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Abstract. Isogenic cells can respond differently to cytotoxic drugs, such
as the tumor necrosis factor-related apoptosis inducing ligand (TRAIL),
with only a fraction committing to apoptosis. Since non-genetic transient
resistance to TRAIL has been shown to dependent on caspase-8 dynam-
ics at the receptor level in vitro, here we investigate the core reactions
leading to caspase-8 activation, based on mass-action kinetics models, to
evaluate the basic mechanisms giving rise to the observed heterogeneous
response. In this work, we fit our models to single-cell trajectories of
time-resolved caspase-8 activation measured in clonal cells after treat-
ment with TRAIL. Then, we analyse our results to assess the relevance
of each model and evaluate how well it captures the extent of biological
heterogeneity observed in vitro. Particularly, we focus on a positive feed-
back loop on caspase-8, the impacts of initial condition variations and
the relevance of the caspase-8 degradation.

Keywords: ODE · Mass-action kinetics · Parameter identification ·
Apoptosis · Fractional killing · TRAIL · Caspase-8.

1 Introduction

Apoptosis plays a key role in human tissue homeostasis. Its disruption causes
well-known diseases such as Alzheimer, Parkinson (excessive apoptosis), or auto-
immune disorders and cancers (lack of apoptosis).

To induce cell death in tumor cells, many treatments have been designed
and tested so far, such as TRAIL-receptor ligands, which present the advan-
tage of sparing healthy cells. TRAIL binds the death receptors (DR4/5) of the
cancer cell, initiating the extrinsic apoptosis pathway. Then, a Death-Inducing
Signaling Complex (DISC) is formed in the cytoplasm with adaptor-proteins
such as FADD (Fas-Associated protein with Death Domain). This association
allows the recruitment of the pro-caspase 8 and 10 (hereafter pC8 and pC10)
and other proteins. These pro-caspases compete at the DISC level with c-FLIP
[8], an anti-apoptotic protein, to activate the initiator caspase 8 (C8) [31] via



dimerization (or even trimerization) and self-cleavage of pC8 [19]. In many cell
types, once activated, C8 triggers cell death by mediating Bid cleavage causing
the mitochondrial outer membrane permeabilization (MOMP, [4]) which induces
the activation of the effective caspases 3 and 7 (C3 and C7), or “executioner cas-
pase”, leading to DNA fragmentation and cell death [21,30].

Although TRAIL has been a very promising drug thanks to its ability to target
cancer cells specifically, it showed only limited success in the clinic due to a lack
of efficiency. In fact, single-cell studies revealed that cells from the same clonal
population commit differently to cell death when treated with TRAIL (or other
pro-apoptotic drugs), with an important variability in the time of death for the
sensitive cells and with a fraction of cells evading apoptosis entirely. When the
remaining resistant cells are retreated a second time with cancer drugs (even
saturating doses), fractional killing is once again observed. [32,33].

A number of studies and mathematical modeling efforts have evaluated the
origins of drug response heterogeneity, proposing mechanisms such as the ran-
dom fixation of TRAIL on the DR4/5 [1,3], the presence of decoy receptors
(which impair the formation of a functional DISC after ligand binding [2]) or
the p53 gene effects on TRAIL efficiency [24,25]. The gene CD-95 has also an
impact as it regulates FADD, an essential protein for the pC8 binding to the
DISC [5,26,27,28]. c-FLIP antagonist role has been revealed as well, and gives a
better understanding of how it “competes” with pC8 at DISC level to trigger (or
not) apoptosis [9,6,7,5], (even if C8 and FLIP seem to bind the DISC on different
sites, pC8 favors c-FLIP recruitment [8]). The action of C10 is less well iden-
tified. It may be an anti-apoptotic factor in some cases [10], as some members
of Bcl-2 family that competes for activating MOMP downstream [30,21,4]. But
C10 has also a pro-death role [11,12], it can trigger apoptosis in absence of C8
[13,14] and favor anti-tumorigenesis [15]. Finally, C8 activation has been defined
as a determining factor in cell death decision [16], by showing a threshold in rate
and timing for C8 activation that distinguishes resistant and sensitive cells [17].

These studies lead to the conclusion that cell decision happens before MOMP
and the effector caspase cascade.

Here, taking these insights into consideration with C8 threshold as the main
determinant of cell fate, we aim to identify within the core reactions, basic path-
way designs that capture cell response heterogeneity to TRAIL, and features of
C8 dynamics. Once identified, the next goal is to characterize these regulatory
events, to understand how and to what extent, some proteins may influence the
C8 dynamic and determine how their variation is correlated to the cell-to-cell
variability.

