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 which is easier to analyze than the original version while keeping its powerful message-passing algorithm. We provide a non-asymptotic analysis of the false-alarm rate and the detection delay that matches the existing lower-bound. We further provide the first explicit high-probability control of the detection delay for such approach. Experiments on synthetic and realworld data show that this proposal outperforms the state-of-art change-point detection strategy, namely the Improved Generalized Likelihood Ratio (Improved GLR) while compares favorably with the original Bayesian Online Change Point Detection strategy.

Introduction and related works

The problem of online detecting abrupt variations (changepoints) in the generative parameters of a sequence of observations x 1 , . . . x n , where observations are received one by one, is considered. Addressing this problem is useful in a number of real-world applications including finance [START_REF] Schmitt | Nonstationarity in financial time series: Generic features and tail behavior[END_REF], genetics [START_REF] Grzegorczyk | Non-stationary continuous dynamic bayesian networks[END_REF], cybersecurity [START_REF] Polunchenko | Nearly optimal change-point detection with an application to cybersecurity[END_REF], robotics [START_REF] Goldberg | Maximizing reward in a non-stationary mobile robot environment[END_REF][START_REF] Biswas | Towards object mapping in non-stationary environments with mobile robots[END_REF][START_REF] Konidaris | Constructing skill trees for reinforcement learning agents from demonstration trajectories[END_REF], speech recognition [START_REF] Panda | Automatic speech segmentation in syllable centric speech recognition system[END_REF], climate modeling [START_REF] Nandhini | Predictive analytics for change detection and disease diagnosis[END_REF]. The online change-point detection problem has received a lot of atten-tion from various areas of mathematical statistics, information theory and computer science over the past century. We refer the interested reader to the recent survey [START_REF] Aminikhanghahi | A survey of methods for time series change point detection[END_REF] on the large amount of methods developed for time series change point detection, and to [START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF][START_REF] Brodsky | Nonparametric Methods in Change-Point Problems[END_REF][START_REF] Jie | Parametric statistical change point analysis[END_REF][START_REF] Tartakovsky | Sequential methods in the theory of information systems[END_REF][START_REF] Csörgö | Limit theorems in change-point analysis[END_REF][START_REF] Wu | Inference for change point and post change means after a CUSUM test[END_REF] for classical textbooks on change-points. As noticed in [START_REF] Aminikhanghahi | A survey of methods for time series change point detection[END_REF], performance guarantees are still lacking for many such methods, especially in terms of finite time guarantee on the detection delay and estimation of the change-gap, both important features for the practitioner. Amongst the many methods, the celebrated CUSUM strategy from [START_REF] Page | Continuous inspection schemes[END_REF] and its extension called Generalized Likelihood Ratio (GLR), that are following a frequentist approach based on likelihood ratio thresholding have been analyzed recently first in [START_REF] Lai | Sequential change-point detection when the pre-and post-change parameters are unknown[END_REF] and then in [START_REF] Maillard | Sequential change-point detection: Laplace concentration of scan statistics and non-asymptotic delay bounds[END_REF], where a fully explicit parameter tuning is also provided, together with fully non-asymptotic guarantees.

In this paper, we turn to Bayesian approaches. In the seminal paper of [START_REF] Fearnhead | On-line inference for multiple changepoint problems[END_REF], the authors introduced the Bayesian Online Changepoint Detection (BOCPD) strategy to infer the most recent change-point, by computing the probability distribution of the elapsed time since the last change-point (runlength). Although the algorithm has been used extensively (including in non-stationary multi-armed bandits, [START_REF] Mellor | Thompson sampling in switching environments with bayesian online change detection[END_REF][START_REF] Alami | Memory bandits: a bayesian approach for the switching bandit problem[END_REF][START_REF] Kerkouche | Node-based optimization of lora transmissions with multi-armed bandit algorithms[END_REF][START_REF] Dakdouk | Reinforcement learning techniques for optimized channel hopping in ieee 802.15.4-tsch networks[END_REF] and other changepoint context [START_REF] Adams | Bayesian online changepoint detection[END_REF][START_REF] Turner | Adaptive sequential bayesian change point detection[END_REF][START_REF] Murphy | Modeling changing dependency structure in multivariate time series[END_REF][START_REF] Wilson | Bayesian online learning of the hazard rate in change-point problems[END_REF][START_REF] Saatc ¸i | Gaussian process change point models[END_REF][START_REF] Caron | On-line changepoint detection and parameter estimation with application to genomic data[END_REF][START_REF] Niekum | Changepoint detection using approximate model parameters[END_REF][START_REF] Turner | Online variational approximations to non-exponential family change point models: with application to radar tracking[END_REF][START_REF] Ruggieri | An exact approach to bayesian sequential change point detection[END_REF]Knoblauch & Damoulas, 2018;Knoblauch et al., 2018)), up to our knowledge, no formal analysis of its performance in terms of false-alarm or detection delay has been performed except the work in (Knoblauch et al., 2018), where the authors has built a robust BOCPD version to reduce false discovery rates.

