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Restarted Bayesian Online Change-point Detector
achieves Optimal Detection Delay

Réda Alami 1 Odalric Maillard 2 Raphael Féraud 3

Abstract
In this paper, we consider the problem of sequen-
tial change-point detection where both the change-
points and the distributions before and after the
change are assumed to be unknown. For this prob-
lem of primary importance in statistical and se-
quential learning theory, we derive a variant of the
Bayesian Online Change Point Detector proposed
by (Fearnhead & Liu, 2007) which is easier to an-
alyze than the original version while keeping its
powerful message-passing algorithm. We provide
a non-asymptotic analysis of the false-alarm rate
and the detection delay that matches the existing
lower-bound. We further provide the first explicit
high-probability control of the detection delay for
such approach. Experiments on synthetic and real-
world data show that this proposal outperforms
the state-of-art change-point detection strategy,
namely the Improved Generalized Likelihood Ra-
tio (Improved GLR) while compares favorably
with the original Bayesian Online Change Point
Detection strategy.

1. Introduction and related works
The problem of online detecting abrupt variations (change-
points) in the generative parameters of a sequence of ob-
servations x1, . . . xn, where observations are received one
by one, is considered. Addressing this problem is useful
in a number of real-world applications including finance
(Schmitt et al., 2013), genetics (Grzegorczyk & Husmeier,
2009), cybersecurity (Polunchenko et al., 2012), robotics
(Goldberg & Matarić, 2003; Biswas et al., 2002; Konidaris
et al., 2010), speech recognition (Panda & Nayak, 2016),
climate modeling (Nandhini & Devasena, 2019). The online
change-point detection problem has received a lot of atten-
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tion from various areas of mathematical statistics, informa-
tion theory and computer science over the past century. We
refer the interested reader to the recent survey (Aminikhang-
hahi & Cook, 2017) on the large amount of methods devel-
oped for time series change point detection, and to (Bas-
seville et al., 1993; Brodsky & Darkhovsky, 1993; Jie &
Gupta, 2000; Tartakovsky, 1991; Csörgö & Horváth, 1997;
Wu, 2007) for classical textbooks on change-points. As
noticed in (Aminikhanghahi & Cook, 2017), performance
guarantees are still lacking for many such methods, espe-
cially in terms of finite time guarantee on the detection
delay and estimation of the change-gap, both important fea-
tures for the practitioner. Amongst the many methods, the
celebrated CUSUM strategy from (Page, 1954) and its ex-
tension called Generalized Likelihood Ratio (GLR), that
are following a frequentist approach based on likelihood
ratio thresholding have been analyzed recently first in (Lai
& Xing, 2010) and then in (Maillard, 2019), where a fully
explicit parameter tuning is also provided, together with
fully non-asymptotic guarantees.

In this paper, we turn to Bayesian approaches. In the seminal
paper of (Fearnhead & Liu, 2007), the authors introduced
the Bayesian Online Changepoint Detection (BOCPD) strat-
egy to infer the most recent change-point, by computing the
probability distribution of the elapsed time since the last
change-point (runlength). Although the algorithm has been
used extensively (including in non-stationary multi-armed
bandits, (Mellor & Shapiro, 2013; Alami et al., 2016; Kerk-
ouche et al., 2018; Dakdouk et al., 2018) and other change-
point context (Adams & MacKay, 2007; Turner et al., 2009;
Xuan & Murphy, 2007; Wilson et al., 2010; Saatçi et al.,
2010; Caron et al., 2012; Niekum et al., 2014; Turner et al.,
2013; Ruggieri & Antonellis, 2016; Knoblauch & Damoulas,
2018; Knoblauch et al., 2018)), up to our knowledge, no
formal analysis of its performance in terms of false-alarm
or detection delay has been performed except the work in
(Knoblauch et al., 2018), where the authors has built a robust
BOCPD version to reduce false discovery rates.

Note that although BOCPD stands for Bayesian Online
Change Point Detection, the algorithm performs no detec-
tion at all; rather, it maintains weights to estimate the elapsed
time since the last change-point. Following this work, we
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provide a modification of the BOCPD strategy that we ana-
lyze. In particular we provide a non-asymptotic guarantees
related to the false-alarm (that is, detecting a change point
while there was no change) in Theorem 2 and related to the
detection delay (the number of steps after a change-point
occurs before we declare detection) in Theorem 3.

In Section 2, we formally introduce the times-series model
with abrupt changes, as well as notations. We provide in
Section 3 a new formulation of the BOCPD strategy from
(Adams & MacKay, 2007), that we reinterpret from the
standpoint of aggregation of forecasters, leading to a com-
pact formulation presented in Algorithm 1. We then present
a simple way to make use of this strategy to effectively de-
tect changes, instead of just estimating the time since the last
change. We note that the analysis of BOCPD involves deal-
ing with a combinatorial number of terms, and propose a
simplification of this strategy in order to derive performance
guarantees. We call the resulting strategy R-BOCPD for
Restarted Bayesian Online Change Point Detection. Then,
we provide in Section 5 the two theoretical guarantees of
this strategy: namely the false alarm rate control and de-
tection delay (Theorem 2, Theorem 3). Finally, we show
numerically that this strategy outperforms its previous ver-
sion BOCPD and its compares favorably with the Improved
GLR strategy introduced by (Maillard, 2019). For the sake
of clarity, the proofs of the analytical results are in the ap-
pendices.