In that aim, we especially focus on three points: (i) FADD role and its ca-
pacity for regulating C8, (ii) the relevance of caspase clusters composed of C8
and C10, and (iii) the regulatory effect of the effector caspases on C8 which
depends on a positive feedback loop. To investigate the effect of these interac-
tions and their relative timing on apoptosis, we then propose four alternative
minimal ODE models. Next, based on the results of Roux and al. [17], these
models are calibrated from single-cell data and the distributions of the different

2



parameters are analysed to find links between the models, the C8 dynamic and
the cell fates. Finally, we study the feedback loop action, quantify the influence
of FADD and C10 and validate our models, explaining the special distribution
of C8 degradation.

2 Modeling the main processes of extrinsic apoptosis
initiation

The first goal is to establish the mechanisms responsible for the main pathway
dynamics, and their impact on the C8 activation threshold distinguishing be-
tween TRAIL resistant and sensitive cells. The second aim is to understand how
these these mechanistic models can reproduce cell response heterogeneity.

To this end, this study focuses on three different regulation points : the FADD
protein and its capacity for regulation of C8, the importance of C8/C10 cluster
in C8 activation [10] and the possible presence of a dowstream regulatory effect
of C8 [21,30], symbolized here by a positive feedback loop from the effector cas-
pase cascade on the C8. In each case, our analyses aim to understand the effect
of a given mechanism on the C8 dynamics main features and in which measure
this process is a source of heterogeneity or, at least, source of extrinsic noise.

2.1 Models’ assumptions

To capture the extrinsic apoptosis core reactions, our models are thus con-
structed with a minimal number of components and steps : the TRAIL binding
on the death-receptor DR4/5, the recruitment of the FADD protein and the ini-
tiator pC8 to form the DISC, the pC8 dimerization, and finally the activation
of C8. (c-FLIP is considered to be in very small quantities and so has a lower
impact on C8 recruitment.)

TRAIL is denoted by T, the DR4/5 receptors become a single component
named R (for Receptor), the pC8 and C8 are grouped to form a unique pro-
tein C8. Instead of the recruitment of a single pC8, our models assume two
molecules simultaneously bind to DISC, since only dimerization or trimerization
of pC8 can trigger apoptosis. FD denotes the FADD protein and Z0 the complex
TRAIL-receptors. The downstream caspase cascade, the MOMP and cell death
are grouped into the component D, with a intermediary complex Z1.

2.2 Extrinsic apoptosis initiation core models (EAICM)

Four extrinsic apoptosis initiation core models (EAICM) are proposed, corre-
sponding to the four possible combinations of presence or not of a feedback loop
on C8 conjugated with either the adaptor protein or C8/C10 binding.

The feedback loop is represented by the red links on Figure 1. Two models
focus on C10/C8 coupling, where the C8 dimerization happens before the C10
binding (models -cf and -c) to understand how C10 interacts with C8, and finally
two others, where only the FADD reaction and the C8 dimerization are taken into
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Fig. 1: Extrinsic apoptosic initiation core models (EAICM) schemes

account (models -af and -a) to examine the importance of the adaptor protein
FADD, especially its regulatory capacity of pC8 recruitment.

In models without feedback loop, C̃8 is a constant parameter representing
available pC8.

To model the different reactions, we apply the mass-action kinetics and obtain
four models of the form dX/dt = fPr (X), with f : R7 → R7 depending on

the time-independent reaction rate vector Pr = (
→
K1,

←
K1, ..., α), and the initial

conditions: {
Xc

0 = (T0, R0, C80, C100, Z0,0, Z1,0, D0)
Xa

0 = (T0, R0, C80, FD,0, Z0,0, Z1,0, D0)

EAICM-cf:

dT

dt
= −

→
K1 TR +

←
K1 Z0,

dR

dt
= −

→
K1 TR +

←
K1 Z0,

dZ0

dt
=
→
K1 TR−

←
K1 Z0 −

→
K2 Z0C82 +

←
K2 Z1,

dC8

dt
= −2

→
K2 Z0C82 + 2

←
K2 Z1 + αD −Kdeg C8,

dZ1

dt
=
→
K2 Z0C82 −

←
K2 Z1 −

→
K3 Z1C10 +

←
K3D,

dC10

dt
= −

→
K3 C10Z1 +

←
K3D,

dD

dt
=
→
K3 Z1C10−

←
K3D.

