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Abstract — This article presents a novel approach to design 

an optimum energy management for a series plug-in hybrid 

electric vehicle based on driving cycle recognition. Thanks to an 

intensive study of driver habits, an important part of cycles is 

predictable. Optimized energy management can be developed for 

representative cycles via DP. Those results can be applied to the 

same cycle with slight adaptations thereafter with quality factors 

above 98%.  
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I. INTRODUCTION 

Facing limitation of resources and global warming, users 
are forced to find more environmentally sensible, safe and cost 
effective solutions for their personal transport. Electric vehicles 
do not yet meet the demands due to limited battery lifetime, 
long recharge times, lacking recharge infrastructure [1][2] and 
high cost. However, Plug-in Hybrid Electric Vehicles (PHEV) 
can be the missing link from conventional to electric vehicles 
as they can be recharged by both liquid fuel and electricity and 
their electric autonomy of 30 to 50 km allows to cover at least 
60% of driving cycles [3][4][5][6]. In order to benefit from their 
full potential, it is however required that the PHEV arrives at 
the destination just at the moment when its battery is empty and 
that electrical energy from renewable sources is available at 
destination [7][8]. If thermal liquid fuel is used, whereas the 
cycle could have been covered by electric energy, non-
necessary pollution is created; if the battery is empty before 
arriving at destination, the internal combustion engine has to 
cover all working points, reducing the global efficiency [9][10]. 

Wirasingha and Emadi [9] present an exhaustive analysis of 
control strategies for PHEVs, but it does not cover aspects of 
prediction in detail.  

The purpose of the present work is to know if a particular 
effort on the energy management on usual cycles and driver’s 
habits (journeys, speed profile) is meaningful. If it is the case, 
the goal is to develop a tool in order to optimise the energy flux 
inside a series hybrid powertrain. This is done by suggesting a 
management, which identifies usual cycles and which is able to 
adapt the strategy according to the results of the usual cycle 
recognition with the goal to reach the best energy distribution 
along the journey. The work will give rise to an innovative 
predictive management. Different approaches have been 
presented [11], [12]. 

The article is structured as follows: An overview of vehicle 

use in France is provided in Section II, an analysis of vehicle 
use in the Nièvre Department is presented in Section III. 
Section IV presents the energy management including cycle 
prediction. Conclusions and Perspectives close the article in 
Section V. 

II. OVERVIEW OF PERSONAL VEHICLE USE IN FRANCE

In order to define the best strategy, it is first necessary to 
verify that the use of the vehicle is driven by habits. Figure 1 
presents the main displacement reasons in France in 1994 and 
2008 [13]. It can be noticed that more than 50% of the journeys 
are constrained (work, shopping and study). This distribution is 

stable over the last decades. Therefore, it might be possible to 
identify the destinations during working days. Moreover, the 
average distance of each journey is short (less than 30 km, 
Table 1) and could be covered electrically by the PHEV. 

However, these average values do not give any information 
about the influence of driver behavior (speed profile, 
acceleration), which depends also on the car’s characteristics 
(power, weight,…) and will affect the energy management. 
Even if it is possible to create realistic driving cycles thanks to 
modeling, it can be interesting to study the real use of vehicles 
in order to identify if a limited number of cycles is regularly 
reproduced. Therefore, in order to determine these recurrent 
cycles and the influence of driving behavior, as well as to verify 
the previous values in the rural context of the Nièvre 

Figure 1: Mobility Evolution of Local displacement reasons on working days in 

France for people older than 6 years old) [13] 
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department in France, it has been decided to perform a mobility 
study. The approach is presented in the nest section. 

III. ANALYSIS OF VEHICLE USE IN NIEVRE DEPARTMENT

A. Measurement Approach to Evaluate Vehicle Use 

In order to be able to get significant results which 
correspond to previous study, it has been necessary to define a 
panel, which corresponds to the quota method (age, sex) inside 
the working population of a rural area. In Nièvre, the working 
population is composed by 47% of women and 53% of men and 
the age distribution is presented in Figure 2. It can be noticed 
that the working population is equally distributed according to 
the age criterion between 20 and 60. Only a few percentage of 
the workers are older than 60 due to retirement (legal retire age: 
62 years). In order to fulfill the criterion a panel of 40 
volunteers has been determined and the test were performed 
over 4 months. 

