t), by discarding the increment with the lowest
denominator. The minimum among the denominators is considered as a time-dependent random variable

V l(t) = min
{
|Sl+1

0 (t)|, |Sl0(t)|, |Sl+1
1 (t)|, |Sl1(t)|

}
. (27)

We pick the index with no smallest denominator through the random variable

U l(t) = {1− i : the minimum of V l(t) is attained at i ∈ {0, 1}}. (28)

This random variable gives rise to two events, H l
0(t) = {U l(t) = 0} and H l

1(t) = {U l(t) = 1}. Let Zl∆(x, t) =
∆Zl0(x, t)1Hl

0(t) + ∆Zl1(x, t)1Hl
1(t). This random process models the selection of ∆Zl0(x, t) and ∆Zl1(x, t), accord-

ing to whether their expressions do not have the smallest denominator.
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Proposition 3. We have the following sum identities for fX(t)(x) and fXN (t)(x):

fX(t)(x) = E
[
Zl0(x, t)

]
+

∞∑
l=l0

E
[
Zl∆(x, t)

]
, fXN (t)(x) = E

[
Zl0(x, t)

]
+

N−1∑
l=l0

E
[
Zl∆(x, t)

]
.

With the objective of approximating the target density function fX(t)(x) pointwise, we truncate the telescopic sum
identity at increment N − 1, which causes the bias error θN (x, t) = fX(t)(x)− fXN (t)(x): fX(t)(x) ≈ fXN (t)(x) =

E[Zl0(x, t)] +
∑N−1
l=l0

E[Zl∆(x, t)]. The expectations E[Zl0(x, t)], E[Zl∆(x, t)], l = l0, . . . , N − 1, are computed
independently with MC simulation, whose rate of convergence depends on the finite number of realizations and on
V[Zl0(x, t)], V[Zl∆(x, t)], l = l0, . . . , N − 1.

We have ‖Zl∆(x, t)‖2 ≤ ‖∆Zl0(x, t)‖2 + ‖∆Zl1(x, t)‖2. Thus, if both ∆Zl0(x, t) and ∆Zl1(x, t) have finite
variances, then so does Zl∆(x, t). On the contrary, if ∆Zl0(x, t) or ∆Zl1(x, t) have infinite variances, then Zl∆(x, t)
may have finite variance, instead. In any of these cases, we cannot get worse in terms of infinite variance.

We hope to have the variances V[Zl0(x, t)] and V[Zl∆(x, t)], l = l0, . . . , N − 1, finite, to exploit the decay of
V[Zl∆(x, t)] to 0 with l. The first level l0 is chosen such that V[Zl∆(x, t)] is decreasing with l ≥ l0, monotonically
and fast. The best case is when logV[Zl∆(x, t)] is decreasing linearly with l ≥ l0, as exponential decay holds for the
variances of the increments.

Let M = (Nl0 ;Ml0 , . . . ,MN−1) be the number of simulations performed: Nl0 for Zl0(x, t), Ml for Zl∆(x, t),
l = l0, . . . , N − 1. In principle, the number of simulations may depend on (x, t), although we drop this possible
dependence along this discussion.

Let fN,MX (x, t) be the final approximation to fX(t)(x):

fN,MX (x, t) =
1

Nl0

Nl0∑
i=1

Zl0(x, t, ωi,l0) +

N−1∑
l=l0

1

Ml

Ml∑
i=1

Zl∆(x, t, ωi,l,∆), (29)

where ω with the appropriate subindices denote outcomes. The mean square error in the approximation to fXN (t)(x) =

E[fN,MX (x, t)] is given by the mean square norm of EN,M (x, t) = fXN (t)(x)− fN,MX (x, t), which is

∥∥∥fXN (t)(x)− fN,MX (x, t)
∥∥∥2

2
= V [EN,M (x, t)] = V

[
fN,MX (x, t)

]
=

V
[
Zl0(x, t)

]
Nl0

+

N−1∑
l=l0

V
[
Zl∆(x, t)

]
Ml

. (30)

Notice that the first equality holds because E[EN,M (x, t)] = 0, so the squared norm is equal to the variance. The
second equality uses the fact that fXN (t)(x) is not random. Finally, the third equality is deduced by applying the
variance in (29). The total cost is

WN,M = Nl0cl0 +

N−1∑
l=l0

MlCl, (31)

where cl0 denotes the number of operations per realization of Zl0(x, t), and Cl denotes the number of operations per
realization of Zl∆(x, t), l = l0, . . . , N − 1. In our case, we consider cl = Cl = l2 when dealing with A(t) and B(t)
as random infinite expansions, and cl = Cl = l when A(t) and B(t) are random polynomials.

