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abstract: Batesianmimicry is a canonical example of evolution by
natural selection, popularized by highly colorful species resembling
unrelated models with astonishing precision. However, Batesian
mimicry could also occur in inconspicuous species and rely on subtle
resemblance. Although potentially widespread, such instances have
been rarely investigated, such that the real frequency of Batesian
mimicry has remained largely unknown. To fill this gap, we devel-
oped a new approach using deep learning to quantify the visual re-
semblance between putative mimics and models from photographs.
We applied this method toWestern Palearctic snakes. Potential non-
venomousmimics were revealed by an excess of resemblance to sym-
patric venomous snakes compared with random expectations. We
found that 8% of the nonvenomous species were potential mimics,
although they resembled their models imperfectly. This study is the
first to quantify the frequency of Batesian mimicry in a whole com-
munity of vertebrates, and it shows that even concealed species can
act as potential models. Our approach should prove useful for de-
tecting mimicry in other communities, and more generally it high-
lights the benefits of deep learning for quantitative studies of pheno-
typic resemblance.

Keywords: imperfect mimicry, camouflage, deep neural network,
Batesian mimicry.

Introduction

Batesian mimicry occurs when palatable or harmless spe-
cies evolve to resemble an unpalatable or dangerous model
species and consequently gain protection from predators
(Bates 1862). Mimicry is a canonical example of evolu-
tion through natural selection; it was already discussed by
Darwin with Wallace (Darwin 1887) and still constitutes
a proliferous field of research (Sherratt 2002; Nishikawa

et al. 2015; Joshi et al. 2017; Bosque et al. 2018). Never-
theless, some fundamental aspects of this defensive strategy
remain poorly known—notably its frequency in plants and
animals—mainly because detecting mimicry is no simple
matter.
Research on Batesian visual mimicry has long been con-

fined to a few spectacular cases, such as hoverflies (Penney
et al. 2012), butterflies (Kitamura and Imafuku 2015), and
kingsnakes (Brodie and Janzen 1995), that possess con-
spicuous colors and show a resemblance to their models
so striking that it cannot be fortuitous. This perfection is
a double-edged sword: it served as evidence for Darwinian
evolution, but it also provided a distorted picture of what
mimicry can be. Indeed, neither conspicuousness nor ex-
treme resemblance is a necessary condition for Batesian vi-
sual mimicry. Even inconspicuous or camouflaged venom-
ous species may be spotted by predators that can recognize
them by using cues that have not necessarily evolved as
signals.Harmless and palatable species canmimic these cues
to gain additional protection from mimicry while being
themselves cryptic (Barlow and Wiens 1977; Mound and
Reynaud 2005; Gianoli andCarrasco-Urra 2014; Corcobado
et al. 2016). Last, experimental evidence suggests that im-
perfect resemblance between mimics and models, known
as imperfect mimicry, can provide protection against pred-
ators (Dittrich et al. 1993). Focusing on canonical exam-
ples of striking mimicry using conspicuous signals is thus
likely to bias our perception of mimicry and underesti-
mate its frequency.
The detection of visualmimicry within a community re-

quires a quantification of the resemblance between spe-
cies. In mimicry studies two main categories of methods
have been traditionally used to estimate resemblance. The
methods in the first category analyze predefined features
in images—for example, morphometric measures, the ge-
ometry of color patterns, or the distribution of orienta-
tions and spatial frequencies in light changes (Penney
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et al. 2012; Taylor et al. 2016; Troscianko et al. 2017;
Endler et al. 2018). These methods usually attempt to
model physiological perceptual processes and can thus
provide information on the role of these processes in the
evolution of mimicry. However, they may be unable to
capture the high dimensionality of the feature space rel-
evant for assessing visual resemblance (Zhang et al. 2018).
The second category of methods relies on psychological
tests with human subjects (e.g., Cuthill and Bennett 1993).
These methods can provide more accurate assessments of
overall perceptual resemblance; however, extensive tests
and very large sample sizes are necessary to buffer the in-
dividual variations between evaluators (Ishihara et al. 2001;
Kitayama et al. 2003).
Artificial intelligence, and especially deep convolutional