Note that although BOCPD stands for Bayesian Online Change Point Detection, the algorithm performs no detection at all; rather, it maintains weights to estimate the elapsed time since the last change-point. Following this work, we provide a modification of the BOCPD strategy that we analyze. In particular we provide a non-asymptotic guarantees related to the false-alarm (that is, detecting a change point while there was no change) in Theorem 2 and related to the detection delay (the number of steps after a change-point occurs before we declare detection) in Theorem 3.

In Section 2, we formally introduce the times-series model with abrupt changes, as well as notations. We provide in Section 3 a new formulation of the BOCPD strategy from [START_REF] Adams | Bayesian online changepoint detection[END_REF], that we reinterpret from the standpoint of aggregation of forecasters, leading to a compact formulation presented in Algorithm 1. We then present a simple way to make use of this strategy to effectively detect changes, instead of just estimating the time since the last change. We note that the analysis of BOCPD involves dealing with a combinatorial number of terms, and propose a simplification of this strategy in order to derive performance guarantees. We call the resulting strategy R-BOCPD for Restarted Bayesian Online Change Point Detection. Then, we provide in Section 5 the two theoretical guarantees of this strategy: namely the false alarm rate control and detection delay (Theorem 2, Theorem 3). Finally, we show numerically that this strategy outperforms its previous version BOCPD and its compares favorably with the Improved GLR strategy introduced by [START_REF] Maillard | Sequential change-point detection: Laplace concentration of scan statistics and non-asymptotic delay bounds[END_REF]. For the sake of clarity, the proofs of the analytical results are in the appendices.

Sequential change-point detection setting

Sequential change-point detection, which is rooted in classical statistical sequential analysis [START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF], aims to detect the change in underlying distributions of a sequence of observations as quickly as possible.

In this paper, we study the online change point detection problem, where a sequence of independent univariate random variables with common fluctuation upper bound are collected, and the mean may change at one or multiple time points. Indeed, we consider an agent aiming at detecting changes in the generation of an online stream. At each time step t, the agent observes the datum x t ∼ B (µ t ): a random variable following the Bernoulli distribution of mean µ t and need to decide whether or not there is a change in the generation of the stream. Alternatively, the agent may compute at each time step t, an estimation τ t of the last change-point.

Definition 1 (Piece-wise stationary Bernoulli process). Let T denote the time horizon of the game (stream length) and C T the overall number of change-points observed until time T . We assume that the observations x t ∼ B (µ t ) are generated by a piece-wise Bernoulli process such that there exists a non-decreasing change-points sequence

(τ c ) c∈[1,C T ] ∈ N C T verifying: ∀c ∈ [1, C T ] , ∀t ∈ T c = [τ c , τ c+1 ) µ t = θ c , τ 1 = 1 < τ 2 < ... < τ C T +1 = T + 1.
(1)

Remark 1 (Interests in the Bernoulli case). The interests in working on the Bernoulli distributions are not as restrictive as it seems. On the first hand, from a concentration point of view, Bernoulli distributions can be seen as a worst case of bounded distributions. Moreover, Bernoulli distributions are crucially used in many widespread applications of machine learning. For instance:

• modelling the collisions in cognitive radio 

A (x r:t ) =     
1 if a change in the generation of the sequence x r:t is detected, 0 else.

A strategy is said to be anytime if it does not depend on the time horizon T which denotes the stream length.

Performance assessment Let: x r:τc-1 ∼ B (θ 1 ), x τc:t ∼ B (θ 2 ), τ c the change-point to detect and r the starting time. The performance of an algorithm that aims at detecting the change-point τ c ∈ [r, t] in the sequence x r:t is assessed using two notions.

• False alarm rate: the probability of detecting a change at some instant s ∈ [r, τ c ) where there is no change. Usually, the false alarm rate is expressed as:

P ∃s ∈ [r, τ c ) : A (x r:s ) = 1 .
• Detection delay: the number of time steps needed to detect a change. It is formally defined for a strategy A as: τ A (x r:t ) := min s ∈ [r, t] : A (x r:s ) = 1 . Thus, the detection delay is expressed as:

D |θ2-θ1|,r,τc := ( τ A (x r:t ) -τ c ) × I{ τ A (x r:t ) > τ c },
where I{•} denotes the indicator function.

Currently, the literature provides us with an interesting asymptotic lower bound on the expected detection delay. Theorem 1 gives the lower bound. (It is a reformulation of Theorem 3.1 in [START_REF] Lai | Sequential change-point detection when the pre-and post-change parameters are unknown[END_REF]).

Theorem 1 (Asymptotic lower bound on the expected detection delay). Let: x r:τc-1 ∼ B (θ 1 ), x τc:t ∼ B (θ 2 ), A an online change-point detection strategy, τ c the changepoint to detect and r the starting time. Assuming that the false alarm rate is controlled such that: P θ1 ∃s ∈ [r, τ c ) :

A (x r:s ) = 1 δ, then as the quantity

nr:τ c |log δ| → δ→0 ∞,
the expected detection delay E θ1,θ2 [ τ A (x r:t ) -τ c ] is lower bounded as follows:

E θ1,θ2 [ τ A (x r:t ) -τ c ]   P θ1 τ A (x r:t ) > τ c kl (θ 2 , θ 1 )   log 1 δ
where kl (•, •) stands for the Kullback-Leibler divergence for Bernoulli distributions.