Proposition 4. Given a fixed variance (30) ε2sampling, the cost (31) is minimized by selecting

Nl0(x, t) = ε−2
sampling

(√
V [Zl0(x, t)] cl0 +

N−1∑
l=l0

√
V
[
Zl∆(x, t)

]
Cl

)√
V [Zl0(x, t)]

cl0
, (32)

Ml(x, t) = ε−2
sampling

(√
V [Zl0(x, t)] cl0 +

N−1∑
l=l0

√
V
[
Zl∆(x, t)

]
Cl

)√
V
[
Zl∆(x, t)

]
Cl

, (33)
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for l = l0, . . . , N − 1. In such a case, the total cost (31) is given by

WN,M = ε−2
sampling

(√
V [Zl0(x, t)] cl0 +

N−1∑
l=l0

√
V
[
Zl∆(x, t)

]
Cl

)2

. (34)

This proposition is a simple application of Lagrange multipliers.
For a truncation order N , and for a sampling error variance ε2sampling by running ε−2

samplingV[ZN (x, t)] simulations,
the cost of Procedure 1 is ε−2

samplingV[ZN (x, t)]cN . For fixed N , both approaches (standard MC in Procedure 1 and
multilevel MC) yield a cost O(ε−2

sampling). However, there is a significant difference when N grows. The complexity
cN = N (if A(t) and B(t) are random polynomials) or cN = N2 (if A(t) and B(t) are infinite random series)
per realization of ZN (x, t) grows to infinity. Then the cost of Procedure 1 tends to infinity as N → ∞, linearly (if
cN = N ) or quadratically (if cN = N2). If we choose N = O(log ε−1

sampling) to ensure a bias error less than εsampling

(under exponential convergence of fXN (t)(x) withN ), then the complexity of Procedure 1 isO(ε−2
sampling log2 εsampling),

when cN = N2, and O(ε−2
sampling log ε−1

sampling), when cN = N . However, in the multilevel approach the cost (34)

remains O(ε−2
sampling) despite having N → ∞, as

√
V[Zl0(x, t)]cl0 +

∑∞
l=l0

√
V[Zl∆(x, t)]Cl < ∞ in general. For

instance, when V[Zl∆(x, t)] decreases exponentially with l. Hence, from this theoretical analysis, multilevel MC is
superior to standard MC, at least when N grows.

In practice, multilevel MC is more efficient than standard MC by choosing the initial level l0 and truncation
N > l0 appropriately, which can be done heuristically as explained later.

In numerical applications, the main computational burden of multilevel MC is due to the number of samples Nl0
of Zl0(x, t). For the last levels near N , which are the most complex ones, we run only few samples. In general, from
a certain level l, only 1 realization of Zl∆(x, t) is required. From a certain order of truncation N , the complexity of
multilevel MC will be constant; whereas the complexity of the standard MC strategy will be growing up to infinity
with N , linearly or quadratically. In our setting, multilevel MC turns out to be useful when high accuracy is required.

Given l0, N > l0 and εsampling, the cost of multilevel MC is approximately ε−2
samplingV[Zl0(x, t)]cl0 , because the

sequence V[Zl∆(x, t)]Cl decreases rapidly with l. The expense of standard MC is ε−2
samplingV[ZN (x, t)]cN . Assuming

that V[Zl0(x, t)] ≈ V[ZN (x, t)], which is quite realistic if l0 and N > l0 are not too small, the cost of multilevel MC
is reduced by factor cl0/cN , approximately. The largest reduction is thus obtained for problems (1) with infinite series
inputs, since in such a case cN grows quadratically with N .

The complete multilevel MC approach is presented in what follows. Fixed the time t and the maximum level N ,
the whole procedure is divided into different parts:

PROCEDURE 3.

Part 1 We determine V[Zl∆(x, t)] for 0 ≤ l ≤ N − 1. They are estimated à la MC, as Procedure 1, but not using an
excessive amount mV of realizations. The main loop over the levels l can be carried out in parallel.

Part 2 We estimate V[Zl(x, t)] for 1 ≤ l ≤ N (with parallel computing). Then we set the ratios between the
complexities of Procedure 1,

WMC
N (t) = ε−2

samplingcN max
x

V[ZN (x, t)], (35)

and of the multilevel MC strategy with initial level l1 = 1, . . . , N − 1,

Wmulti
l1,N (t) = ε−2

sampling max
x

(√
V [Zl1(x, t)] cl1 +

N−1∑
l=l1

√
V
[
Zl∆(x, t)

]
Cl

)2

. (36)

These estimates are done via standard MC simulation with not too many realizations mV. The ratio of the
complexities is given by

Rl1,N (t) =
WMC

N (t)

Wmulti
l1,N

(t)
=

maxx V[ZN (x, t)]cN

maxx

(√
V [Zl1(x, t)] cl1 +

∑N−1
l=l1

√
V
[
Zl

∆(x, t)
]
Cl

)2 . (37)
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Notice that this ratio is independent of any sampling error ε2sampling. In order not to have x-dependent complex-
ities, we take the maximum on x lying in the density domain of interest. If Rl1,N (t) > 1, then multilevel MC
starting from level l1 is more efficient than standard MC.