neural networks (DCNNs), offers new opportunities to
model perceptual resemblance (Jozwik et al. 2017; Cichy
and Kaiser 2019). DCNNs are a class of artificial neural
networks composed by a large number (150) of learnable
filters (hence the “deep”) andwhich use a convolution (i.e.,
a mathematical operation on two functions that produces
a third function expressing how the shape of one is mod-
ified by the other) to reencode the data with which they are
fed (Goodfellow et al. 2016). A psychophysical experiment
conducted with thousands of humans showed that mea-
sures of resemblance between complex stimuli (e.g., pic-
tures of a crowd) by DCNNs predict the average human-
perceived resemblance better than any previous models
(Zhang et al. 2018).Moreover, DCNNs can estimate resem-
blance despite noise arising from differences in position,
orientation, occlusion, and illumination among images
(Jozwik et al. 2017). Thus, DCNNs are highly suited to ex-
ploit the nearly inexhaustible resource of unstandardized
photographs posted on the World Wide Web. DCNNs
have revolutionized many scientific fields in recent years,
including biology (e.g., genomics [Zhou and Troyanskaya
2015] and medicine [Shen et al. 2017]), but the potential
of DCNNs to act as models of human and animal percep-
tion has been overlooked in visual ecology thus far.
Several cases of Batesian visual mimicry between ven-

omous and nonvenomous snakes of the Western Palearc-
tic (Europe, North Africa, and the Middle East) have been
reported in the literature, sometimes on the basis of ex-
perimental or behavioral data but mainly using a human
subjective assessment of the visual resemblance between
potential model and mimic (Gans 1961; Werner and
Frankenberg 1982; Werner 1983; Valkonen et al. 2011b;
Aubret and Mangin 2014; Valkonen and Mappes 2014).
None of the venomous species in the study area possesses
highly conspicuous colors, and most of them are cryptic
in their environment (Turk 1958; Heatwole and Davison
1976; Werner 1983). However, the zigzag dorsal patterns
of vipers have been shown to elicit avoidance in bird pred-

ators (Valkonen et al. 2011a) in addition to providing
camouflage (Santos et al. 2014). In spite of these case stud-
ies, no attempt has been made to evaluate the extent of
mimicry in theWestern Palearctic snake assemblage.West-
ern Palearctic snakes thus appear as a good model to mea-
sure the frequency of mimicry in situations that are more
complicated than most classic examples described in the
literature. Here, we incorporated DCNNs into a workflow
to identify potential mimics among all of the 122 snake
species known in the Western Palearctic at the time of
the study.
To identify candidate mimics, we developed a DCNN

method to quantify visual resemblance and combined this
information with geographic distributions. We classified
as a potential mimic any nonvenomous species that met
two criteria: (i) its resemblance with (at least) one of the
venomous species of the West Palearctic was particularly
high and (ii) the degree of sympatry with the most resem-
bling venomous species was higher than that expected
from a random draw. The literature mentions several spe-
cies in our assemblage that may be mimetic; we did not
incorporate this as prior information but rather posteriorly
compared our results with the literature.

Material and Methods

We analyzed all 122 snake species of the Western Pale-
arctic (according to Geniez 2015, with the additional
species described since), including 35 venomous species
and 87 nonvenomous species (see table A1, available
online, for information on venomousness, the number
of images analyzed, and the source of distribution data).

Image Data Sets

We created two image data sets: one for the nonvenom-
ous snakes (838 images; mean p 9:6 images per species)
and one for the venomous snakes (1,802 images; mean p
50:0 images per species; details are provided in table A1).
All venomous species exhibit some level of intraspecific
variation, which can be geographically structured (and
often formally recognized as different subspecies) or pres-
ent in most populations as individual variation. Moreover,
some species exhibit distinct morphotypes that can be
easily identified by humans (for examples of different
morphotypes in Vipera aspis, see fig. A1; figs. A1–A5 are
available online). We did not treat these conspecific mor-
photypes as distinct classes. As DCNNs can solve non-
linear problems, we expected the networks to learn that
these different morphotypes belong to a single species.
However, in general, classes with high variation are more
difficult to recognize for DCNNs (e.g., Fuentes et al. 2018);
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we thus used more images for venomous species with sev-
eral morphotypes (up to 84 images per species; see ta-
ble A1). All images represent different individuals except
for a few species for which only a few images were available.
In addition to the 35 species of Western Palearctic ven-