2. Sequential change-point detection setting
Sequential change-point detection, which is rooted in clas-
sical statistical sequential analysis (Basseville et al., 1993),
aims to detect the change in underlying distributions of a
sequence of observations as quickly as possible.

In this paper, we study the online change point detection
problem, where a sequence of independent univariate ran-
dom variables with common fluctuation upper bound are
collected, and the mean may change at one or multiple time
points. Indeed, we consider an agent aiming at detecting
changes in the generation of an online stream. At each time
step t, the agent observes the datum xt ∼ B (µt): a random
variable following the Bernoulli distribution of mean µt and
need to decide whether or not there is a change in the gener-
ation of the stream. Alternatively, the agent may compute at
each time step t, an estimation τ̂t of the last change-point.

Definition 1 (Piece-wise stationary Bernoulli process). Let
T denote the time horizon of the game (stream length) and
CT the overall number of change-points observed until time
T . We assume that the observations xt ∼ B (µt) are gener-
ated by a piece-wise Bernoulli process such that there exists
a non-decreasing change-points sequence (τc)c∈[1,CT ] ∈
NCT verifying:

{
∀c ∈ [1, CT ] , ∀t ∈ Tc = [τc, τc+1) µt = θc,

τ1 = 1 < τ2 < ... < τCT+1 = T + 1.
(1)

Remark 1 (Interests in the Bernoulli case). The interests in
working on the Bernoulli distributions are not as restrictive
as it seems. On the first hand, from a concentration point of
view, Bernoulli distributions can be seen as a worst case of
bounded distributions. Moreover, Bernoulli distributions are
crucially used in many widespread applications of machine
learning. For instance:

• modelling the collisions in cognitive radio
• monitoring the performances of statistical models
• monitoring events in probes for network supervision
• the multi armed bandit problem
• experiments in clinical trials and recommender systems

Notation 1. In the following, we denote by xs:t :=
(xs, ..., xt) the sequence of observations from time s up
to time t > s. Furthermore, the length of the sequence xs:t
is denoted by ns:t := t− s+ 1 and the empirical mean over
the sequence xs:t is denoted by µ̂s:t := 1

ns:t

∑t
i=s xi.

Definition 2 (Online change-point detection strategy). An
online change-point strategy A takes sequentially as input
a sequence xr:t and output (at each time t) a binary scalar
such that:

A (xr:t) =


1 if a change in the generation of

the sequence xr:t is detected,
0 else.

A strategy is said to be anytime if it does not depend on the
time horizon T which denotes the stream length.

Performance assessment Let: xr:τc−1 ∼ B (θ1),
xτc:t ∼ B (θ2), τc the change-point to detect and r the
starting time. The performance of an algorithm that aims at
detecting the change-point τc ∈ [r, t] in the sequence xr:t is
assessed using two notions.

• False alarm rate: the probability of detecting a
change at some instant s ∈ [r, τc) where there is no
change. Usually, the false alarm rate is expressed as:
P
{
∃s ∈ [r, τc) : A (xr:s) = 1

}
.

• Detection delay: the number of time steps needed to
detect a change. It is formally defined for a strategy
A as: τ̂A (xr:t) := min

{
s ∈ [r, t] : A (xr:s) =

1
}

. Thus, the detection delay is expressed as:
D|θ2−θ1|,r,τc := (τ̂A (xr:t)− τc)× I{τ̂A (xr:t) > τc},
where I{•} denotes the indicator function.

Currently, the literature provides us with an interesting
asymptotic lower bound on the expected detection delay.
Theorem 1 gives the lower bound. (It is a reformulation of
Theorem 3.1 in (Lai & Xing, 2010)).
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Theorem 1 (Asymptotic lower bound on the expected de-
tection delay). Let: xr:τc−1 ∼ B (θ1), xτc:t ∼ B (θ2), A
an online change-point detection strategy, τc the change-
point to detect and r the starting time. Assuming that the
false alarm rate is controlled such that: Pθ1

{
∃s ∈ [r, τc) :

A (xr:s) = 1
}
6 δ, then as the quantity nr:τc

|log δ| →δ→0
∞,

the expected detection delay Eθ1,θ2 [τ̂A (xr:t)− τc] is lower
bounded as follows:

Eθ1,θ2 [τ̂A (xr:t)− τc] >

Pθ1
{
τ̂A (xr:t) > τc

}
kl (θ2, θ1)

 log
1

δ

where kl (•, •) stands for the Kullback-Leibler divergence

for Bernoulli distributions.

3. The original Bayesian Online Change Point
Detector (BOCPD)

In this section, we describe the original version of the
Bayesian Online Change Point Detector introduced in
(Fearnhead & Liu, 2007) and then revisited in (Adams &
MacKay, 2007). Then,we reformulate it in term of a learn-
ing procedure using a growing number of forecaster. By this
way, we highlight the difficulty of its analysis.