(1)

EAICM-af:

dT

dt
= −

→
K1 TR +

←
K1 Z0,

dR

dt
= −

→
K1 TR +

←
K1 Z0,

dZ0

dt
=
→
K1 TR−

←
K1 Z0 −

→
K2 Z0FD +

←
K2 Z1,

dFD

dt
= −

→
K2 FDZ0 +

←
K2 Z1,

dZ1

dt
=
→
K2 Z0FD −

←
K2 Z1 −

→
K3 Z1C82 +

←
K3D,

dC8

dt
= −2

→
K3 Z1C82 + 2

←
K3D + αD −Kdeg C8,

dD

dt
=
→
K3 Z1C82 −

←
K3D.

(2)
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EAICM-c:
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←
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(3)

EAICM-a:
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←
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+
←
K4D,
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=
→
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2 −
←
K4D.

(4)

Comparing these four alternatives to experimental measurements is then nec-
essary to investigate which of the mechanisms more faithfully reproduces the
data and is capable of better generating the single-cell dynamic properties.

3 Single cell model calibration

Our models are calibrated using single cell data from Roux and al. [17]. The
data measure the C8 activity before MOMP happens for 414 single cells (114
resistant and 300 sensitive) treated only with 50ng/mL of TRAIL (and not with
cycloheximide contrary to [21,30]), for 10 hours. These data were obtained using
the Initiator Caspase-Reporter Protein (IC-RP [21]), a FRET pair of fluorescent
proteins that are linked by the peptide sequence of Bid, cleaved by C8. (FRET
therefore decreases once IC-RP molecules are cleaved by C8.) In the same time,
Bid is cleaved in tBid, which regulates MOMP in extrinsic apoptosis. As there is
no degradation of IC-RP, contrary to tBid, it accumulates leading to the FRET
stabilization at the end of the experiment for resistant cells that corresponds to
the tBid degradation.

The four EAIC models are fitted to each single cell traces separately, as op-
posed to fitted to one averaged trace [41,42]. This approach is meant to study
each single cell’s heterogeneous features and it allows to obtain the parameter
distribution without any assumption.

One model topology is used for both resistant and sensitive cells, since the
clonal cells are genetically homogeneous. (The main differences between the two
populations are attributed to the protein expression levels.)

As only data on the evolution of FRET ratio in time is available, and because
the models do not take into account the FRET activation, we assume that the
FRET creation corresponds only to a re-scale of C8, ie that the FRET dynamic
is obtained from the C8 dynamic by changing the amplitude of the C8 curve
and the activation time with a supplementary delay, and so the method com-
pares directly the implemented C8 concentration to the real cleaved C8, with
great attention to the slope as the FRET slope is a major indicator of the C8
activation speed.

5



3.1 From qualitative criteria to quantitative reference values

To evaluate and compare the four models, it is essential to define a set of criteria
to determine how closely each model approaches the real data. This involves
translating the main qualitative properties of the C8 curves into quantitative
values that can be calculated from the model’s solutions. Three fundamental
properties are relevant in C8 dynamic and can be evaluated as reference values,
as follows (see Figure 2):

(i) the time delay before activation of C8 is triggered; (ii) the mean slope dur-
ing the C8 activation phase; and (iii) the C8 concentration reaches a stabilization
value, over the last 300 minutes (especially for resistant cells). These properties
can be turned into reference values by defining:

– T100000 evaluates the initial delay by C8(T100000) = 100000 molecules;
– S is the C8 activation slope, as the maximum of the derivative of C8(t)

between 25 and 275 minutes, computed using the Matlab function sgolayfilt ;
– Vfinal gives the final stabilization value, ie C8(600), or the value of C8 at

death time, for sensitive cells.

Fig. 2: Reference values and C8 features scheme

It must be noticed that the initial decreasing phase isn’t taken into account. It
is due to the photoactivation of the FRET and doesn’t depend on the apoptosis
initiation and as a result, of our models.

3.2 Distinguishing the effects of initial conditions and rate
parameters on the system dynamics

Here, we use a nonlinear least-squares method to determine the parameters
P = (Pr, P

j
i , j ∈ {c, a}) of our models dX/dt = fPr (X), P ji ∈ X0, where Pr =
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(
←
K1,

→
K1, ...,Kdeg, α) represents the reaction rates and P ci = (R0, C80, C100) and

P ai = (R0, C80, FD,0) represent the initial conditions to be evaluated during
the model fit, of models EAICM-cf or EAICM-af, respectively. The other initial
conditions are fixed with values from literature [21].