omous snakes (each representing a distinct class of pic-
tures), we added one class of “foreign” venomous snakes
to the venomous data set. This class was made of 80 photo-
graphs of 80 different species living outside the Western
Palearctic but in climates similar to those of the study area
(i.e., temperate and desert; see the list of species used in
table A1)
We selected only images showing a clear dorsal view

of the whole specimen (see fig. A1 for examples). We col-
lected 80% of the images from the internet, with the re-
maining taken in the field by us or colleagues. An expert
herpetologist (P. Geniez) validated all identifications indi-
vidually. Because images are rare for several of the studied
species, our data sets may appear small compared with
those of other studies using DCNNs. However, recent in-
vestigations have revealed that with appropriate training
(see “transfer learning” in “DCNN Training”), DCNNs
can reach very high performances even when trained on
limited data sets (Körschens et al. 2018). This is confirmed
by our results (see below).

Geographic Distribution Data Set

We constructed distribution ranges from three types of
data: (1) when available, we used distribution maps down-
loaded from the IUCN Red List website (http://www
.iucnredlist.org, accessed February 2018); (2) otherwise,
we reconstructed by hand the spatialized distribution maps
from pictures of distribution ranges found in the World
Health Organization’s database of venomous snakes (http://
apps.who.int/bloodproducts/snakeantivenoms/database/)
and from other specialized literature; and (3) when no dis-
tribution map was available, we built maps from occur-
rence data found in the specialized literature (references
are listed in table A1). We used QGIS version 2.18 (Quan-
tum GIS Development Team 2013) to create the distribu-
tion maps. Each distribution map was depicted by a
spatialized polygon projected in the World Geodetic Sys-
tem (WGS 84).

Methodological Workflow

DCNNs were first trained to recognize the different ven-
omous species of theWestern Palearctic and of the foreign
class (fig. 1A). Trained DCNNs were then asked to classify
pictures of nonvenomous snakes as one of the venomous
species or as belonging to the foreign category (fig. 1B).
For each image, DCNNs provided a probability of being

attributed to each of these classes. This probability is not
an absolute measure of resemblance but instead is a mea-
sure of the relative resemblance with a model compared
with the resemblance with other models. We added the
foreign class to limit the risk of picking up a “most resem-
bling venomous snake” even if the image does not partic-
ularly resemble any of the venomous snakes (Dalyac et al.
2014). The foreign class, which groups together a high di-
versity of patterns, is expected to act as an attractor for
such nonvenomous species. Thus, we are confident that
most nonvenomous species consistently identified by the
DCNNs as one of the nonforeign venomous species do
show a true resemblance.
The mean attribution probability (averaged across all

available pictures) of each nonvenomous species to each
venomous species was then used to build a matrix of re-
semblance between nonvenomous and venomous species.
These probabilities were transformed into resemblance
scores (i.e., in inversed ranks of probability; 1/rank, in as-
cending order; fig. 1C). Thus, the class of venomous snakes
to which one particular nonvenomous snake was attrib-
uted most often (i.e., ranking first or second) had the
highest resemblance score. This step allowed us to reduce
the prediction variability arising from the use of different
training algorithms (Sameen and Pradhan 2017; Kim et al.
2019) and prevented overconfident predictions (Ju et al.
2018). It also increased the match between the measure of
resemblance byDCNNs and the perceptual space of animals
(for work on humans, see Zhang et al. 2018). Next, we de-
leted from this matrix the foreign venomous species class
and all nonvenomous species for which the foreign class
received the highest resemblance score, thus discarding
species that were clearly notmimics (60 nonvenomous spe-
cies discarded). In parallel we built a sympatry matrix the
same size as the resemblance matrix that gives the pro-
portion of the geographic distribution of each nonvenom-
ous species that overlaps with the distribution of each
venomous species. Following a previous study (Miller et al.
2019), we considered that the proportion of sympatry re-
flected the potential extent of selection for mimicry. Even
if a few allopatric species pairs have distribution ranges
close enough to allow predators to associate both snake
species, most allopatric pairs are separated by hundreds or
thousands of kilometers, which limits this possibility (Pfen-
nig and Mullen 2010). The last step of our workflow was to
calculate total scores for each nonvenomous species by sum-
ming the resemblance scores weighted by sympatry scores
(Hadamard matrix product).
Candidate mimics and models were identified statisti-

cally by comparing total scores with a null distribution
of randomized total scores. This null distribution was gen-
erated by randomly shuffling the venomous species in the
sympatry matrix before weighting the resemblance score.
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Figure 1: Workflow of the three-step method used to detect candidate mimic species among nonvenomous snakes and candidate model species
among venomous ones. A, Training of the artificial neural networks to recognize 35 venomous snake species and the foreign venomous snake class.
B, Measuring the resemblance of nonvenomous snakes (one measure per image) with each species of venomous snakes and the foreign class.
C, Building the resemblancematrix and the sympatrymatrix and testing an excess of resemblance between sympatric species using a null distribution
to identify candidate mimics. ConvNet p convolutional neural network; NV p nonvenomous; V p venomous.