We define the first level l0 = l0(N, t) as the maximizer of

max
l1: 1≤l1<N

Rl1,N (t) > 1. (38)

This way we are achieving the maximum optimality of multilevel MC. In general, the variances V[Zl∆(x, t)]
start to decrease monotonically and fast with l before the maximizer l0.

Part 3 Finally, we perform the whole multilevel MC procedure. Given a squared norm of the sampling error ε2sampling
(see (30)), and given the first level l0 obtained in Part 2, we obtain the optimal Nl0(x, t) and Ml(x, t) for
l = l0, . . . , N − 1, using (32) and (33) from the constrained minimization problem. We set Nl0(t) and Ml(t) as
the ceiling of the maximum on x lying in the density domain of interest. Thus, the number of simulations is an
integer independent of x.

Once the number of simulations is fixed, we estimate E[Zl0(x, t)] and E[Zl∆(x, t)], l = l0, . . . , N − 1, using
standard MC simulation. The output discretized function fN,MX (x, t) is (29), which estimates fXN (t)(x) with
root mean square error ‖fXN (t)(x)− fN,MX (x, t)‖2 ≤ εsampling, for all x.

In general, the squared norm of the sampling error ε2sampling and the order of truncation N are chosen as follows.
At the beginning, one can estimate the bias error of the density approximation: given a very large order of truncation
N∞ � 1, and taking into account that ZN∞(x, t) ≈ Z(x, t), the bias error at order 1 ≤ N � N∞, |fX(t)(x) −
fXN (t)(x)|, is estimated as ∣∣∣Ê [ZN∞(x, t)− ZN (x, t)

]∣∣∣ . (39)

The expectation is estimated using standard MC simulation. Suppose we fix a target global error δ. We split the target
error as the sum of the bias error and the sampling error: δ = εbias + εsampling. We take N such that (39) is less than
εbias for all x. Then we apply the multilevel MC procedure with squared norm of the sampling error ε2sampling. Keep in
mind that the error δ cannot be as small as we want, since the sampling error εsampling must be achievable.

To apply the multilevel MC procedure, we need N such that the maximum (38) is greater than 1. This holds for
large N for sure, according to the theoretical discussion. Thus, in practice, we can choose εbias small to make N large,
and then run the multilevel MC algorithm with εsampling = δ − εbias. In general, the decomposition of δ into εbias and
εsampling is made heuristically, depending on the size of N for which (38) is greater than 1.

We showcase the multilevel MC method in numerical experiments. The first example deals with (1) having
infinite series expansions in the input data; we observe that (38) is greater than 1 for N ≥ 1, therefore multilevel MC
is always superior to standard MC. In the second example, (38) is greater than 1 only for largeN , so to take advantage
of multilevel MC the error δ is chosen small, so that N is large enough.

These examples highlight what we believe is a general fact. Given N , multilevel MC outperforms crude MC
simulation when Rl0,N (t) > 1 (see (37) and (38)). But for a certain N , it may be possible that Rl1,N (t) ≤ 1 for
1 ≤ l1 < N (this is the case of Example 7 for N < 36). For such an N and the corresponding bias error, MC is more
efficient than the multilevel approach. When A(t) and B(t) are given by infinite random terms (Example 6), then cl,
defined as the cost of one realization of Zl(x, t), grows as l2, so expression (38) is more inclined to be greater than 1
for small N and higher tolerances (because the numerator of (37) grows quadratically). But when A(t) and B(t) are
random polynomials (Example 7), then cl = l, so a larger N and lower tolerances are required to ensure that (38) is
greater than 1 (assuming that computational resources are available to achieve such an N ).

Example 6. Consider (1) with t0 = 0, Y0, Y1 ∼ Normal(2, 3), A(t) =
∑∞
n=0

Un

n! t
n and B(t) = t, where U0, U1, . . .

are independent random variables with distribution Beta(11, 15). The series defining A(t) converges in L∞(Ω) for all
t ∈ R. There is a unique analytic stochastic process X(t) that solves (1) in the Lp(Ω)-sense, 1 ≤ p <∞.