3.1. Learning using the runlength inference

(Adams & MacKay, 2007) have introduced an efficient
Bayesian strategy for handling piece-wise stationary pro-
cesses. This Bayesian strategy computes p (rt|x1:t) the
posterior distribution over the current runlength rt, which
denotes the number of time steps since the last change-point,
given the data so far observed x1:t. The exact inference on
the runlength distribution is done recursively using the fol-
lowing message-passing algorithm:

p (rt|x1:t) ∝
∑
rt−1

p (rt|rt−1)︸ ︷︷ ︸
hazard

p (xt|rt−1,x1:t−1)︸ ︷︷ ︸
UPM

p (rt−1|x1:t−1)

where the hazard function is expressed as follows:

p (rt|rt−1) =


H (rt−1) if rt = 0

1−H (rt−1) if rt = rt−1 + 1

0 otherwise
(2)

with: H(s) =
Pchange (s+1)∑∞
t=s+1 Pchange(t)

and Pchange denotes the prob-
ability distribution over the interval between changepoints.

A simple example of BOCPD would be to use a constant
hazard function h ∈ (0, 1) in the sense that p(rt = 0|rt−1)
is independent of rt−1 and is constant, giving rise, a
priori, to geometric inter-arrival times for change points
(Pchange(s + 1) = h (1− h)

s). Thus, the recursive run-

length distribution computation becomes:

p(rt 6= 0|x1:t) ∝ (1− h) p(xt|rt−1,x1:t−1)p(rt−1|x1:t−1)

p(rt = 0|x1:t) ∝ h
∑
rt−1

p(xt|rt−1,x1:t−1)p(rt−1|x1:t−1)

Then, for Bernoulli observations (xt ∼ B (µt)) the underly-
ing predictive distribution (UPM) can be set to the Laplace
predictor.

Definition 3 (Laplace predictor). The Laplace predictor
Lp (xt+1|xs:t) takes as input a sequence xs:t ∈

{
0, 1
}ns:t

and predicts the value of the next observation xt+1 ∈
{

0, 1
}

as follows:

Lp (xt+1|xs:t) :=

{∑t
i=s xi+1

ns:t+2 if xt+1 = 1,∑t
i=s(1−xi)+1

ns:t+2 if xt+1 = 0,

where ∀x ∈ {0, 1} Lp (x|∅) = 1
2 corresponds to the uni-

form prior given to the process generating θc.

Remark 2. Laplace predictor is used as the estimator of
the maximum likelihood with a uniform prior. It originates
from the classical literature on universal codes and has
standard robustness properties and Bayesian interpretation
that make it of especial interest. Another variant is the
Krichesky-Trofimov estimate (Cerqueira & Leonardi, 2018).

Although BOCPD algorithm is very efficient in practice, its
analysis in term of false alarm rate and detection delay is
still an open problem. As a first step of the analysis of the
Bayesian Online Change Point Detection, in this section
we reformulate it in terms of learning strategy based on a
growing number of forecasters.

In the following, to simplify the derivations (especially for
Lemmas 1 and 2) we assume that the hazard function for
BOCPD is constant (H (rt−1) = h). Otherwise, the state-
ment of Lemmas 1 and 2 becomes cumbersome to write and
difficult to understand.

3.2. Learning with a growing number of forecasters

Notion of forecaster. Let t ∈ N? and s ∈ [1, t]. A fore-
caster s is a successive product of (t− s) Laplace predictors
(Lp (xt+1|xs:t)× Lp (xt|xs:t−1)× ...× Lp (xs|∅)) (see
Definition 3), created at time s with some initial weight. At
each time t, the forecaster s observes exactly the sequence
xs:t from the environment.

At each time t, each possible value of the runlength rt ∈
[0, t− 1] corresponds to a specific forecaster. More specifi-
cally, the forecaster starting at time s corresponds at time t
to the t− s value of the runlength rt.
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Forecaster loss. Using the Laplace predictor, the instan-
taneous loss of the forecaster s at time t is given by:

ls,t := − log Lp (xt|xs:t−1)

= −xt log Lp (1|xs:t−1)− (1− xt) log Lp (0|xs:t−1) .

Then, let L̂s:t :=
∑t
s′=s ls′:t denotes the cumulative loss

incurred by the forecaster s from time s until time t which
takes the following crude expression:

L̂s:t :=

t∑
s′=s

− log Lp (xt|xs′:t−1) (3)

Forecaster weights. Instead of dealing with the posterior
distribution of the runlength rt, we propose to give to each
forecaster s a weight vs,t := p(rt = t−s|xs:t) according to
its sequence of observations xs:t. By this way, we describe
the novel formulation of the Bayesian Online Change Point
Detector in Algorithm 1. Notice that in line 5, Algorithm 1
performs a change-point detection, which was not present
in (Adams & MacKay, 2007).

Algorithm 1 BOCPD (Fearnhead & Liu, 2007)
Input: h ∈ (0, 1)

1: v1,1 ← 1
2: for t = 1, . . . do
3: Observe xt ∼ B (µt)
4: Define for each forecaster s up to time t:

vs,t ←

{
(1− h) exp (−ls,t) vs,t−1 ∀s < t,

h
∑t−1
i=1 exp (−li,t) vi,t−1 s = t .