The weighted resemblance scores were then summed for
each nonvenomous species to obtain the randomized total
score. We replicated this operation 50,000 times (fig. 1C).
Species for which the total scores fell in the right tail (e.g.,
the 5% highest scores) of the null distribution were more
similar to sympatric venomous species than expected by
chance and were thus considered candidate mimics.
Since we tested the same hypothesis of an excess of re-

semblance multiple times, the chance of false discovery
(i.e., a significant result arising by chance) also increased.
We used Fisher’s method, also named Fisher’s combined
probability test (Fisher 1925), to test whether the P values
of the individual mimicry tests (estimated as the propor-
tion of randomized scores higher than or equal to the real
score) were distributed according to a uniformdistribution
or presented an excess of low values, indicating a signifi-
cant excess of resemblance with the sympatric venomous
snakes.We combined the P values of the 27 nonvenomous
species (out of 87) that were not eliminated by being clas-
sified in the foreign class into a x2 statistic and compared
it with a x2 distribution with 2#27 degrees of freedom.
This effectively provides a global test of the hypothesis
that mimicry affected the evolution of phenotypes in the
Western Palearctic snake assemblage. All statistical analy-
ses were performed with R (R Development Core Team
2008).
Ourmethod did not include phylogenetic correction for

the measure of the resemblance because all of the venom-
ous and nonvenomous snakes belong to two distant and
monophyletic clades. The resemblance between these clades
thus cannot be attributed to phylogenetic relationship (see
“Discussion”).

DCNN Training

Training a DCNN to recognize snake species from scratch
would have required a very large data set of images to
achieve good performances. Following other studies (e.g.,
Norouzzadeh et al. 2018), we used “transfer learning,” in
which a DCNN pretrained on a very large data set is fine-
tuned with a new, smaller data set. All details about the
structure and the training ofDCNNs are available in the ap-
pendix (available online). All code is available online, in a
zip file, as well as at https://github.com/t-desolan/Mimicry
_snakes.1 The images used for training and testing can be
provided on request.

Test of Background Influence

To confirm that network predictions were made on the
basis of the snakes and not on the background, snakes were

cut out in 60 photos and pasted onto photos of ground
only. Ground photos were similar to backgrounds found
in snake photos and depicted ground with rocks, dead
leaves, plants, or sand. Of the 60 snake images, 20 belonged
to venomous snakes, 20 belonged to nonvenomous snakes
previously identified as mimetic, and 20 belonged to non-
venomous snakes previously identified as nonmimetic.
Then we used nonparametric multivariate analysis of var-
iance (MANOVA) with the adonis function of the vegan
package (Dixon 2003) in R to test the effect of background
replacement on resemblance scores. We controlled varia-
tion between species by entering species names as an ex-
planatory variable. We checked for multivariate homo-
scedasticity using the betadisper function of the vegan
package (nonsignificant, effect of background: F p 0:15,
P p :69).

Results

After training, DCNNs were able to recognize the species
of a Western Palearctic venomous snake with an accuracy
of 77%50:004% SE (percentage of pictures correctly clas-
sified, evaluated on the validation data set; random guess:
2.78% accuracy) and a top-three accuracy of 92%50:015%
SE (probability that one of the three classes with the highest
prediction matches the correct class), indicating that DCNNs
learned the most distinctive traits of each species (precision
per class is detailed in fig. A2).
Comparing weighted resemblance scores with the null

distribution, with a 5% threshold, our method identified
seven nonvenomous species out of the 87 (8%) as candi-
date mimics of venomous snakes: these species have a
higher resemblance with their sympatric venomous spe-
cies than with a random assemblage of venomous snakes.
A list of potential mimics and models is given in figure 2,
with more details provided in figure A3. Fisher’s method
confirmed the overall significance of excessive resem-
blance with sympatric venomous snakes across the tested
nonvenomous species set (x2 p 109:3, P ! :001). In addi-
tion, resemblance scores were not driven by similarity be-
tween image backgrounds, as they were not affected by
shuffling backgrounds among images (nonparametric
MANOVA performed with 60 images; background effect:
F p 0:74, P p :67).