In order to perform the mobility study, ten identical 
autonomous data acquisition systems have been developed 
based on Arduino systems. These systems are placed inside the 
vehicle during one month and do not require any action from 
the driver. They are composed by a 9 axis inertial unit, a GPS 
(speed and position) and a 32 Go micro SD card in order to 
store the data. The power unit is based on 18 Lithium-ion 
batteries. Data is acquired at a frequency of 10 Hz. 

B. Results 

Table 1 : Comparison between Nièvre against mean of France [13]  

During the mobility study of 4 months including 40 drivers, 
a total of 1625 journeys have been performed, which 
corresponds to over 13,000 km. The results are compared to 
previous study from [13] in Table 1 on a daily basis in rural 
areas. It can be noticed that the numbers of journeys and the 
average daily distance are very similar. However, in the present 
study the average time is shorter due to a higher average speed. 
The difference is due to a motorway, which is often used by 
drivers.  

Figure 3: Average daily distance for the drivers in the present study 

Detailed results are presented in Figure 3. As mentioned 
previously, it can be noticed that most drivers travel between 
20 and 30 km per day. However, some drivers are located 
further away from work and travel up 55 km per day. 
In order to optimize the energy distribution, the first step is to 
identify if some usual cycles can be determined for each driver. 
So, a cross-correlation factor is calculated for each driver 
considering daily repetition. Based on this, it is possible to 
quantify the number of occurrences of the different trips.  

For each starting position, the number of identical journeys is 
compared to the total number of journeys starting from this 
point. The identical journeys are determined thanks to a 
normalized cross-correlation factor, σ (equation 1) and the 
journeys are considered to be identical if σ is greater than 0.9. 
The predictability is defined as the ratio between the cycles 
with σ greater than 0.9 and the total number of cycles starting 
at this position. 

Figure 4: Repetition of trips 

The results (Figure 4) indicate that, on working days, more than 
75% of the trips are performed more than five times. Therefore, 
it is possible to identify similarities during working days, as 
presented in Table 2 for all the database and a selection of 
drivers, since the correlation factor is greater than 82% during 
working days. However, drivers’ habits are more difficult to 
identify during week-ends since the overall number of trips is 
reduced and the number of repetition of the same trip is 
reduced: 80% of the trips are performed less than five times. 
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Journeys 3,15 3,2 

Distance (km) 29 24,6 ± 4,1 

Duration (min) 49 28,7 ± 5,5 

Average speed (km/h) 35 52,2 ± 10,6 

Figure 2: Selection of tested drivers by age 
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Moreover, most journeys are performed during working days 
since they represent more than 80% of the journeys (1304 trips 
for a total trip number of 1625). However, some drivers, such 
as the woman between 40 and 50 years in Table 2, have a 
limited journey range and a more important number of journeys 
with a higher number of destinations. In this case the correlation 
factor is reduced to 60%. A further analysis of this driver 
indicates that most journeys are performed in urban areas. = 	 ∑ , , , ̅,∑ , ,, ∑ , ̅,         (1) 

Table 2: Comparison of driving habits of 4 drivers during working days and 

week-ends 

Number of 
Journeys 

Average
Distance  

Predictability

Working days 

W 20/30 53 15 km 87% 

M 30/40 70 9,9 km 90% 

W 40/50 80 7,5 km 60% 

M 50/60 35 5,6 km 80% 

overall 1304 8,6 km 82% 

IV. ENERGY MANAGEMENT INCLUDING CYCLE PREDICTION

The energy management is based on cycle recognition 
including speed profile. The selected speed cycle is then used 
inside a vehicle model to determine the energy and power needs 
during the cycle and optimize the energy management.  

A. Cycle prediction 

Since it is possible to identify a repetitive scheme, it is 
necessary to store and sort the journeys as a function of 
destination. This will allow the identification of the potential 
destination as a function of origin and day as well as the 
determination of the best energy distribution over the journey. 
Thus, it is necessary to determine a representative speed cycle 
for a journey. The use of an average speed cycle is not possible 
since it would completely erase the driver behavior and the 
speed fluctuations. Therefore, it has been decided to determine 
among the stored speed cycles for each journey the most 
representative one based on a cross-correlation criteria 
calculated from the speed profile. The equation is similar to 
equation 1. This speed cycle is used to calculate the most 
efficient energy distribution. Each time a journey is performed, 
the new speed cycle is stored and compared to previously stored 
cycles using the cross-correlation. The energy management 
system only keeps the ten cycles with the highest cross-
correlation criteria. This reduces the impact of chaotic traffic 
issues (traffic jams, accident and road work) on the speed 
cycles. 