We estimate V[Zl∆(x, t)] for N ≤ 20, using mV = 10, 000 realizations. With costs cl = Cl = l2, we estimate
the ratios of complexities (37) for l1 ∈ [1, 19], N ∈ [l1 + 1, 20]. In Figure 17 we present the ratios. Observe that
they are greater than 1, therefore indicating higher efficiency of multilevel MC compared to crude MC for any level
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of tolerance. For each N , we keep the level l0 maximizing the ratio, see (38). For N ≥ 7, the same maximizer l0 = 6
is obtained.

Figure 17: Ratios of complexities between standard MC and multilevel MC (see (37)). The points indicate the
maximum ratio with l1 per truncation N . This figure corresponds to Example 6.

Figure 18 reports the ratios for N > l0 = 6. The ratios grow roughly quadratically with N , with growth constant
1/l20. This is because the complexity of standard MC increases quadratically with N , while the cost of multilevel
MC becomes constant from a certain level N . Small oscillations may be observed because of the finite number of
simulations mV used to estimate the variances.

8 10 12 14 16 18 20
N

2

4

6

8

ratio

Figure 18: Ratios of complexities between standard MC and multilevel MC (see (37)), for N > l0 = 6. This figure
corresponds to Example 6.

Once we have the parameters of the multilevel MC strategy, we aim at approximating pointwise the probability
density function of X(t) at t = 1.5, fX(t=1.5)(x). Figure 19 reports in log-scale the estimated bias errors (39) with N
(the maximum in x of (39) has been taken). We fix N∞ = 100 and consider N ∈ [1, 20]. The estimates are computed
with standard MC simulation, using 20, 000 realizations. Exponential decrease of the bias error is perceived, since
it presents a concave and decreasing shape in log-scale, disregarding the oscillations due to the finite number of
realizations. Further, the exponential decay of the bias error was rigorously proved in [25, Remark 3.8].

Suppose that we wish to approximate fX(t=1.5)(x) uniformly with theoretical root mean square error δ > 0. Let
ε = εbias = εsampling = δ/2. We pick the first N = N(ε) for which the estimated bias error is less than ε. Multilevel
MC can be applied with l0 = 6, that N(ε), and sampling error ε2sampling = ε2. In Figure 20, we illustrate the relation
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Figure 19: Estimated bias errors with N in log-scale. This figure corresponds to Example 6.

between ε and the complexities of multilevel and standard MC, with maximum level N = N(ε). The following
approximate relations hold:

WMC
N(ε) ∝ ε

−2N(ε)2, Wmulti
l0,N(ε) ∝ ε

−2l20 (40)

(the symbol ∝ denotes proportionality to a constant). The cost of multilevel MC is reduced by factor l20/N(ε)2. In
log-log scale, the complexity of multilevel MC increases linearly with respect to ε−1, with slope 2. On the contrary,
for standard MC, such relation is shifted up with 2 logN(ε). The sequence N(ε) increases very slowly with ε → 0,
because of the fast decrease of the bias error towards 0. But as ε→ 0, multilevel MC becomes more and more efficient
compared with standard MC.

multilevel MC

standard MC
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WN (ϵ)
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standard MC

1018 1021 1024 1027
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Figure 20: Sampling error versus complexity (see (35)–(36)), in log-log scale. The right plot is a zoom. This figure
corresponds to Example 6.

Let us approximate fX(t=1.5)(x) uniformly with theoretical root mean square error δ = 0.001. Let ε = εbias =
εsampling = δ/2 = 0.0005. We pick the first N for which the estimated bias error is less than ε: N = N(ε) = 9.
Then we apply the multilevel MC procedure with sampling error ε2. The optimal number of simulations for N = 9
is the following: M = (N6;M6,M7,M8) = (19507; 1787, 861, 395). As expected, most of the cost is localized
at level 6, while for the increments the cost goes down. The complexity of multilevel MC is 6.1 × 105, which is
smaller than that of standard MC, 1.2×106. In Figure 21, left panel, we plot the estimate f̂XN=9(t=1.5)(x). It satisfies
‖fX(1.5)(x) − f̂X9(1.5)(x)‖2 ≤ δ, for all x ∈ R. In the right plot, we show the estimated densities for N = 8, 9 and
10, with root mean square norm of the sampling error ε = 0.0005. Observe that the densities overlap, thus indicating
the expected pointwise convergence.
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Figure 21: Left plot: estimate f̂X9(1.5)(x). Right plot: estimates f̂XN (1.5)(x), for N = 8, 9, 10. This figure corre-
sponds to Example 6.