Discussion

As far as we know, we provide here the first attempt to
quantify the extent of mimicry in an assemblage of ver-
tebrates at a continental scale (and we know of only one
similar study in invertebrates; Wilson et al. 2015). Al-
though the hypothesis of mimicry would have to be vali-
dated experimentally for each particular species pair, our

1. Code that appears in The American Naturalist is provided as a con-
venience to readers. It has not necessarily been tested as part of peer review.
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analysis indicates the existence in Western Palearctic snakes
of a pattern typical of Batesian mimicry (i.e., unusually high
resemblance between sympatric pairs of nontoxic and toxic
preys) that influenced the phenotypic evolution of this as-
semblage. The visual comparison of models and mimics
suggests that their phenotypic resemblance is based on col-
oration and pattern (figs. 2, A2).
Venomous and nonvenomous species of snakes in our

community belong to different families, so relatedness can-
not explain this pattern, and mimicry itself probably
evolved at least six times, as all but two of the candidate mi-
metic species belong to different genera (the exceptions
are the two Natrix species; for the phylogenetic trees of
the venomous and nonvenomous species, see fig. A4).

Are Our Candidate Mimic Species Really
Mimicking Venomous Snakes?

Several arguments from the natural history of snakes sup-
port the validity of our method to identify mimics and
models. First, six of the seven species identified as potential
mimics by ourmethod have beenmentioned as such in the
literature (Gans 1961; Werner and Frankenberg 1982;
Werner 1983; Valkonen et al. 2011b; Aubret and Mangin
2014; see fig. 2). Second, the mimicry hypothesis is sup-
ported for all of the detected species by additional evi-
dence based on behavioral and/or acoustic traits. The pu-
tative mimics Natrix helvetica, Natrix maura, Coronella
austriaca, Spalerosophis diadema, and Telescopus fallax
displace their maxillary bones to produce a triangular
head shape when disturbed, increasing visual resemblance
with their viper model (Werner and Frankenberg 1982;
Werner 1983; Valkonen et al. 2011b; Aubret and Mangin
2014). In addition,N. maura also produces a hissing sound
similar to that of the sympatric Vipera aspis (Aubret and
Mangin 2014), while the nonvenomous Dasypeltis sahelen-
sis and its sympatric venomous Echis pyramidum possess
the same modified scales on the flanks that are rubbed to
produce a similar warning signal when disturbed (Gans
1961). Finally, even if it has not been reported yet as a
potential mimic in the literature, Hemorrhois nummifer
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Figure 2: The seven mimic and model species (A–G) identified in
our analysis and one example pair of sympatric but nonresembling
species (H), with mimicry scores (red), 95% quantiles (black dashed
line), and the null distribution (blue) of each species pair. Species
framed in yellow have been previously reported as mimetic in the

literature (Gans 1961; Werner and Frankenberg 1982; Werner
1983; Valkonen et al. 2011b; Aubret and Mangin 2014). A, Coro-
nella austriaca and Vipera berus (P p :004). B, Dasypeltis sahe-
lensis and Echis pyramidum (P p :02). C, Hemorrhois nummifer
and Montivipera xanthina (P p :04). D, Natrix helvetica and
Vipera aspis (P p :003). E, Natrix maura and Vipera latastei
(P p :004). F, Spalerosophis diadema and Pseudocerastes fieldi
(P p :02). G, Telescopus fallax and Vipera ammodytes (P p :02).
H,Hemorrhois hippocrepis and V. latastei (P p :18). Photo credits:
Matthieu Berroneau, Olivier Buisson, Luis García-Cardenete,
Alexandre Cluchier, Philippe Geniez, André Langenbach, Jean
Muratet, Gilles Pottier, and Jean-François Trape.
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shows the same behavioral and acoustic warning signal as
the sympatric vipers Montivipera xanthina and Macro-
vipera lebetina (P.-A. Crochet and P. Geniez, personal
observation).
Although additional cues support the mimicry hypoth-