(4)

5: Estimate the last change-point τ̂t such that:
τ̂t ← argmaxs∈[1,t] vs,t.

6: end for

Equation (4) defines the weights vs,t recursively. Lemma
1 expands the expression of vs,t for a better way to handle
these quantities.

Lemma 1 (From recursive to closed-form expressions).
Let: Vt =

∑t
s=1 vs,t. Then, by noticing that Vt =∑t−1

s=1 exp (−ls,t) vs,t−1, the quantities vs,t take the follow-
ing alternative closed-form expression:

vs,t =

{
(1− h)

t−s+1
hI{s 6=1} exp

(
−L̂s:t

)
Vs ∀s < t,

hVt s = t.

First, from Lemma 1 one should notice that the quantity Vt
plays the role of an initial weight that is given to the fore-
caster newly created at time t. Thus, in order to control the
quantities vt,s, we need to explicitly expand the expression
of Vt.

The expression for Vt is given iteratively (see Lemma 1).
Making it explicit reveals the power of the strategy intro-
duced by (Fearnhead & Liu, 2007), that combines the up-
dates of exponentially many forecasters into a simple it-
erative scheme. Indeed, Lemma 2 gives us the explicit
expression of Vt.

Lemma 2 (Computing the initial weight Vt). The initial
weight Vt takes the following form:

Vt = (1− h)
t−2

t−1∑
k=1

(
h

1− h

)k−1

Ṽk:t where:

Ṽk:t =

t−k∑
i1=1

t−(k−1)∑
i2=i1+1

...

t−2∑
ik−1=ik−2+1

exp
(
−L̂1:i1

)
×

k−2∏
j=1

exp
(
−L̂ij+1:ij+1

)
exp

(
−L̂ik−1+1:t−1

)
.

On the other hand, dealing with the explicit expression of Vt
is challenging from a theoretical standpoint (proving perfor-
mance guarantees), since we need to control a combinatorial
number of cumulative losses. Indeed, notice that:

t−k∑
i1=1

t−(k−1)∑
i2=i1+1

...

t−2∑
ik−1=ik−2+1

1 =

(
t− 2

k − 1

)
,

where
(
•
•

)
stands for the binomial operator.

4. The Restarted Bayesian Online Change
Point Detector algorithm (R-BOCPD)

In this section, we introduce a pruning version of the original
BOCPD which is built on a novel initial weight function,
a restart procedure to prune the useless experts and a well
tuned hyper-parameter instead of the hazard function.

4.1. Introducing a simple initial weight.

In order to avoid the difficulty mentioned in Lemma 2, we
propose to use a much simpler initial weight that takes the
following form:

Vr:s−1 := exp
(
−L̂r:s−1

)
for some starting time r.

Notice that the initial weight Vr:s−1 is a restricted version
of the original one Vs by forgetting the contribution of all
forecasters but the one launched at the starting time r (un-
derlined term in Lemma 2). Thereby, the control of the
initial weight is made easier: instead of dealing with a com-
binatorial number of cumulative losses, we only need to
control one cumulative loss (L̂r:s−1). Thus, for some start-
ing time r, we denote by ϑr,s,t the novel weight given to
the forecaster s > r at time t > s. Then, one should also
notice that BOCPD (Algorithm 1) produces an estimation of
the last change point at each time step. In order to analyze
this algorithm in term of detection delay, we propose to
introduce a change-point decision rule (restart procedure).
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4.2. Introducing a restart procedure.

For any starting time r 6 t, the change-point criterion is
written as follows:

Restartr:t = I{∃s ∈ (r, t] : ϑr,s,t > ϑr,r,t} (5)

where ϑr,s,t denotes the weight of the forecaster s created
with the initial weight Vr:ts−1

at time t (see Algorithm 2 line
4). The intuition behind the criterion Restartr:t is that
at each time t < τ where there is no change, the forecaster
distribution tends to be concentrated around the forecaster
launched at the starting time r. So, if the distribution ϑr,s,t
undergoes a change then it can be seen as a certain change-
point that has appeared. Thereby when Restartr:t =
1, a change-point is detected and thus we restart a new
forecaster at time r = t+1 and delete all previous launched
forecasters (s < r). This can be seen as a sophisticated
pruning out procedure to reduce the number of launched
forecasters.

Finally, by using the hyper-parameter ηr,s,t (instead of the
constant value h) and plugging the initial weight Vr:t−1

and the decision rule Restartr:t into the formalism of
BOCPD (Equation 4), we obtain a restarted version of the
Bayesian Online Change Point Detector which is described
in Algorithm 2.

Algorithm 2 R-BOCPD
Input: ηr,s,t ∈ (0, 1)

1: r ← 1, ϑr,1,1 ← 1, ηr,1,1 ← 1.
2: for t = 1, . . . do
3: Observe xt ∼ B (µt)
4: Define for each forecaster s from time r to time t:

ϑr,s,t ←

{
ηr,s,t
ηr,s,t−1

exp (−ls,t)ϑr,s,t−1 ∀s < t,

ηr,t,t × Vr:t−1 s = t .
(6)

5: if Restartr:t = 1 then r ← t + 1, ϑr,r,r ← 1,
ηr,r,r ← 1.