Example 7. We study problem (16) with one degree polynomial coefficients. The probability distributions for the
random inputs are A0 = 4, A1 ∼ Uniform(−3, 1), B0 ∼ Gamma(2, 2)|[0,4], B1 ∼ Bernoulli(0.35) and Y0, Y1 ∼
Normal(2, σ = 3), all them independent. Due to the boundedness of A0, A1, B0 and B1, this problem has a unique
analytic stochastic solution X(t), t ∈ R, in the sense of the Lp(Ω) random calculus, for 1 ≤ p <∞.

The objective is to approximate the probability density function fX(t)(x) using the multilevel MC approach, by
estimating fXN (t)(x). The theoretical results guarantee that {fXN (t)(x)}N≥0 converges to fX(t)(x) pointwise and in
Lp(R), 1 ≤ p <∞, as N →∞. We work at time t = 1.5.

We estimate V[Zl∆(x, t)] for N large (till N = 70), using parallel computing and mV = 50, 000 realizations.
The number of realizations mV is actually excessively large, but we want to be quite exact in this example to show
accurate complexities.

With costs cl = Cl = l, we obtain the ratios of complexities between standard MC and multilevel MC, see (37).
In Figure 22, we vary the starting level l1 ∈ [1, 69] and the maximum levelN ∈ [l1 +1, 70] and plot the corresponding
ratios. Observe that the maximums (38) are greater than 1 (indicating that multilevel MC has higher efficiency) for
N ≥ 36 only, in contrast to Example 6. This means that for N < 36 and not sufficiently low tolerances crude MC
simulation is more efficient. For each N , we keep l0 maximizing the ratio, see (38). For N = 36, the maximizer
is l0 = 35; for N = 37 and 38, the maximizer is l0 = 36. For all N ≥ 39, it is obtained the same l0 = 38 as the
maximizer.

In Figure 23 we report the ratios for N > l0 = 38. The ratios are greater than 1 and, as N increases, they
tend to infinity at linear rate approximately, although with small slope ≈ 1/l0. The complexity of standard MC grows
linearly to infinity withN , while the complexity of multilevel MC becomes constant from a certainN . The oscillating
behavior of the depicted ratios is due to the sampling error driven by the previous MC estimates for the variances.
When mV gets larger, the oscillations are mitigated and more exact results are obtained.

Let us approximate fX(t=1.5)(x) uniformly with root mean square error δ = 0.0001. Figure 24 shows the esti-
mated bias errors (39), with N∞ = 200 and 20, 000 MC simulations (the maximum in x of (39) has been taken). We
denote the bias errors as εNbias (we make the dependence on N explicit). The bias error needs quite large truncation
order N to start decreasing (up to N = 25 the bias is 0.1 approximately), and for N ≥ 35 it drops abruptly. The
bias error is less than δ only for N ≥ 37, therefore we are in the region where multilevel MC is more efficient than
standard MC. Notice that, in this example, we have fixed δ small on purpose to take advantage of the multilevel MC
strategy. In the previous Example 6, we did not worry about δ nor its decomposition because multilevel MC showed
more efficient than standard MC from the very first truncation order.

In Figure 25 we plot, with N ≥ 37, the complexities of the multilevel and the standard MC approaches with
εsampling = δ − εNbias (δ = 0.0001), using (35)–(36). We observe that the complexity of multilevel MC is smaller, as

23



Figure 22: Ratios of complexities between standard MC and multilevel MC (see (37)). The points indicate the
maximum ratio with l1 per truncation N . The transparent horizontal surface represents the ratio 1. This figure
corresponds to Example 7.
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Figure 23: Ratios of complexities between standard MC and multilevel MC (see (37)), for N > l0 = 38. This figure
corresponds to Example 7.
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Figure 24: Estimated bias errors with N in log-scale. This figure corresponds to Example 7.
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expected. With formulas, we have

WMC
N (εsampling) ∝ (δ − εNbias)

−2N, Wmulti
l0,N (εsampling) ∝ (δ − εNbias)

−2l0.

When N ≈ l0, we have δ − εNbias ≈ 0, so the complexities are large. When N is large, then δ − εbias ≈ δ, so
WMC
N (εsampling) ∝ N ↗∞ and Wmulti

l0,N
(εsampling)↘ constant.

multilevel MC

standard MC

38 40 42 44 46 48 50
N

1×108
2×108
3×108
4×108
5×108
6×108
7×108

W(ϵsampling=δ-ϵbias
N )

Figure 25: Complexities of the multilevel and the standard MC approaches with εsampling = δ−εNbias, δ = 0.0001 fixed,
using (35)–(36). This figure corresponds to Example 7.