B. Vehicle model 

The vehicle model is based on Energetic Macroscopic 
Representation (EMR) and its Inversion Based Control (IBC) 
of a plug-in series hybrid vehicle [14]. The model has been 
previously validated over the NOAO racing car which was 
developed and tested in Magny-Cours [15].  

This model includes all the different thermal and electrical 
components of the powertrain and is able to calculate the mass 
flow rate of fuel and the state-of-charge (SOC) of the battery. 
The energy and power needs are calculated based on the effort 

(aerodynamics, inertia, friction) applied on the vehicle and the 
respect of the speed cycle. Based on the rules used for the 
energy management in the NOAO, the model reproduces the 
power profile from the electric machine and the fuel 
consumption of the internal combustion engine with a very 
good accuracy. Finally, the maximum difference between the 
experimental and numerical SOC is below 1% 

C. Optimisation strategy 

It is commonly admitted that Dynamic Programing (DP) is 
able to provide the best optimization strategy of a system [9], 
[16]. However, the calculation time makes it impossible to use 
on-line. Therefore, Dynamic Programming is used off-line at 
the end of the journey in order to determine which would have 
been the best energy management along the journey taking into 
account the state-of charge of the battery and the fuel 
consumption. In order to verify the potential gain thanks to DP, 
it has been used in order to calculate the best energy 
management and the resulting fuel consumption for each cycle. 
The results are presented for a selection of five similar cycles 
of the same journey in Table 3. For those similar cycles, the 
energy management determined using DP for the most 
representative cycle (i.e. cycle 5 determined by cross-
correlation) has been applied for the other occurrences of this 
cycle. This results in an increase of the fuel consumption by up 
to 7% according to the cycle when compared to the DP 
calculation of the cycle. Therefore, a blind application of DP is 
not the best strategy. 

Table 3: Impact of DP strategy on fuel consumption for 9.2 km journey with 

an average speed of 44 km/h for a starting SOC of 0.54 and finishing at 0.37 

Cycle 1 2 3 4 5 

Correlation σ 

(speed) 
0,983 0,979 0,976 0,981 1 

DP Fuel 

consumption (L) 
0,73 0,64 0,61 0,73 0,70 

Cycle 5 strategy 

(L) 
0,79 0,67 0,65 0,77 0,70 

Gap (%) 7,5 4,4 6,1 5,2 / 

A second optimization strategy, based on least square 
minimization, has been implemented in order to adapt the 

energy management online during the journey. The method 
minimizes the difference between (i) the optimal consumption 
calculated thanks to DP on the most representative cycle and 

Figure 5: Distribution of the optimality reached thanks to the optimization 
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(ii) the consumption obtained with the energy repartition 
chosen at time t. The algorithm also calculates the energy 
management over a foreseeable window. An optimality factor 
has been determined in order to compare the fuel consumption 
determined by the strategy with the optimum fuel consumption 
calculated off-line thanks to dynamic programming. This factor 
corresponds to the fuel consumption predicted by DP divided 
by the consumption obtained thanks to the optimization. As an 
example, when applying this new optimization strategy to cycle 
number 1, it has been possible to reach a fuel consumption of 
0,742 L. This represents an optimality factor of 0.983. The 
extension of this strategy to the experimental database is 
presented in Figure 5. It is possible to reach an optimality factor 
greater than 0.95 for all the speed cycles of the database 
recorded during week days (Figure 5).   

V.  CONCLUSION AND PERSPECTIVES 

The present study aims at developing an optimization tool 
in order to obtain a predictive energy management inside a 
plug-in series hybrid vehicle. An experimental investigation of 
mobility revealed the more than 82% of the displacement can 
be predicted during working days due to constrained mobility. 
Therefore, the optimization strategy could be applied in order 
to reduce the fuel consumption thanks to the prediction of the 
journey based on a cross correlation calculation.  