6: Estimate the last change-point: τ̂t ← r.
7: end for

4.3. Discussion about R-BOCPD

The main difference between the R-BOCPD and its previous
version lie primarily in the use of the test Restartr:t = 1
for detecting the change-points. The second difference is the
use of a simple initial weight Vr:t−1 instead of the quantity
Vt standing for the sum of the forecaster weights at time t.
This is essentially done for theoretical reasons (see Lemma
2). The third difference is the use of a hyper-parameter ηr,s,t
instead of the hazard function h. The quantity ηr,s,t

ηr,s,t−1
→
t→∞

1 is used in updating the forecaster distribution ϑr,s,t at time
t instead of the quantity (1− h) whose asymptotic behavior
is the same for an harazd rate very small. Indeed, 1−h ≈ 1.

Finally, unlike (Adams & MacKay, 2007; Fearnhead & Liu,
2007) where the hazard function is assumed to be known
(see Appendix A for more details), the function ηr,s,t will
be specified thanks to the analysis in section 5.1.

5. Performance guarantees
In this section, we build the two main guarantees for the R-
BOCPD algorithm, namely: the false alarm rate (Theorem 2)
and the detection delay control (Theorem 3). Then, we
provide the reader with some useful tools to build these
guarantees.

5.1. Non-asymptotic analysis of R-BOCPD

Let r denotes the time of the last restart and τc the change-
point just coming after r.

Theorem 2 states the condition on ηr,s,t where R-BOCPD
(algorithm 2) does not make any false alarm with high prob-
ability. It is without reminding that the false alarm cor-
responds to the event where Restartr:t = 1 during the
period [r, τc).

Theorem 2 (False alarm rate). Assume that xr:t ∼ B (θ).
Let: α > 1. If ηr,s,t is small enough such that:

∀t ∈ [r, τc) , s ∈ (r, t] :

ηr,s,t <

√
nr:s−1 × ns:t

10 (nr:t + 1)
×
(

log(4α+ 2)δ2

4nr:t log((α+ 3)nr:t)

)α
then, with probability higher than 1 − δ, no false alarm
occurs on the interval [r, τc):

Pθ
{
∃ t ∈ [r, τc) : Restartr:t = 1

}
6 δ.

Before stating the control of the detection delay, we need to
introduce the notion of relative gap ∆r,s,t.

Definition 4 (Relative gap ∆r,s,t). Let ∆ ∈ [0, 1]. The
relative gap ∆r,s,t for the forecaster s at time t takes the
following form (depending on the position of s):

∆r,s,t =

(
nr:τc−1

nr:s−1
I{τc 6 s 6 t}+

nτc:t
ns:t

I{s < τc}
)

∆.

Theorem 3 states the detection delay under some condition
on the quantity ηr,s,t.

Theorem 3 (Detection delay). Let xr:τc−1 ∼ B (θ1),
xτc:t ∼ B (θ2) and ∆ = |θ1 − θ2|: the change-point gap.
Then, let: fr,s,t = log nr:s + log ns:t+1 − 1

2 log nr:t + 9
8 .

If ηr,s,t is large enough such that:

ηr,s,t > exp
(
− 2nr,s−1 (∆r,s,t − Cr,s,t,δ)2

+ fr,s,t
)
,

then, the change-point τc is detected (with a probability at
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least 1− δ) with a delay not exceeding D∆,r,τc , such that:

D∆,r,τc = min

{
d ∈ N? : d >

(
1− Cr,τc,d+τc−1,δ

∆

)−2

2∆2
×

− log ηr,τc,d+τc−1 + fr,τc,d+τc−1

1 +
log ηr,τc,d+τc−1−fr,τc,d+τc−1

2nr,τc−1(∆−Cr,τc,d+τc−1,δ)
2

}
, (7)

where: Cr,s,t,δ =

√
2

2

(√
1 + 1

nr:s−1

nr:s−1
log

(
2
√
nr:s
δ

)

+

√
1 + 1

ns:t

ns:t
log

(
2nr:t

√
ns:t + 1 log2 (nr:t)

log(2)δ

))
. (8)

Discussion about the detection delay D∆,r,τc From Eq.
(7), for a fixed r and τc we notice that the larger the change-
point gap ∆, the smaller the detection delay D∆,r,τc and
vice versa. Moreover for a fixed gap ∆, the larger nr,τc−1:
the number of observations before the change-point τc, the
smaller the detection delay D∆,r,τc (cf figure 1).

Figure 1. Variation of the R-BOCPD detection delay D∆,r,τc as
a function of the change point gap ∆ (x-axis) and the number of
observations before the change-point nr,τc−1 (y-axis). For this
plot, we choose ηr,s,t = 1

nr:t
for R-BOCPD.

Remark 3 (Minimum detectable gap ∆min (r, τc, t)). In-
stead of imposing a condition on the lower-bound of
ηr,s,t, we can discuss the detectability of the change-
point τc according to the magnitude of the gap ∆. Thus,
if the gap ∆ is of magnitude at least ∆min (r, τc, t) =√
− log ηr,τc,t+fr,τc,t

nr:τc−1
+ Cr,τc,t,δ, then the change-point τc

is detected (with a probability at least 1 − δ) with a finite
delay not exceeding D∆,r,τc .