Given δ = 0.0001, in the case of standard MC the minimum complexity is attained when N = 43 (bias εN=43
bias =

5× 10−7), this being 2× 108.
For N = 50 > l0 = 38, we run the multilevel MC procedure with sampling error ε2sampling = (δ − εN=50

bias )2. We
choose N = 50 because the corresponding cost of multilevel MC is uniformly cheaper than standard MC applied
with any order of truncation. Also, the complexity of multilevel MC becomes constant for N ≥ 50. For N = 50, the
optimal number of simulations is M = (N38;M38, . . . ,M50) = (4527935; 12447, 4977, 2624, 1507, 475, 292, 126,
45, 22, 9, 4, 2), with a complexity that is 1.7 × 108. Figure 26, left panel, plots the graph of the estimated density
function f̂XN=50(t=1.5)(x), which approximates the true density fX(t=1.5)(x) with root mean square error less than δ,
for all x ∈ R. The right plot depicts the density estimates for N = 49, 50 and 51, showing the expected overlapping.
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Figure 26: Left plot: estimate f̂X50(1.5)(x). Right plot: estimates f̂XN (1.5)(x), for N = 49, 50, 51. This figure
corresponds to Example 7.
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Remark 2. Our application of the multilevel MC strategy is based on L∞(R) norms. First, we acted pointwise in x
in the constrained minimization problem from Proposition 4, and we took the L∞(R) norm of the optimal number of
simulations. Then the target density function was approximated uniformly in x. Second, the ratio (37) of complexities
considered the L∞(R) norms of the standard and the multilevel MC approaches.

Other norms can be considered. For instance, we could minimize the cost (31) given a fixed L1(R) norm of the
sampling error variance (30):

∫
R ‖fXN (t)(x)−fN,MX (x, t)‖22 dx = ε2sampling. In this case, we substitute each variance

in x by its integral on R. Then the approach becomes independent of x from the beginning.
When the cost is minimized pointwise in x, another possibility consists in considering the ratio of the L1(R) norms

of the complexities:

W
MC,‖·‖1
N (t) = ε−2

samplingcN

∫
R
V[ZN (x, t)] dx, (41)

W
multi,‖·‖1
l1,N

(t) = ε−2
sampling

∫
R

(√
V [Zl1(x, t)] cl1 +

N−1∑
l=l1

√
V
[
Zl∆(x, t)

]
Cl

)2

dx, (42)

R
‖·‖1
l1,N

(t) =
W

MC,‖·‖1
N (t)

W
multi,‖·‖1
l1,N

(t)
(43)

(the ratio is independent of εsampling). In the two examples from this section, the conclusions derived are analogous
considering L1(R) norms, thus showing robustness.

We present results regarding Example 6. Using mV = 10, 000 realizations and costs cl = Cl = l2, we estimate
the ratios of complexities (43) for l1 ∈ [1, 19] and N ∈ [l1 + 1, 20]. Figure 27, left panel, shows the ratios. These
ratios show a similar pattern to Figure 17. For each N , we keep the level l0 maximizing the ratio (43). For N ≥ 7,
the same maximizer l0 = 6 is obtained, as in Example 6. The right panel of Figure 27 compares the two ratios (37)
and (43) for N ≥ l0 = 6. The two ratios are very similar, only showing a small discrepancy in part due to the MC
procedure with mV realizations. The fact that the two ratios are practically coinciding is justified theoretically by the
approximation R‖·‖1l1,N

(t) ≈ N2/l21, which also held for (37).

Ratio L1(ℝ)

Ratio L∞(ℝ)

8 10 12 14 16 18 20
N

2

4

6

8

Figure 27: Left panel: ratios of the L1(R) norms of the complexities between standard and multilevel MC (see (43)),
where the points indicate the maximum ratio with l1 per truncation N . Right panel: ratios of complexities between
standard and multilevel MC with L∞(R) norms (see (37)) and L1(R) norms (see (43)), for N > l0 = 6. This figure
corresponds to Remark 2.

Figure 28, left panel, analyzes theoretical error against complexity (see (41)–(42)). It corresponds to Figure 20
by considering L1(R) norms, instead. When changing the norm, the “line” corresponding to error versus complexity
in log-log scale is shifted up or down but has the same slope. This is because changing the norm only modifies the
proportionality constants in (40). This is illustrated in Figure 28, right panel, where the two “lines” corresponding to
multilevel MC are parallel, and also for standard MC.
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Figure 28: Left: sampling error ε = εsampling versus L1(R) norm of the complexity (see (41)–(42)), in log-log scale.
Right: sampling error ε = εsampling versus the L1(R) (see (41)–(42)) and L∞(R) (see (35)–(36)) norms of the com-
plexity, in log-log scale. This figure corresponds to Remark 2.