The original Bayesian Online Change Point Detector (BOCPD)

In this section, we describe the original version of the Bayesian Online Change Point Detector introduced in [START_REF] Fearnhead | On-line inference for multiple changepoint problems[END_REF] and then revisited in [START_REF] Adams | Bayesian online changepoint detection[END_REF]. Then,we reformulate it in term of a learning procedure using a growing number of forecaster. By this way, we highlight the difficulty of its analysis.

3.1. Learning using the runlength inference [START_REF] Adams | Bayesian online changepoint detection[END_REF] have introduced an efficient Bayesian strategy for handling piece-wise stationary processes. This Bayesian strategy computes p (r t |x 1:t ) the posterior distribution over the current runlength r t , which denotes the number of time steps since the last change-point, given the data so far observed x 1:t . The exact inference on the runlength distribution is done recursively using the following message-passing algorithm:

p (rt|x1:t) ∝ r t-1 p (rt|rt-1) hazard p (xt|rt-1, x1:t-1) UPM p (rt-1|x1:t-1)
where the hazard function is expressed as follows:

p (r t |r t-1 ) =      H (r t-1 ) if r t = 0 1 -H (r t-1 ) if r t = r t-1 + 1 0 otherwise (2)
with:

H(s) = Pchange (s+1)
∞ t=s+1 Pchange(t) and P change denotes the probability distribution over the interval between changepoints.

A simple example of BOCPD would be to use a constant hazard function h ∈ (0, 1) in the sense that p(r t = 0|r t-1 ) is independent of r t-1 and is constant, giving rise, a priori, to geometric inter-arrival times for change points (P change (s + 1) = h (1 -h) s ). Thus, the recursive run-length distribution computation becomes:

p(r t = 0|x 1:t ) ∝ (1 -h) p(x t |r t-1 , x 1:t-1 )p(r t-1 |x 1:t-1 ) p(r t = 0|x 1:t ) ∝ h rt-1 p(x t |r t-1 , x 1:t-1 )p(r t-1 |x 1:t-1 )
Then, for Bernoulli observations (x t ∼ B (µ t )) the underlying predictive distribution (UPM) can be set to the Laplace predictor.

Definition 3 (Laplace predictor). The Laplace predictor Lp (x t+1 |x s:t ) takes as input a sequence x s:t ∈ 0, 1

ns:t
and predicts the value of the next observation x t+1 ∈ 0, 1 as follows:

Lp (x t+1 |x s:t ) := t i=s xi+1 ns:t+2 if x t+1 = 1, t i=s (1-xi)+1 ns:t+2 if x t+1 = 0,
where ∀x ∈ {0, 1} Lp (x|∅) = 1 2 corresponds to the uniform prior given to the process generating θ c .

Remark 2. Laplace predictor is used as the estimator of the maximum likelihood with a uniform prior. It originates from the classical literature on universal codes and has standard robustness properties and Bayesian interpretation that make it of especial interest. Another variant is the Krichesky-Trofimov estimate [START_REF] Cerqueira | Strong consistency of krichevsky-trofimov estimator for the number of communities in the stochastic block model[END_REF].

Although BOCPD algorithm is very efficient in practice, its analysis in term of false alarm rate and detection delay is still an open problem. As a first step of the analysis of the Bayesian Online Change Point Detection, in this section we reformulate it in terms of learning strategy based on a growing number of forecasters.

In the following, to simplify the derivations (especially for Lemmas 1 and 2) we assume that the hazard function for BOCPD is constant (H (r t-1 ) = h). Otherwise, the statement of Lemmas 1 and 2 becomes cumbersome to write and difficult to understand.

Learning with a growing number of forecasters

Notion of forecaster. Let t ∈ N and s ∈ [1, t]. A fore- caster s is a successive product of (t -s) Laplace predictors (Lp (x t+1 |x s:t ) × Lp (x t |x s:t-1 ) × ... × Lp (x s |∅)) (see Definition 3
), created at time s with some initial weight. At each time t, the forecaster s observes exactly the sequence x s:t from the environment.

At each time t, each possible value of the runlength r t ∈ [0, t -1] corresponds to a specific forecaster. More specifically, the forecaster starting at time s corresponds at time t to the t -s value of the runlength r t .

Forecaster loss. Using the Laplace predictor, the instantaneous loss of the forecaster s at time t is given by:

l s,t := -log Lp (x t |x s:t-1 ) = -x t log Lp (1|x s:t-1 ) -(1 -x t ) log Lp (0|x s:t-1 ) .
Then, let L s:t := t s =s l s :t denotes the cumulative loss incurred by the forecaster s from time s until time t which takes the following crude expression:

L s:t := t s =s -log Lp (x t |x s :t-1 ) (3) 
Forecaster weights. Instead of dealing with the posterior distribution of the runlength r t , we propose to give to each forecaster s a weight v s,t := p(r t = t-s|x s:t ) according to its sequence of observations x s:t . By this way, we describe the novel formulation of the Bayesian Online Change Point Detector in Algorithm 1. Notice that in line 5, Algorithm 1 performs a change-point detection, which was not present in [START_REF] Adams | Bayesian online changepoint detection[END_REF].