Discussion about the asymptotic optimality We com-
pare the result of Theorem 3 with the existing lower-bound

on the detection delay (see (Lai & Xing, 2010)). The asymp-
totic regime corresponds to the case where the elapsed time
between the last restart r and the new change point τc tends
to infinity, while the probability of false alarm δ tends to
zero. More formally, the asymptotic regime is reached when
nr:τc−1

log(1/δ) → ∞, and log nr:τc−1 = o
(
log 1

δ

)
when δ → 0.

We obtain that:

D∆,r,τc →
τc→∞

− log ηr,τc,d+τc−1 + o
(
log 1

δ

)
2 |θ2 − θ1|2

. (9)

Thus, following Theorem 1, the detection delay D∆,r,τc is
asymptotically order optimal (up to the Pinsker inequality
tightness relating |θ2 − θ1|2 to kl (θ2, θ1)). Moreover, the
smaller ηr,s,t, the larger the detection delay and vice-versa.
Also, following Remark 3, the smaller ηr,s,t, the larger the
minimum detectable gap ∆min (r, τc, t).
Remark 4 (Main difficulty to get optimality with the Kull-
back-Leibler divergence). The result of Equation 9 shows
the Euclidean distance |θ2 − θ1|2 instead of the Kullback-
Leibler divergence kl (θ2, θ1) as expected from Theorem 1.
Indeed, in the analysis of the detection delay (see Appendix
C), the quantity nr:s−1kl (µ̂r:s−1, µ̂r:t) + ns:tkl (µ̂s:t, µ̂r:t)
appears (it naturally comes from Lemma 3). Building a
lower bound of nr:s−1kl (µ̂r:s−1, µ̂r:t) + ns:tkl (µ̂s:t, µ̂r:t)
showing the quantity kl (θ2, θ1) (in the case where there is
change point τ ∈ [r, t]) does not seem trivial. Thus, we have
opted to use the Pinsker inequality which has slightly re-
duced the optimality of our result but it remains significant.

Discussion about the choice of ηr,s,t. Choosing ηr,s,t ≈
1
nr:t

seems to be a wise choice since it allows us to verify the
conditions of Theorem 2 (for some α → 1) and Theorem
3. Thus, by plugging ηr,s,t ≈ 1

nr:t
into the asymptotic

expression of the detection delay (Equation 9), we get (in
the asymptotic regime nr:τc−1

log(1/δ) → ∞, and log nr:τc−1 =

o
(
log 1

δ

)
when δ → 0):

D|θ2−θ1|,r,τc →
τc→∞

o
(
log 1

δ

)
2 |θ2 − θ1|2

.

By this way, the detection delay is asymptotically optimal
in the sense of Theorem 1 (up to the Pinsker inequality
tightness relating |θ2 − θ1|2 to kl (θ2, θ1)).

5.2. Sketch of proof for the false alarm rate control and
the detection delay

In this section, we provide the key elements and the es-
sential intuitions to build the false alarm guarantee and the
detection delay control. The key element in building the
false alarm guarantee and the detection delay of R-BOCPD
lies in controlling efficiently the quantities log ϑr,s,t. Indeed
using Equation (6), we get (for some starting time r):

log ϑr,s,t = log ηr,s,t × I{s 6= r} − L̂r:s−1 − L̂s:t. (10)
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Then, it is clear that controlling the quantity log ϑr,s,t re-
quires an efficient control of L̂s:t.
Using the crude expression of L̂s:t (see Equation (3)) seems
to be very naive in the sense that we need to control each
instantaneous loss ls,t independently without taking into
account the dependencies between ls,t and ls,t−1. A smarter
way to deal with the quantity L̂s:t lies in writing it as fol-
lows:

Lemma 3 (Rewriting the cumulative loss). Based on the
Laplace predictor, the cumulative loss L̂s:t takes the follow-
ing closed-form expression:

∀xs:t ∈ {0, 1}ns:t L̂s:t = log (ns:t + 1) + log

(
ns:t∑t
i=s xi

)
.

Remark 5. The main idea of Lemma 3 is taken from the
book ”Prediction, Learning and Games” by (Cesa-Bianchi
& Lugosi, 2006). An original proof by induction is provided
in the appendix. Notice that Lemma 3 is valid for any binary
sequence xs:t ∈ {0, 1}ns:t . No assumption on the intrinsic
distribution of the sequence xs:t is required.

Lemma 4 (Cumulative loss control before a change-point).
Assume that we observe a sequence xs:t ∼ B (θ). Then, the
control of the quantity L̂s:t is done as follows:

Upper bound:

L̂s:t 6 log ns:t+1 −
t∑
i=s

xi log θ −
t∑
i=s

(1− xi) log (1− θ) ,

Lower bound:

L̂s:t > −
t∑
i=s

xi log θ −
t∑
i=s

(1− xi) log (1− θ) + log
ns:t+1√
ns:t

− ns:tkl (µ̂s:t, θ)−
9

8
.