5. Conclusions

This work focused on the improvement of the computational methods and algorithms from the recent contribu-
tion [25]. In [25], the authors studied the random second order linear differential equation with analytic data processes
and random initial conditions, and constructed approximations to the probability density function of the stochastic so-
lution based on dimensionality reduction and standard MC sampling strategy. The main goal in this paper is to speed
up the convergence of the standard MC algorithm used in [25] by controlling the variance of the statistical estimators,
thus avoiding noisy features in the density estimates.

The path-wise selection of the initial condition used in the density expression leads to a stable algorithm with good
convergence. It was proved theoretically that the statistical estimators constructed with this method always possess
finite variance. The implementation of the algorithm was illustrated through simple autonomous and non-autonomous
linear differential equations.

Improvements are achieved by computing the expectation with respect to the initial conditions via numerical inte-
gration methods. By considering the densities of the initial conditions as integration weights, we focused on Gaussian
quadrature rules. The orthogonal polynomials were considered with respect to standard probability distributions. Sev-
eral conclusions are reached from this approach. When the initial conditions are comparable with the input coefficients
of the equation in terms of random variability, the quadrature rule for integration allows significant variance reduction
of the statistical estimators. Even when the initial conditions have small dispersion compared to the input coefficients,
if the cost of each realization of the fundamental set is quite expensive, the quadrature rule yields similar expense to a
plain MC strategy. The quadrature degree has to be selected sufficiently large to assure error-free approximations of
the integrals.

A multilevel version of the MC algorithm allows for reduction of the complexity, by linear or quadratic factor.
The multilevel MC approach turns out to be useful when high accuracy in the density approximation is required. The
starting level was selected on the fly to maximize the ratio of complexities between the standard and the multilevel
MC approach. Once the initial level is selected, and given a sampling error variance, we obtained the optimal number
of simulations per level to minimize the complexity. The numerical results illustrated the methodology step-by-step
in order to show the improvement with regard to the standard version of the MC simulation algorithm.

Several fundamental extensions and algorithmic improvements may be conceived, especially concerning the mul-
tilevel MC methodology. Firstly, the three parts in which we divided the multilevel procedure (variance of the incre-
ments, selection of the initial level by maximizing the ratio, and approximation of the density) could be combined in
an automated algorithm, which would obtain the bias error, the sampling error, the variances, the initial level and the
optimal number of simulations on the fly. Secondly, the multilevel MC approach may be combined with a numerical
integration scheme for the expectation with respect to the initial conditions. Finally, our multilevel strategy relied
on considering consecutive levels, while other strategies could utilize different sequences of levels, such as linear or
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geometric ones.
An interesting area to explore is the extension of the presently methodology to linear systems of second order

random differential equations. In this case, the aim is to approximate the joint probability density function of the
vector-valued stochastic solution. With the exception of simple autonomous linear systems whose density function can
be computed through transformations of random variables/vectors and direct integration, no analysis has been carried
out for non-autonomous systems. The application to non-autonomous systems would offer promising advances in the
active field of random differential equations.
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Appendix: Proofs

Proofs for Section 2.

Lemma 2. Let U be an absolutely continuous random variable, (Z1, Z2) be a random vector such that Z1 6= 0 almost
surely, and G ∈ F be an event of non-zero probability. Suppose that U and (Z1, Z2,1G) are independent. Then the
probability law of Z1U + Z2 conditioned to G is absolutely continuous, with density function

fZ1U+Z2
(z|G) = E

[
fU

(
z − Z2

Z1

)
1

|Z1|

∣∣∣∣G] .
Proof. On the measurable space (Ω,F), define the conditional probability measure PG as PG[E] = P[E|G] :=
P[E ∩G]/P[G], for E ∈ F .

Since U and G are independent, the probability law of U with respect to PG coincides with P. Then the law of U
under PG is absolutely continuous, and fU (u|G) = fU (u).

On the other hand, notice that U and (Z1, Z2) are independent under PG.
Finally, PG is absolutely continuous with respect to P, PG � P, therefore Z1 6= 0 PG-almost surely.
Thus, on the probability space (Ω,F ,PG) we are in conditions of applying [25, Lemma 3.2]:

fZ1U+Z2
(z|G) = E

[
fU

(
z − Z2

Z1

∣∣∣∣G) 1

|Z1|

∣∣∣∣G] = E
[
fU

(
z − Z2

Z1

)
1

|Z1|

∣∣∣∣G] .

Proof of Proposition 1. We focus on the equality fX(t)(x) = E[Z(x, t)], as the other one concerning fXN (t)(x) is
analogous.