Algorithm 1 BOCPD [START_REF] Fearnhead | On-line inference for multiple changepoint problems[END_REF])

Input: h ∈ (0, 1) 1: v 1,1 ← 1 2: for t = 1, . . . do 3: Observe x t ∼ B (µ t ) 4:
Define for each forecaster s up to time t:

v s,t ← (1 -h) exp (-l s,t ) v s,t-1 ∀s < t, h t-1 i=1 exp (-l i,t ) v i,t-1 s = t . (4) 5: 
Estimate the last change-point τ t such that: τ t ← argmax s∈[1,t] v s,t . 6: end for Equation (4) defines the weights v s,t recursively. Lemma 1 expands the expression of v s,t for a better way to handle these quantities.

Lemma 1 (From recursive to closed-form expressions). Let:

V t = t s=1 v s,t . Then, by noticing that V t = t-1 s=1 exp (-l s,t ) v s,t-1
, the quantities v s,t take the following alternative closed-form expression:

v s,t = (1 -h) t-s+1 h I{s =1} exp -L s:t V s ∀s < t, hV t s = t.
First, from Lemma 1 one should notice that the quantity V t plays the role of an initial weight that is given to the forecaster newly created at time t. Thus, in order to control the quantities v t,s , we need to explicitly expand the expression of V t .

The expression for V t is given iteratively (see Lemma 1). Making it explicit reveals the power of the strategy introduced by [START_REF] Fearnhead | On-line inference for multiple changepoint problems[END_REF], that combines the updates of exponentially many forecasters into a simple iterative scheme. Indeed, Lemma 2 gives us the explicit expression of V t . Lemma 2 (Computing the initial weight V t ). The initial weight V t takes the following form:

V t = (1 -h) t-2 t-1 k=1 h 1 -h k-1
Ṽk:t where:

Ṽk:t = t-k i1=1 t-(k-1) i2=i1+1 ... t-2 i k-1 =i k-2 +1 exp -L 1:i1 × k-2 j=1 exp -L ij +1:ij+1 exp -L i k-1 +1:t-1 .
On the other hand, dealing with the explicit expression of V t is challenging from a theoretical standpoint (proving performance guarantees), since we need to control a combinatorial number of cumulative losses. Indeed, notice that:

t-k i1=1 t-(k-1) i2=i1+1 ... t-2 i k-1 =i k-2 +1 1 = t -2 k -1 ,
where • • stands for the binomial operator.

The Restarted Bayesian Online Change Point Detector algorithm (R-BOCPD)

In this section, we introduce a pruning version of the original BOCPD which is built on a novel initial weight function, a restart procedure to prune the useless experts and a well tuned hyper-parameter instead of the hazard function.

4.1. Introducing a simple initial weight.

In order to avoid the difficulty mentioned in Lemma 2, we propose to use a much simpler initial weight that takes the following form:

V r:s-1 := exp -L r:s-1 for some starting time r.

Notice that the initial weight V r:s-1 is a restricted version of the original one V s by forgetting the contribution of all forecasters but the one launched at the starting time r (underlined term in Lemma 2). Thereby, the control of the initial weight is made easier: instead of dealing with a combinatorial number of cumulative losses, we only need to control one cumulative loss ( L r:s-1 ). Thus, for some starting time r, we denote by ϑ r,s,t the novel weight given to the forecaster s r at time t s. Then, one should also notice that BOCPD (Algorithm 1) produces an estimation of the last change point at each time step. In order to analyze this algorithm in term of detection delay, we propose to introduce a change-point decision rule (restart procedure).

a restart procedure.

For any starting time r t, the change-point criterion is written as follows:

Restart r:t = I{∃s ∈ (r, t] : ϑ r,s,t > ϑ r,r,t } (5) where ϑ r,s,t denotes the weight of the forecaster s created with the initial weight V r:ts-1 at time t (see Algorithm 2 line 4). The intuition behind the criterion Restart r:t is that at each time t < τ where there is no change, the forecaster distribution tends to be concentrated around the forecaster launched at the starting time r. So, if the distribution ϑ r,s,t undergoes a change then it can be seen as a certain changepoint that has appeared. Thereby when Restart r:t = 1, a change-point is detected and thus we restart a new forecaster at time r = t + 1 and delete all previous launched forecasters (s < r). This can be seen as a sophisticated pruning out procedure to reduce the number of launched forecasters.

Finally, by using the hyper-parameter η r,s,t (instead of the constant value h) and plugging the initial weight V r:t-1 and the decision rule r:t into the formalism of BOCPD (Equation 4), we obtain a restarted version of the Bayesian Online Change Point Detector which is described in Algorithm 2.