esis for all detected species, our method can only suggest
candidate mimics, and a proper demonstration of mim-
icry would require experimental data. Indeed, most stud-
ies of interspecific resemblance are fundamentally limited
in their ability to distinguish between mimicry and other
factors of resemblance. Resemblance could arise by ecolog-
ical convergence because of similar abiotic environmental
constraints or similar selective pressures for camouflage
(Rajpurohit et al. 2008; Stevens et al. 2013). These factors
could lead to overestimating the frequency of mimicry in
our results. This issue potentially affects all mimicry stud-
ies that do not test predator behavior in a natural envi-
ronment. However, because most studies focus on con-
spicuously colored and presumably aposematic species
(Brodie and Janzen 1995; Cheney and Marshall 2009;
Penney et al. 2012), researchers usually assume that re-
semblance can be attributed only to mimicry. This as-
sumption is seldom tested even if conspicuous colors
may have a camouflage function (Mochida et al. 2015;
Barnett et al. 2018). In Western Palearctic snakes, body
colors are not conspicuous. It would thus be interesting
to perform predation tests in natural conditions to in-
vestigate whether the features copied by potential mimics
are those effectively used by predators to avoid models
(e.g., as in Kristiansen et al. 2018). Nevertheless, as dis-
cussed previously, all identified mimics use behavioral or
acoustic imitation in addition to color pattern, and as re-
semblance in several ontogenetically independent traits
can hardly be attributed to ecological convergence, mim-
icry remains the most likely explanation in our view.

DCNNs Can Identify Imperfect Mimicry
of Camouflaged Models

Remarkably, we found that even well-camouflaged spe-
cies (e.g., vipers of the genus Pseudocerastes; fig. 2) could
be a model for nonvenomous species. The lack of any
pattern or color signaling venomousness in this species
confirms that mimicry can be effective without conspic-
uous traits and advocates for a better separation between
the concepts of Batesian mimicry, communication sig-
naling, and conspicuousness. The link between these
three concepts seems to represent a historical legacy of
the easier detection of mimicry when it involves conspic-
uous aposematic models. The method presented here,
which uses DCNN-based resemblance coupled with in-
formation on geographic co-occurrence, avoids a biased

selection favoring conspicuous organisms when studying
Batesian mimicry.
An additional advantage of our DCNN-based approach

is its ability to suggest mimicry even when resemblance
is imperfect. Most of the species identified by our method
are imperfect mimics, at least from our human point of
view, as their colors and patterns only partially match
those of their model (fig. 2). Although any of the 11 non-
exclusive hypotheses proposed in the literature to explain
imperfect mimicry (for a detailed list, see Kikuchi and
Pfennig 2013; Dalziell and Welbergen 2016) could apply
to Western Palearctic snakes, only the “backup signal”
hypothesis is currently supported by ecological evidence.
This hypothesis suggests that imperfect mimicry can be
reinforced by complementary signals (Johnstone 1996). It
is convincing especially for mimics that show similarities
in behavioral, morphological, and acoustic warning sig-
nals with their sympatric venomous species (Gans 1961;
Werner 1983; Valkonen et al. 2011b; Aubret and Mangin
2014). In addition, the variability of models could help
to maintain imperfect mimicry: it may prevent predators
from associating a specific phenotype to venomousness
(Kikuchi and Pfennig 2010) and thus make them more
careful and less likely to attack snakes with imperfectly
matching phenotypes. This explanation is plausible for at
least the three candidate models Vipera ammodytes,
Vipera berus, and V. aspis, which exhibit significant in-
traspecific and often intrapopulation variation in colora-
tion (fig. A1). Finally, mimicry is a matter of receiver per-
ception. A poor mimicry for our vision system may be
better for another vision system. The different snakes’
predators are likely to display different visual systems
(e.g., bird and mammals), each shaping the evolution of
mimicry in different ways.