Remark 6. Notice how tight are the upper and lower bound
of the loss L̂s:t. The control in Lemma 4 represents an
essential element to provide the false alarm guarantee in
Theorem 2.

Finally, one should notice that the lower bound of the cu-
mulative loss L̂s:t involves the Kullback-Leibler divergence
kl (µ̂s:t, θ). For very tight control of the cumulative loss, we
need to efficiently control the quantity kl (µ̂s:t, θ). This is
done uniformly in Lemma 5 and Lemma 6.

Lemma 5 (Time uniform kl (•, •) concentration). Let: µ̂t
denotes the empirical mean over the sequence x1, ..., xt ∼
B (θ), then for all (δ, α) ∈ (0, 1)× (1,∞) we have:

Pθ
{
∀t ∈ N? : kl (µ̂t, θ) <

α

t
log

log(αt) log(t)

log2(α)δ

}
> 1− δ.

Lemma 6 (Doubly-time uniform kl (•, •) concentration).
Let: µ̂s:t denotes the empirical mean over the sequence
xs, ..., xt ∼ B (θ), then for all (δ, α) ∈ (0, 1)× (1,∞) we
have:

Pθ
{
∀t ∈ N?,∀s ∈ (r, t] : kl (µ̂s:t, θ) <

α

ns:t
×

log
nr:t log2(nr:t) log((α+ 1)ns:t)

log(2) log2(α)δ

}
> 1− δ.

Then, in order to build the detection delay guarantee, we
will need to efficiently control the quantity |µ̂r:s−1 − µ̂s:t|
(which is related to L̂r:s−1 + L̂s:t− L̂r:t via Pinsker inequal-
ity). This is done thanks to Lemma 7.

Lemma 7 (Doubly-time uniform concentration). Let:
xr, ...xt be a sequence of independent binary random vari-
ables sampled from a Bernoulli distribution and µ̂i:j the
empirical mean over the sequence xi:j . Then, for all
(r, δ) ∈ N? × (0, 1), we get the following control:

P
{
∃ t > r, s ∈ [r, t) :

|µ̂r:s−1 − µ̂s:t − E [µ̂r:s−1 − µ̂s:t]| > Cr,s,t,δ
}
6 δ,

where: Cr,s,t,δ is defined in Equation (8).

6. Numerical illustrations of R-BOCPD
against the state-of-art

In this section, we provide numerical comparisons between
the proposed strategy R-BOCPD and two state-of-art strate-
gies: BOCPD and the Improved GLR (Maillard, 2019) in
two different schemes, a first comparison on synthetic data
and a second comparison on real world data. Software and
simulation code is available at https://github.com/
Ralami1859/Restarted-BOCPD.

6.1. Synthetic data

6.1.1. COMPARISON WITH BOCPD

Highlighting the use of the function Vr:t−1 In order to
highlight the use of the function Vr:t−1 as initial weight
given to the forecaster newly created at time t (instead of the
original one Vt), we compare the R-BOCPD strategy against
its previous version BOCPD in the following experimental
setting. We generate 2500 trajectories (sequences) of length
T = 5000 where we vary the number of observation before
the change-point from 10 to 1000 and we vary the change-
point gap ∆ from 0.01 to 1.

Then, we run R-BOCPD and BOCPD strategy on the same
sequence 600 times. Finally, we plot the mean detection
delay difference between R-BOCPD and BOCPD. Each
square corresponds to a detection event for a change-point
τc. The y coordinate corresponds to the number of obser-
vations both R-BOCPD and BOCPD algorithms received
before the change-point, the x coordinate is the gap of the

https://github.com/Ralami1859/Restarted-BOCPD
https://github.com/Ralami1859/Restarted-BOCPD
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change-point. From figure 3(a), we see that the detection de-
lay of R-BOCPD is slightly smaller than the one of BOCPD.
Indeed, the detection delay difference is negative over all
the experiments. By the way, using the function Vr:t−1 in-
stead of Vt as an initial weight given to the forecaster newly
created allows us to speed up the change-point detection.

Highlighting the use of the restart procedure Restartr:t
In order to highlight the benefit of using the restart
procedure Restartr:t in R-BOCPD, we compare
R-BOCPD strategy against BOCPD in the following
setting. We generate a piece-wise stationary Bernoulli
process with four change-points observed at time
(τ1 = 1, τ2 = 301, τ3 = 701, τ4 = 1051), then we run
R-BOCPD and BOCPD on this environment and finally we
plot (in figure 2) the change-point estimation τ̂t for both
R-BOCPD and BOCPD.

From figure 2, the curves of R-BOCPD and BOCPD are
almost the same meaning that there is no significant differ-
ence in terms of false alarm and detection delays for both
algorithms. Thus, restart procedure Restartr:t doesn’t
affect the performances of the Bayesian online change-point
detector.

Figure 2. In all the experiment, we choose ηr,s,t = 1
nr:t

for R-
BOCPD and h = 3/1200 for BOCPD. The curves are averaged
over 300 runs. (Their error bars are also plotted).