Algorithm 2 R-BOCPD Input: η r,s,t ∈ (0, 1)

1: r ← 1, ϑ r,1,1 ← 1, η r,1,1 ← 1. 2: for t = 1, . . . do 3: Observe x t ∼ B (µ t ) 4:
Define for each forecaster s from time r to time t: ϑ r,s,t ← ηr,s,t ηr,s,t-1 exp (-l s,t ) ϑ r,s,t-1 ∀s < t, η r,t,t × V r:t-1 s = t .

if Restart r:t = 1 then r ← t + 1, ϑ r,r,r ← 1, η r,r,r ← 1.

6:

Estimate the last change-point: τ t ← r. 7: end for

Discussion about R-BOCPD

The main difference between the R-BOCPD and its previous version lie primarily in the use of the test Restart r:t = 1 for detecting the change-points. The second difference is the use of a simple initial weight V r:t-1 instead of the quantity V t standing for the sum of the forecaster weights at time t. This is essentially done for theoretical reasons (see Lemma 2). The third difference is the use of a hyper-parameter η r,s,t instead of the hazard function h. The quantity ηr,s,t ηr,s,t-1 → t→∞ 1 is used in updating the forecaster distribution ϑ r,s,t at time t instead of the quantity (1 -h) whose asymptotic behavior is the same for an harazd rate very small. Indeed, 1 -h ≈ 1.

Finally, unlike [START_REF] Adams | Bayesian online changepoint detection[END_REF][START_REF] Fearnhead | On-line inference for multiple changepoint problems[END_REF] where the hazard function is assumed to be known (see Appendix A for more details), the function η r,s,t will be specified thanks to the analysis in section 5.1.

Performance guarantees

In this section, we build the two main guarantees for the R-BOCPD algorithm, namely: the false alarm rate (Theorem 2) and the detection delay control (Theorem 3). Then, we provide the reader with some useful tools to build these guarantees.

Non-asymptotic analysis of R-BOCPD

Let r denotes the time of the last restart and τ c the changepoint just coming after r.

Theorem 2 states the condition on η r,s,t where R-BOCPD (algorithm 2) does not make any false alarm with high probability. It is without reminding that the false alarm corresponds to the event where Restart r:t = 1 during the period [r, τ c ).

Theorem 2 (False alarm rate). Assume that x r:t ∼ B (θ). Let: α > 1. If η r,s,t is small enough such that:

∀t ∈ [r, τ c ) , s ∈ (r, t] : η r,s,t <
√ n r:s-1 × n s:t 10 (n r:t + 1) × log(4α + 2)δ 2 4n r:t log((α + 3) n r:t ) α then, with probability higher than 1 -δ, no false alarm occurs on the interval [r, τ c ):

P θ ∃ t ∈ [r, τ c ) : Restart r:t = 1 δ.
Before stating the control of the detection delay, we need to introduce the notion of relative gap ∆ r,s,t .

Definition 4 (Relative gap ∆ r,s,t ). Let ∆ ∈ [0, 1]. The relative gap ∆ r,s,t for the forecaster s at time t takes the following form (depending on the position of s):

∆ r,s,t = n r:τc-1 n r:s-1 I{τ c s t} + n τc:t n s:t I{s < τ c } ∆.
Theorem 3 states the detection delay under some condition on the quantity η r,s,t .

Theorem 3 (Detection delay). Let x r:τc-1 ∼ B (θ 1 ),

x τc:t ∼ B (θ 2 ) and ∆ = |θ 1 -θ 2 |: the change-point gap.

Then, let: f r,s,t = log n r:s + log n s:t+1 -1 2 log n r:t + 9 8 . If η r,s,t is large enough such that: η r,s,t > exp -2n r,s-1 (∆ r,s,t -C r,s,t,δ ) 2 + f r,s,t , then, the change-point τ c is detected (with a probability at least -δ) with a delay not exceeding D ∆,r,τc , such that:

D ∆,r,τc = min d ∈ N : d > 1 - C r,τc ,d+τc -1,δ ∆ -2 2∆ 2 × -log η r,τc,d+τc-1 + f r,τc,d+τc-1 1 + log η r,τc ,d+τc -1 -f r,τc ,d+τc -1 2nr,τ c -1(∆-Cr,τ c ,d+τc -1,δ ) 2 , ( 7 
)
where: C r,s,t,δ =

√ 2 2 1 + 1 nr:s-1 n r:s-1 log 2 √ n r:s δ + 1 + 1 ns:t n s:t log 2n r:t √ n s:t + 1 log 2 (n r:t ) log(2)δ . (8)
Discussion about the detection delay D ∆,r,τc From Eq. ( 7), for a fixed r and τ c we notice that the larger the changepoint gap ∆, the smaller the detection delay D ∆,r,τc and vice versa. Moreover for a fixed gap ∆, the larger n r,τc-1 : the number of observations before the change-point τ c , the smaller the detection delay D ∆,r,τc (cf figure 1). Remark 3 (Minimum detectable gap ∆ min (r, τ c , t)). Instead of imposing a condition on the lower-bound of η r,s,t , we can discuss the detectability of the changepoint τ c according to the magnitude of the gap ∆. Thus, if the gap ∆ is of magnitude at least ∆ min (r, τ c , t) =

-log ηr,τ c ,t+fr,τc ,t nr:τ c -1 + C r,τc,t,δ , then the change-point τ c is detected (with a probability at least 1 -δ) with a finite delay not exceeding D ∆,r,τc .