Performance of the Method to Identify
Putative Mimics

The ability to detect imperfect and nonconspicuous mim-
icry makes our method less conservative compared with
methods based entirely on human detection for evaluat-
ing the frequency of mimicry. Even so, we may have
failed to identify potential mimic-model pairs. First, the
5th percentile threshold in the null distribution used to
interpret resemblance scores is entirely conventional and
may overlook some mimicry systems. We found two spe-
cies below but close to the 5th percentile threshold. The
first species,Dolichophis jugularis, displays the same black
coloration as its sympatric species,Walterinnesiamorgani,
but it has a different timing of activity (one is diurnal,
while the other is nocturnal) and is thus probably not a
mimic. For the second species, Rhagerhis moilensis, color-
ation mimicry of the sympatric species, Cerastes cerastes,
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cannot be discarded and should be subjected to further ex-
amination. Therefore, the 5th percentile threshold should
be interpreted cautiously, and we recommend not draw-
ing firm conclusions without examining species close to
a decision threshold. Second, we may have failed to iden-
tify candidate mimics and models because we could not
test mimicry for each morphotype separately for the non-
venomous polymorphic species (e.g., Leviton 1970; Kark
et al. 1997; Mebert 2011). Instead, we had to analyze all
morphotypes together and test mimicry at the species
level. This complicates the detection of mimicry, as only
some morphotypes of these polymorphic species may
mimic venomous snakes (e.g., in Hemorrhois ravergieri;
Werner and Frankenberg 1982; see below). Testing mim-
icry for each morphotype would require mapping the
geographical distribution of each morphotype known, but
this information was not available for most polymorphic
species. Third, DCNNs cannot detect resemblance from
information not present in the data: mimicry attributable
to ultraviolet (UV) coloration (see next paragraph), behav-
ior, acoustic, or olfactive signals will not be identified.
These three limits may lead to an underestimation of the
mimicry frequency in natural communities.
Among the species suggested as mimetic in the litera-

ture, three were not identified in our study (Gans 1961;
Werner and Frankenberg 1982; Werner 1983). One of
them, H. ravergieri, is considered a mimic of the sym-
patric Vipera ammodytes transcaucasiana (Werner and
Frankenberg 1982). Our method failed to identify it as
such, probably because it exhibits a strong polymor-
phism, with only some of its variants thought to mimic
vipers (Werner and Frankenberg 1982). A second spe-
cies, Dasypeltis bazi, could have been missed by our ap-
proach because of the limited number of pictures in
our data set (six in total; this rare and poorly known
species was recently described by Saleh and Sarhan
[2016]) and the marked variation in coloration between
individuals. However, the third unrecognized mimic,
Telescopus dhara (Werner 1983), is not polymorphic,
and we believe that claims for mimicry in this species
are too optimistic, as it bears no particular resemblance
with the proposed model Echis coloratus from visual
inspection.

Use of DCNNs to Assess Phenotypic Resemblance

Several lines of evidence indicate that our method pro-
vides an accurate estimation of resemblance. First, the
performance of DCNNs in image classification was re-
markably high. It is similar or superior to that of other
studies (e.g., Carranza-Rojas et al. 2017; Van Horn et al.
2018) despite the limited size of the training data set
and the extreme resemblance among several vipers that

makes their identification challenging when the geographic
origin is unknown, even for experts (Geniez 2015). In com-
parison, a previous DCNN-based analysis of species rec-
ognition using 579,184 unstandardized training images
representing 5,098 species reached 68.5% and 88.2% top-
one and top-five accuracy, respectively (Van Horn et al.
2018). Thus, our analysis confirms previous research by
demonstrating that DCNNs can reach a high level of ac-
curacy even when trained on small data sets (Hansen et al.
2018; Körschens et al. 2018; Mathis et al. 2018). Second,
we avoided by-default classification, as more than two-
thirds of the nonvenomous species were identified as the
foreign species class and removed from further analysis.
These results support the idea that DCNNs can be effec-
tive tools for measuring phenotypic resemblance.
Our study highlights the benefits of using DCNNs to

study resemblance between phenotypes in ecology and
evolution. DCNNs have been previously used in ecology
to analyze big data (e.g., to identify species from camera
trap images; Norouzzadeh et al. 2018). However, their ca-
pacity to model biological perception has been thus far
overlooked (Cichy and Kaiser 2019). A growing body of
literature on humans has shown that DCNNs predict the
perceived resemblance between complex stimuli better
than other models, even those specifically tuned with neu-
rophysiological data (Yamins et al. 2014; Kriegeskorte
2015; Kubilius et al. 2016). Of particular relevance for
the study of camouflage and mimicry, one study showed
that whichever perceptual task a DCNN is trained for
(e.g., recognizing objects from images, segmenting fore-
ground in video frames), the DCNN accurately predicts
perceptual similarity even near the discrimination thresh-
old (Zhang et al. 2018).
In mimicry systems (and more generally in most com-