An euclidean norm is used to compute the cost, given by the differences be-
tween the measurements, denoted by C8ti , ti ∈ T = {5, 10, ..., 600} and the
computed solution C8c of the chosen model taken every 5 minutes. To take into
account the slope and the final C8 concentration relevance, the cost is weighted
from the 25th min (approximately the beginning time of the increasing phase)
until the end with heavier weight ω between the 25th and the 275th (for the slope
calculated during the increasing phase). For instance, ω = 1000 between min 25
and min 275. After 280 min, ω = 500. Finally, denoted Td, the cell death time,
the cost C is given by:

C2 =
∑

ti∈{5,...,min(20,Td)}

(
C8ti − C8

c
ti

)2
+

∑
ω×

ti∈{25,...,min(275,Td)}

(
C8ti − C8

c
ti

)2
+

∑ ω

2
×

ti∈{280,...,min(600,Td)}

(
C8ti − C8

c
ti

)2
.

(5)

Alternatively, for the resistant population, adding the squared slope difference
between the data and the computed solution, improves the fit. For the sensitive
population, we remove the last parts of the cost when the death time Td is smaller
than the first boundary of the time interval for each one of the three terms of
the sum. To minimize C, we used Matlab and its function fminsearchbnb, to solve
an optimization problem with a physiologically significant initial guess based on
the literature. To access both the individual and joint effects of reaction rate
parameters and initial conditions on the dynamics, the algorithm solves three
different optimization problems,

F1. Minimize the cost C with respect to both Pi and Pr;
F2. Fix initial conditions Pi and minimize cost C with respect to Pr;
F3. Fix reaction constants Pr and minimize cost C with respect to Pi.

Fitting only initial conditions, assumes that the model is “exact” and that the
response heterogeneity comes from environmental conditions and extrinsic noise
only. Conversely, fitting reaction rates only, means that the models have some
variability and possibly unknown or not considered reactions or proteins impact
the behaviour of C8.

It may be expected that the heterogeneity factors are a mix of the two expla-
nations and so the fit obtained on both initial conditions and reaction rates is
the best but, in this case, the results are less straightforward to interpret.

4 Analysing mechanisms for generating heterogeneity

To simulate the models, we set the initial conditions for TRAIL at T0 = 1500
(from [21]), and the intermediary complexes Z0,0, Z1,0 and D0 equal to 0.

Simulations are performed with ode23 for 600 minutes with a weight ω = 1000
for C. For the parameter set and the other initial conditions, when they aren’t
estimated by the algorithm, values obtained during a first manual fit on a median
real cell are used.
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4.1 Comparison of the four core apoptosis models

The first point is to elucidate which of the reactions, binding of the receptor
complex to FD or to C10, best reproduces the behaviour heterogeneity of C8.
To determine which of the models of type 1 or 2 best captures the extrinsic
apoptosis dynamics, the norm C and the reference values are computed for 114
resistant cells and 300 sensitive ones. Then, for each type of fit F1 to F3, we
confront the four models by computing, for each cell and each model, the absolute
value of the difference between the data slope and the C8c slope (that is to say
|SEAICM,i − Sdata,i|, i ∈ {1, ..., 414}). Then, comparing the four results for each
cell, the number of cells for which each model gives the lowest result is counted.
The model with the highest score (i.d. the largest number of cell for which the
given model gives the lowest result comparing the four models) is considered to
have the best performance, as summarized in Table 1. In Appendix A, tables for
the cost C, the C8 final value and the delay are given.

HHH
HHHFit

Model fate EAICM-cf EAICM-c EAICM-af EAICM-a Best model

F1
S. cells 120 78 57 45 EAICM-cf

R. cells 59 11 32 12 EAICM-cf

F2
S. cells 108 79 71 42 EAICM-cf

R. cells 75 12 26 1 EAICM-cf

F3
S. cells 269 8 20 3 EAICM-cf

R. cells 51 23 31 9 EAICM-cf

Table 1: Number of cell best approached per model and type of fits according to
the slope