Discussion about the asymptotic optimality We compare the result of Theorem 3 with the existing lower-bound on the detection delay (see [START_REF] Lai | Sequential change-point detection when the pre-and post-change parameters are unknown[END_REF]). The asymptotic regime corresponds to the case where the elapsed time between the last restart r and the new change point τ c tends to infinity, while the probability of false alarm δ tends to zero. More formally, the asymptotic regime is reached when nr:τ c -1 log(1/δ) → ∞, and log n r:τc-1 = o log 1 δ when δ → 0. We obtain that:

D ∆,r,τc → τc→∞ -log η r,τc,d+τc-1 + o log 1 δ 2 |θ 2 -θ 1 | 2 . (9)
Thus, following Theorem 1, the detection delay D ∆,r,τc is asymptotically order optimal (up to the Pinsker inequality tightness relating |θ 2 -θ 1 | 2 to kl (θ 2 , θ 1 )). Moreover, the smaller η r,s,t , the larger the detection delay and vice-versa. Also, following Remark 3, the smaller η r,s,t , the larger the minimum detectable gap ∆ min (r, τ c , t).

Remark 4 (Main difficulty to get optimality with the Kullback-Leibler divergence). The result of Equation 9shows the Euclidean distance |θ 2 -θ 1 | 2 instead of the Kullback-Leibler divergence kl (θ 2 , θ 1 ) as expected from Theorem 1. Indeed, in the analysis of the detection delay (see Appendix C), the quantity n r:s-1 kl ( µ r:s-1 , µ r:t ) + n s:t kl ( µ s:t , µ r:t ) appears (it naturally comes from Lemma 3). Building a lower bound of n r:s-1 kl ( µ r:s-1 , µ r:t ) + n s:t kl ( µ s:t , µ r:t ) showing the quantity kl (θ 2 , θ 1 ) (in the case where there is change point τ ∈ [r, t]) does not seem trivial. Thus, we have opted to use the Pinsker inequality which has slightly reduced the optimality of our result but it remains significant.

Discussion about the choice of η r,s,t . Choosing η r,s,t ≈ 1 nr:t seems to be a wise choice since it allows us to verify the conditions of Theorem 2 (for some α → 1) and Theorem 3. Thus, by plugging η r,s,t ≈ 1 nr:t into the asymptotic expression of the detection delay (Equation 9), we get (in the asymptotic regime

nr:τ c -1 log(1/δ) → ∞, and log n r:τc-1 = o log 1 δ when δ → 0): D |θ2-θ1|,r,τc → τc→∞ o log 1 δ 2 |θ 2 -θ 1 | 2 .
By this way, the detection delay is asymptotically optimal in the sense of Theorem 1 (up to the Pinsker inequality tightness relating |θ 2 -θ 1 | 2 to kl (θ 2 , θ 1 )).

Sketch of proof for the false alarm rate control and the detection delay

In this section, we provide the key elements and the essential intuitions to build the false alarm guarantee and the detection delay control. The key element in building the false alarm guarantee and the detection delay of R-BOCPD lies in controlling efficiently the quantities log ϑ r,s,t . Indeed using Equation ( 6), we get (for some starting time r):

log ϑ r,s,t = log η r,s,t × I{s = r} -L r:s-1 -L s:t . (10)
Then, it is clear that controlling the log ϑ r,s,t requires an efficient control of L s:t . Using the crude expression of L s:t (see Equation ( 3)) seems to be very naive in the sense that we need to control each instantaneous loss l s,t independently without taking into account the dependencies between l s,t and l s,t-1 . A smarter way to deal with the quantity L s:t lies in writing it as follows:

Lemma 3 (Rewriting the cumulative loss). Based on the Laplace predictor, the cumulative loss L s:t takes the following closed-form expression:

∀x s:t ∈ {0, 1} ns:t L s:t = log (n s:t + 1) + log n s:t t i=s x i .
Remark 5. The main idea of Lemma 3 is taken from the book "Prediction, Learning and Games" by [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF]). An original proof by induction is provided in the appendix. Notice that Lemma 3 is valid for any binary sequence x s:t ∈ {0, 1} ns:t . No assumption on the intrinsic distribution of the sequence x s:t is required.

Lemma 4 (Cumulative loss control before a change-point).

Assume that we observe a sequence x s:t ∼ B (θ). Then, the control of the quantity L s:t is done as follows:

Upper bound:

L s:t log n s:t+1 - t i=s x i log θ - t i=s (1 -x i ) log (1 -θ) ,
Lower bound:

L s:t - t i=s x i log θ - t i=s (1 -x i ) log (1 -θ) + log n s:t+1 √ n s:t -n s:t kl ( µ s:t , θ) - 9 8 .
Remark 6. Notice how tight are the upper and lower bound of the loss L s:t . The control in Lemma 4 represents an essential element to provide the false alarm guarantee in Theorem 2.