The optimization strategy has been compared to the energy 
management calculated thanks to dynamic programming using 
an energetic macroscopic representation of the vehicle. The 
developed optimization strategy allows to reach at least 95% of 
the optimality predicted by dynamic programing.  

In the future, the prediction of the speed cycle will be made 
more precise since it will take into account the starting time. 
Moreover, in order to improve the prediction, the instantaneous 
location will be compared to stored starting position in order to 
calculate the optimization strategy based on a larger database 
and include more speed cycle. This will also allow a better 
prediction and a reduced fuel consumption when the journey is 
performed for the first time. 

ACKNOWLEDGEMENTS 

The authors want to acknowledge all the volunteers who 
participate to the mobility investigation and the Burgundy 
Council for the financial support via ID-Motion laboratory. 

REFERENCES 

[1] T. Devloo, N. Leemput, G. S. Member, J. Van Roy, F. Geth, 

J. Driesen, and S. Member, “Component Improvements in 

the Electrification of Passenger Vehicles Drivetrains,” no. 3, 

2013. 

[2] J. Barkenbus, “Our electric automotive future: CO2 savings 

through a disruptive technology,” Policy Soc., vol. 27, no. 4, 

pp. 399–410, Mar. 2009. 

[3] S. G. Wirasingha, N. Schofield, and A. Emadi, “Plug-in 

hybrid electric vehicle developments in the US: Trends, 

barriers, and economic feasibility,” 2008 IEEE Veh. Power 

Propuls. Conf., pp. 1–8, 2008. 

[4] E. Ericsson, “Independent driving pattern factors and their 

influence on fuel-use and exhaust emission factors,” Transp. 

Res. Part D, vol. 6, pp. 325–345, 2001. 

[5] E. Ericsson, “Variability in urban driving patterns,” Transp. 

Res. Part D, vol. 5, pp. 337–354, 2000. 

[6] M. Khan and K. M. Kockelma,, “Predicting the market 

potential of plug-in electric vehicles using multiday GPS 

data,” Energy Policy, vol. 46, pp. 225–233, 2012. 

[7] S. Mehar, S. M. Senouci, and G. Remy, “EV-planning: 

Electric vehicle itinerary planning,” in Smart 

Communications in Network Technologies (SaCoNeT), 2013 

International Conference on, 2013, vol. 1, pp. 1–5. 

[8] Q. Gong, Y. Li, and Z. R. Peng, “Trip Based Power 

Management of Plug-in Hybrid Electric Vehicle with Two-

Scale Dynamic Programming,” in IEEE Vehicle Power and 

Propulsion Conference, 2007, pp. 12–19. 

[9] S. G. Wirasingha and A. Emadi, “Classification and Review 

of Control Strategies for Plug-In Hybrid Electric Vehicles,” 

IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111–122, Jan. 

2011. 

[10] V. Larsson, L. J. Mårdh, B. Egardt, and S. Karlsson, 

“Commuter Route Optimized Energy Management of 

Hybrid Electric Vehicles,” vol. 15, no. 3, pp. 1145–1154, 

2014. 

[11] D. Filev, F. Tseng, and R. Mcgee, “Contextual On-Board 

Learning and Prediction of Vehicle Destinations,” 2011. 

[12] Q. Ye, L. Chen, and G. Chen, “Predict Personal Continuous 

Route,” pp. 587–592, 2008. 

[13] "Commissariat Général au Développement Durable", “La 

mobilité des Français : Panorama issue de l’enquête 

nationale transports et déplacements 2008.” 

[14] L. Jin and W. Wang, “The control strategy and cost analysis 

for series Plug-in hybrid electric vehicle,” 2010 2nd Int. 

Conf. Adv. Comput. Control, pp. 350–354, 2010. 

[15] Z. Asus, D. Chrenko, E.-H. Aglzim, A. Kebairi, A. 

Keromnes, and L. Le Moyne, “Model and Control Strategy 

Simulation of a Racing Series Hybrid Car,” in IEEE 

Vehicular Power and Propulsion Conference VPPC, 2014. 

[16] D. Chrenko, S. Gan, C. Gutenkunst, R. Kriesten, and L. L. 

E. Moyne, “Novel Classification of Control Strategies for 

Hybrid Electric Vehicles,” 2015. 

4