If either P[G0(t)] = 0 or P[G1(t)] = 0, then Z(x, t) = Z1(x, t) almost surely or Z(x, t) = Z0(x, t) almost
surely, respectively, so we are done.
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Let us then assume that bothG0(t) andG1(t) have non-zero probability. By the law of total probability, fX(t)(x) =
fX(t)(x|G0(t))P[G0(t)] + fX(t)(x|G1(t))P[G1(t)]. To compute the conditional densities, we use Lemma 2:

fX(t)(x|G0(t)) = E[Z0(x, t)|G0(t)], fX(t)(x|G1(t)) = E[Z1(x, t)|G1(t)].

As a consequence, fX(t)(x) = E[Z(x, t)].

Proof of Lemma 1. Fix T > t0 and t ∈ [t0, T ]. Consider the Wronskian WS0,S1(t) = S0(t)Ṡ1(t) − S1(t)Ṡ0(t),
where the derivatives are regarded in the L∞(Ω) sense. Recall that S0(t) and S1(t) solve the differential equation in
the L∞(Ω) sense, see Section 1. In particular, the sample paths of S0(t) and S1(t) solve the deterministic version of
the differential equation, for almost every ω ∈ Ω. By Liouville’s formula for deterministic linear differential equations
[38, Prop. 2.15], WS0,S1

(t) = e
−

∫ t
t0
A(s) ds almost surely. As A(t) is a power series in L∞(Ω), we can lower bound

the Wronskian as follows:
WS0,S1

(t) ≥ e
−

∫ T
t0
‖A(s)‖∞ ds

=: β > 0,

almost surely. On the other hand, using the triangular inequality,

WS0,S1
(t) ≤ 2 max{|S0(t)|, |S1(t)|}max{|Ṡ0(t)|, |Ṡ1(t)|}
≤ 2 max{|S0(t)|, |S1(t)|}max{‖Ṡ0(t)‖∞, ‖Ṡ1(t)‖∞}
≤ 2 max{|S0(t)|, |S1(t)|}γ,

where γ is a constant upper bound for ‖Ṡ0(t)‖∞ and ‖Ṡ1(t)‖∞ on [t0, T ]. As a consequence,

max{|S0(t)|, |S1(t)|} ≥ β

2γ
=: 2α,

almost surely, and (13) is proved.
Finally, we have that max{|SN0 (t)|, |SN1 (t)|} converges to max{|S0(t)|, |S1(t)|} asN →∞ in L∞(Ω), uniformly

on [t0, T ]. This fact allows for deducing that there exists an integer NT,α ≥ 0 such that (14) holds.

Proof of Proposition 2. Observe that, by (11) and (12),

|ZN (x, t)| ≤ max{‖fY0
‖∞, ‖fY1

‖∞}
(

1

|SN0 (t)|
1GN

0 (t) +
1

|SN1 (t)|
1GN

1 (t)

)
=

max{‖fY0‖∞, ‖fY1‖∞}
max{|SN0 (t)|, |SN1 (t)|}

,

for N ≤ ∞. Then Lemma 1 applies.

Proofs for Section 4.

Proof of Proposition 3. First, by Proposition 1, E[Zl0(x, t)] = fXl0 (t)(x). On the other hand,

E[Zl∆(x, t)] = E
[
∆Zl0(x, t)1Hl

0(t)

]
+ E

[
∆Zl1(x, t)1Hl

1(t)

]
= E

[
∆Zl0(x, t)

∣∣H l
0(t)

]
P
[
H l

0(t)
]

+ E
[
∆Zl1(x, t)

∣∣H l
1(t)

]
P
[
H l

1(t)
]

= E
[
Zl+1

0 (x, t)
∣∣H l

0(t)
]
P
[
H l

0(t)
]
− E

[
Zl0(x, t)

∣∣H l
0(t)

]
P
[
H l

0(t)
]

+E
[
Zl+1

1 (x, t)
∣∣H l

1(t)
]
P
[
H l

1(t)
]
− E

[
Zl1(x, t)

∣∣H l
1(t)

]
P
[
H l

1(t)
]
.

By Lemma 2 and the law of total probability,

E[Zl∆(x, t)] = fXl+1(t)

(
x
∣∣H l

0(t)
)
P
[
H l

0(t)
]
− fXl(t)

(
x
∣∣H l

0(t)
)
P
[
H l

0(t)
]

+fXl+1(t)

(
x
∣∣H l

1(t)
)
P
[
H l

1(t)
]
− fXl(t)

(
x
∣∣H l

1(t)
)
P
[
H l

1(t)
]

= fXl+1(t)(x)− fXl(t)(x).

The proposition follows from telescopic sum identities.
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