Finally, one should notice that the lower bound of the cumulative loss L s:t involves the Kullback-Leibler divergence kl ( µ s:t , θ). For very tight control of the cumulative loss, we need to efficiently control the quantity kl ( µ s:t , θ). This is done uniformly in Lemma 5 and Lemma 6.

Lemma 5 (Time uniform kl (•, •) concentration). Let: µ t denotes the empirical mean over the sequence x 1 , ..., x t ∼ B (θ), then for all (δ, α) ∈ (0, 1) × (1, ∞) we have:

P θ ∀t ∈ N : kl ( µ t , θ) < α t log log(αt) log(t) log 2 (α)δ 1 -δ.
Lemma 6 (Doubly-time uniform kl (•, •) concentration). Let: µ s:t denotes the empirical mean over the sequence x s , ..., x t ∼ B (θ), then for all (δ, α) ∈ (0, 1) × (1, ∞) we have:

P θ ∀t ∈ N , ∀s ∈ (r, t] : kl ( µ s:t , θ) < α n s:t × log n r:t log 2 (n r:t ) log((α + 1) n s:t ) log(2) log 2 (α)δ 1 -δ.

Then, in order to build the detection delay guarantee, we will need to efficiently control the quantity | µ r:s-1 -µ s:t | (which is related to L r:s-1 + L s:t -L r:t via Pinsker inequality). This is done thanks to Lemma 7.

Lemma 7 (Doubly-time uniform concentration). Let:

x r , ...x t be a sequence of independent binary random variables sampled from a Bernoulli distribution and µ i:j the empirical mean over the sequence x i:j . Then, for all (r, δ) ∈ N × (0, 1), we get the following control:

P ∃ t > r, s ∈ [r, t) : | µ r:s-1 -µ s:t -E [ µ r:s-1 -µ s:t ]| C r,s,t,δ δ,
where: C r,s,t,δ is defined in Equation ( 8).

Numerical illustrations of R-BOCPD against the state-of-art

In this section, we provide numerical comparisons between the proposed strategy R-BOCPD and two state-of-art strategies: BOCPD and the Improved GLR [START_REF] Maillard | Sequential change-point detection: Laplace concentration of scan statistics and non-asymptotic delay bounds[END_REF] Highlighting the use of the function V r:t-1 In order to highlight the use of the function V r:t-1 as initial weight given to the forecaster newly created at time t (instead of the original one V t ), we compare the R-BOCPD strategy against its previous version BOCPD in the following experimental setting. We generate 2500 trajectories (sequences) of length T = 5000 where we vary the number of observation before the change-point from 10 to 1000 and we vary the changepoint gap ∆ from 0.01 to 1.

Then, we run R-BOCPD and BOCPD strategy on the same sequence 600 times. Finally, we plot the mean detection delay difference between R-BOCPD and BOCPD. Each square corresponds to a detection event for a change-point τ c . The y coordinate corresponds to the number of observations both R-BOCPD and BOCPD algorithms received before the change-point, the x coordinate is the gap of the change-point. From figure 3(a), we see that the detection lay of R-BOCPD is slightly smaller than the one of BOCPD. Indeed, the detection delay difference is negative over all the experiments. By the way, using the function V r:t-1 instead of V t as an initial weight given to the forecaster newly created allows us to speed up the change-point detection.

Highlighting the use of the restart procedure Restart r:t In order to highlight the benefit of using the restart procedure Restart r:t in R-BOCPD, we compare R-BOCPD strategy against BOCPD in the following setting. We generate a piece-wise stationary Bernoulli process with four change-points observed at time (τ 1 = 1, τ 2 = 301, τ 3 = 701, τ 4 = 1051), then we run R-BOCPD and BOCPD on this environment and finally we plot (in figure 2) the change-point estimation τ t for both R-BOCPD and BOCPD.

From figure 2, the curves of R-BOCPD and BOCPD are almost the same meaning that there is no significant difference in terms of false alarm and detection delays for both algorithms. Thus, restart procedure Restart r:t doesn't affect the performances of the Bayesian online change-point detector.

Figure 2. In all the experiment, we choose ηr,s,t = 1 n r:t for R-BOCPD and h = 3/1200 for BOCPD. The curves are averaged over 300 runs. (Their error bars are also plotted).

COMPARISON WITH THE IMPROVED GLR

Recently, the classical Generalized Likelihood Ratio (GLR) strategy has been improved by [START_REF] Maillard | Sequential change-point detection: Laplace concentration of scan statistics and non-asymptotic delay bounds[END_REF] by welltuning the decision threshold. It used a novel sharp concentration inequality based on the Laplace method for scanstatistics which holds doubly uniformly in time (see Lemma 7). The final formulation of the Improved GLR strategy for Bernoulli processes takes the following form: GLR r:t = I ∃ s ∈ [r, t) : µ r:s -µ s+1:t C r,s,t,δ where C r,s,t,δ is defined in Equation ( 8).