6.1.2. COMPARISON WITH THE IMPROVED GLR

Recently, the classical Generalized Likelihood Ratio (GLR)
strategy has been improved by (Maillard, 2019) by well-
tuning the decision threshold. It used a novel sharp con-
centration inequality based on the Laplace method for scan-
statistics which holds doubly uniformly in time (see Lemma
7). The final formulation of the Improved GLR strategy for
Bernoulli processes takes the following form:

GLRr:t = I
{
∃ s ∈ [r, t) :

∣∣µ̂r:s − µ̂s+1:t

∣∣ > Cr,s,t,δ}
where Cr,s,t,δ is defined in Equation (8).

This strategy has been proven to be asymptotically order
optimal, in the sense of Theorem 1 (see Theorem 6 in (Mail-
lard, 2019)). Therefore, comparing R-BOCPD against the
Improved GLR strategy is a wise choice since GLR is con-
sidered as a very good baseline for the setting of the pa-
per. Thus in Figure 3(b), we generate 2500 trajectories
(sequences) of length T = 2500 where we vary the number
of observation before the change-point from 10 to 500 and
we vary the change-point gap ∆ from 0.01 to 1. Then, we
run R-BOCPD and Improved GLR strategy on the same
sequence 360 times. Finally, we plot the mean detection
delay difference between R-BOCPD and Improved GLR.

Figure 3(b) highlights the benefit of the R-BOCPD algo-
rithm over the Improved GLR strategy. Indeed, the detec-
tion delay of R-BOCPD is slightly smaller than the one of
the Improved GLR strategy. The while square means that
Improved GLR isn’t able to perform a detection while R-
BOCPD does. Thus, for the small gap case, R-BOCPD is
more robust than the Improved GLR strategy.

6.2. Experiments on Well-log data (Real world data)
These data have been studied in the context of change-
point detection by (Fearnhead & Clifford, 2003) and has
become a benchmark data set for uni-variate change-
point detection. They consist on 4050 measurements(
y1, ...y4050 ∈

[
6.42× 104, 1.04× 105

])
of nuclear mag-

netic response taken during the drilling of a well. The data
are used to interpret the geophysical structure of the rock
surrounding the well. The variations in mean reflect the strat-
ification of the earth’s crust. In order to perform the experi-
ments on the Well-log data, we typically proceed by com-
puting the re-scaled values ỹ1, ..., ỹ4050 ∈ [0, 1] then we use
the sequence of samples x1 ∼ B (ỹ1) ..., x4050 ∼ B (ỹ4050)
as input for BOCPD, R-BOCPD and GLR (see figure 4).
Finally, we plot the estimation of the change-points for each
algorithm. Notice that R-BOCPD is more suitable to detect
the change-point at t = 2800 than BOCPD or GLR.

7. Extension to finite support distributions
In this paper, the restarted Bayesian Online Change-point de-
tector (R-BOCPD) has been specially designed for Bernoulli
distributions (see Lemma 3 and Definition 3). This does
not seem to have much limited its applications. Exten-
sions to discrete-support distributions might be possible,
resorting for instance to other concentration inequalities
results, but this is not the purpose of this work. Note that,
algorithms working on Bernoulli distributions can be conve-
niently extended to work with other set of distributions with
bounded support: A classical way to do so when consider-
ing distribution D with bounded support in [a, b], and some
observation yt ∼ D ∈ [a, b], is to compute the re-scaled
observation ỹt ∈ [0, 1], then use the sample xt ∼ B (ỹt)
as input (This transformation may not preserve optimality
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(a) Difference between detection delays of R-BOCPD and
BOCPD.

(b) Difference between detection delays of R-BOCPD and GLR.
The white square means that ImprGLR isn’t able to perform a
detection while R-BOCPD does.

Figure 3. In all the experiments, we choose ηr,s,t = 1
nr:t

for R-
BOCPD and h = 1/T for BOCPD. The parameter δ (false alarm
rate of ImpGLR) is set to 0.01.

properties, though). The experiments in section 6.2 has been
performed following this procedure.

It should be noted that our analysis makes use of some
specific properties of Bernoulli distributions, such as con-
centration inequalities, the key Lemma 3 and existence of
explicit conjugate priors. Lemmas 5, 6 and 7 on the other
hand are valid for any sub-Gaussian distributions. The Ex-
tension of our analysis to other popular distributions (e.g.
Gaussians, Poisson, etc.) would need the specific equivalent
of Lemma 3, and depend on the specific concentration in-
equalities and conjugate priors for this family. We believe
this requires careful case by case examination.

Figure 4. In all the experiment, we choose ηr,s,t = 1
nr:t

for R-
BOCPD and h = 1/T for BOCPD. The curves are averaged over
300 runs. (Their error bars are also plotted).

8. Conclusion and future work
In this paper, we introduced an improvement of the Bayesian
Online Change-point Detector, called Restarted BOCPD.
We provided a non-asymptotic analysis of its false alarm
rate and detection delay, and shown numerically that our
proposal outperforms its previous version. This constitutes
arguably the first problem-dependent analysis of a Bayesian
strategy in the context of change-point detection, and opens
the path towards a complete analysis of BOCPD on the one
hand, and the development of other Bayesian alternative on
the other hand. We note that obtaining such guarantees is of
primary importance in some applications, and in particular
in the increasingly popular context of non-stationary multi-
armed bandits.
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