munication systems) the relevant observer is not human.
Are the performances of DCNNs at reproducing human
perception also relevant to other animals? These perfor-
mances are based on three characteristics (Kriegeskorte
2015). The first is the capacity of DCNNs to solve high-
level tasks (Zhang et al. 2018), which is shared by all
animals. The second is their general architecture (a stack
of convolution, activation, and pooling functions), which
reproduces operations performed sequentially and itera-
tively by neurons in the different human visual areas
(Güçlü and van Gerven 2015). Similar operations are also
found, beyond humans, in at least all vertebrates (Renoult
et al. 2019). The third is the structure of input data. In this
study, we used RGB images that match human trichro-
matic vision (i.e., with three cone types). Other animals
have different cone types (e.g., two in carnivores and four
in birds) tuned to different wavelengths. How these differ-
ences affect DCNN models of perceptual space is a nearly
unexplored avenue of research (but see Bergeron and Fuller
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2018). Yet indirect evidence suggests that the impact would
be relatively minor. Indeed, studies of bird plumages that
used both RGB images and bird-specific cone stimulations
showed no qualitative differences (Dale et al. 2015; Miller
et al. 2019). Accordingly, several authors have argued that
RGB images provide good insight into ecology, evolution,
and behavior in nonhuman species (Seddon et al. 2010;
Bergeron and Fuller 2018). In addition, in our particular case
the use of ranks to express relative resemblance makes our
mimicry detection method insensitive to how precisely the
similarity measure produced by DCNNs scales to similarity
perceived by animals.
A potentially important limitation of RGB images,

however, is that they eliminate wavebands to which hu-
mans—but not other vertebrates—are blind. The UV wave-
bands, in particular, may be problematic. Regarding our
study, none of the main predators of snakes in the West-
ern Palearctic use UV cues for foraging (Jacobs 2009; Lind
et al. 2013, 2014). Mammalian predators are not able to
see UV wavebands because they do not have UV cones
(Jacobs 2009). Raptors have UV cones, but the previous
suggestion that they use UV cues to detect prey (Viitala
et al. 1995) is contentious, as their ocular media transmit
UV only poorly (Lind et al. 2013). Thus, UV-based mim-
icry seems unlikely in Western Palearctic snakes.
Last, we analyzed images with minimum standardiza-

tion (images were cropped to center the snake but not
standardized for luminance, position, or background).
Centering was necessary because of the small size of our
training data set, but it could be omitted if a sufficient
number of images were available. Although standardiza-
tion removes irrelevant information from the data, we
think that unstandardized images are ecologically more
relevant. Indeed, predators experience substantial varia-
tion in perceptual conditions in relation to snake position,
background, shading, light intensity, and color. This var-
iation could affect the evolution of mimic phenotypes;
for example, it has been suggested to explain imperfect
mimicry (Kikuchi and Pfennig 2013). While RGB images
from the internet may not precisely match the variation
experienced by predators, drastically limiting all varia-
tion (by standardization) would make the data set unnat-
ural. Standardized images would be nevertheless useful in
other contexts (e.g., to determine which visual features
contribute the most to deceive predators).

Conclusions

Our method rationalizes the search for mimicry evolution
and as such is designed to select candidate mimics and
models on the basis of a strong coincidence between re-
semblance and sympatry. It is complemented by biological
observations that strengthen the case for mimicry (vs. other

forms of convergent evolution). It is an improvement over
pure naturalistic intuition because it is quantitative and has
a clear rationale—a way to avoid the pitfalls of storytell-
ing. By allowing a more comprehensive description of
the diversity of mimicry, our methods could help us un-
derstand the selective forces acting on this defensive strat-
egy but also generate new models to test hypotheses on
mimicry developed in the literature. We propose that arti-
ficial intelligence has a great potential for the study of
mimicry. Although there is still room for methodological
improvement, DCNNs allow us to measure resemblance
while accounting for the high dimensionality of visual
phenotypes, simultaneously accounting for colors, tex-
tures, patterns, and proportions without requiring highly
standardized data that may be difficult to collect for
many species. Beyond mimicry, the ability to handle
complex visual patterns makes DCNNs highly promising
tools for modeling resemblance in general, with a broad
range of applications in evolution and ecology.
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