This strategy has been proven to be asymptotically order optimal, in the sense of Theorem 1 (see Theorem 6 in (Maillard, 2019)). Therefore, comparing R-BOCPD against the Improved GLR strategy is a wise choice since GLR is considered as a very good baseline for the setting of the paper. Thus in Figure 3(b), we generate 2500 trajectories (sequences) of length T = 2500 where we vary the number of observation before the change-point from 10 to 500 and we vary the change-point gap ∆ from 0.01 to 1. Then, we run R-BOCPD and Improved GLR strategy on the same sequence 360 times. Finally, we plot the mean detection delay difference between R-BOCPD and Improved GLR.

Figure 3(b) highlights the benefit of the R-BOCPD algorithm over the Improved GLR strategy. Indeed, the detection delay of R-BOCPD is slightly smaller than the one of the Improved GLR strategy. The while square means that Improved GLR isn't able to perform a detection while R-BOCPD does. Thus, for the small gap case, R-BOCPD is more robust than the Improved GLR strategy.

Experiments on Well-log data (Real world data)

These data have been studied in the context of changepoint detection by [START_REF] Fearnhead | On-line inference for hidden markov models via particle filters[END_REF] and has become a benchmark data set for uni-variate changepoint detection. They consist on 4050 measurements y 1 , ...y 4050 ∈ 6.42 × 10 4 , 1.04 × 10 5 of nuclear magnetic response taken during the drilling of a well. The data are used to interpret the geophysical structure of the rock surrounding the well. The variations in mean reflect the stratification of the earth's crust. In order to perform the experiments on the Well-log data, we typically proceed by computing the re-scaled values ỹ1 , ..., ỹ4050 ∈ [0, 1] then we use the sequence of samples x 1 ∼ B (ỹ 1 ) ..., x 4050 ∼ B (ỹ 4050 ) as input for BOCPD, R-BOCPD and GLR (see figure 4). Finally, we plot the estimation of the change-points for each algorithm. Notice that R-BOCPD is more suitable to detect the change-point at t = 2800 than BOCPD or GLR.

Extension to finite support distributions

In this paper, the restarted Bayesian Online Change-point detector (R-BOCPD) has been specially designed for Bernoulli distributions (see Lemma 3 and Definition 3). This does not seem to have much limited its applications. Extensions to discrete-support distributions might be possible, resorting for instance to other concentration inequalities results, but this is not the purpose of this work. Note that, algorithms working on Bernoulli distributions can be conveniently extended to work with other set of distributions with bounded support: A classical way to do so when considering distribution D with bounded support in [a, b], and some observation y t ∼ D ∈ [a, b], is to compute the re-scaled observation ỹt ∈ [0, 1], then use the sample x t ∼ B (ỹ t ) as input (This transformation may not preserve optimality Difference between detection delays of R-BOCPD and GLR. The white square means that ImprGLR isn't able to perform a detection while R-BOCPD does. properties, though). The experiments in section 6.2 has been performed following this procedure.

It should be noted that our analysis makes use of some specific properties of Bernoulli distributions, such as concentration inequalities, the key Lemma 3 and existence of explicit conjugate priors. Lemmas 5, 6 and 7 on the other hand are valid for any sub-Gaussian distributions. The Extension of our analysis to other popular distributions (e.g. Gaussians, Poisson, etc.) would need the specific equivalent of Lemma 3, and depend on the specific concentration inequalities and conjugate priors for this family. We believe this requires careful case by case examination. 

Conclusion and future work

In this paper, we introduced an improvement of the Bayesian Online Change-point Detector, called Restarted BOCPD. We provided a non-asymptotic analysis of its false alarm rate and detection delay, and shown numerically that our proposal outperforms its previous version. This constitutes arguably the first problem-dependent analysis of a Bayesian strategy in the context of change-point detection, and opens the path towards a complete analysis of BOCPD on the one hand, and the development of other Bayesian alternative on the other hand. We note that obtaining such guarantees is of primary importance in some applications, and in particular in the increasingly popular context of non-stationary multiarmed bandits.
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 1 Figure 1. Variation of the R-BOCPD detection delay D∆,r,τ c as a function of the change point gap ∆ (x-axis) and the number of observations before the change-point nr,τ c -1 (y-axis). For this plot, we choose ηr,s,t = 1 n r:t for R-BOCPD.

  (a) Difference between detection delays of R-BOCPD and BOCPD.

Figure 3 .

 3 Figure3. In all the experiments, we choose ηr,s,t = 1 n r:t for R-BOCPD and h = 1/T for BOCPD. The parameter δ (false alarm rate of ImpGLR) is set to 0.01.

Figure 4 .

 4 Figure 4. In all the experiment, we choose ηr,s,t = 1 n r:t for R-BOCPD and h = 1/T for BOCPD. The curves are averaged over 300 runs. (Their error bars are also plotted).
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