Table 1 shows clearly that EAICM-cf performs better, suggesting that the
caspase cluster and the feedback loop are the main mechanisms necessary to
reproduce the variability in C8 slope and general cell response heterogeneity.
The same results are obtained for the delay criteria. Moreover, the feedback
loop seems essential to capture cell C8 dynamics, because none of the models
without feedback loop accurately reproduces the three C8 properties. This result
agrees with the findings of Schwarzer and al. [36] in which they demonstrate in
vivo, the downstream inducing apoptosis effectors’ effects on caspase 8. These
outcomes also reveal that the clusterization of C8/C10, and so the recruitment
and the activation of C8, is more important to C8 dynamics than the presence
of FD in pC8 fixation on DISC.Tummers and al. showed that caspase-8 mediates
inflammasome activation independently of FADD in epithelial cells [38], further
evidence that FADD isn’t mandatory for caspase 8 activity. Future work would
expand the study of this cluster reaction, perhaps adding more variables to
take into account the effects of other proteins since the reactions around pC8
recruitment (especially its interactions with pC10 and c-FLIP) are still unclear.
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Another hypothesis could also be made in this case, assuming that in EAICM-
cf, the FD action is not present in the equations but indeed taken into account
since C8 is still recruited at the DISC level.

4.2 The feedback loop mechanism

The second question to address in this Section concerns the effects of the positive
feedback loop on C8 to understand its importance on C8 dynamics.

To evaluate the feedback loop impacts on the C8 dynamic, we use the pa-
rameters obtained from fit F1, on both initial conditions and reaction rates.
Figure 3 and Figure 4 (a) and (c) compare the FRET ratio and the C8c curve
corresponding to the models 1 with and without feedback for selected resistant
and sensitive cells from the cell populations in [17]. It seems clear that the model
without feedback fails to reproduce the initial delay before C8 activation. In a
second plot, Figure 3 and Figure 4 (b) and (d) compare the relative weights of
the different terms that contribute to C8 activation. This is a method devel-
oped by Casagranda and al. in [34] and consists in representing the absolute
values curve of each term that composes the C8 equation, divided by the sum of
all absolute values, to normalize. For instance, if we consider the following C8
equation of EAICM-cf:

dC8

dt
= −2

→
K2 Z0C82 + 2

←
K2 Z1 + αD −Kdeg C8, (6)

then the plotted curves are:

|Kdeg C8|

|Kdeg C8|+ |αD|+ |2
←
K2 Z1|+ |2

→
K2 Z0C82|

,

|αD|

|Kdeg C8|+ |αD|+ |2
←
K2 Z1|+ |2

→
K2 Z0C82|

,

|2
←
K2 Z1|

|Kdeg C8|+ |αD|+ |2
←
K2 Z1|+ |2

→
K2 Z0C82|

,

|2
→
K2 Z0C82|

|Kdeg C8|+ |αD|+ |2
←
K2 Z1|+ |2

→
K2 Z0C82|

.

(7)

Similar plots for the EAICM-af and EAICM-a models can be found in Ap-
pendix B. First, comparing Figure 3 and Figure 4, notice that there are essen-
tially no differences between resistant and non resistant cells in the component-
wise analysis. However, there is no activation delay in C8 curve for the models
without a feedback loop. Then, focusing on the |αD| variation (corresponding
to the feedback loop effect), one can observe that |αD| reaches its maximum
and |KdegC8| its minimum at approximately the same moment, which also co-
incides with the moment when C8 starts increasing. Recall that αD drives all
the effective caspase cascade and the feedback loop, so the coincidence between
maximum of αD and beginning of C8 activation suggests that the feedback loop
markedly increases the production of C8. Finally, observe that, in the absence
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(a) Real FRET ratio and C8c for
EAICM-cf

(b) C8 equation component dynamics
for EAICM-cf

(c) Real FRET ratio and C8c for
EAICM-c

(d) C8 equation component dynamics
for EAICM-c

Fig. 3: Comparison of C8 dynamics and main properties for models EAICM-cf
(a),(b) and EAICM-c (c),(d), for the resistant cell n. 10

(a) Real FRET ratio and C8c for
EAICM-cf

(b) C8 equation component dynamics
for EAICM-cf

(c) Real FRET ratio and C8c for
EAICM-c

(d) C8 equation component dynamics
for EAICM-c

Fig. 4: Comparison of C8 dynamics and main properties for models EAICM-
cf (a),(b) and EAICM-c (c),(d) for the sensitive cell n. 121 - simulations were
performed for 600 min for comparison needs
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of feedback loop, the term |KdegC8| is responsible for all the dynamics of C8,
inducing similar activation slopes for the two phenotypes.
Overall, the feedback loop helps to refine cell decision, by improving modula-
tion of the activation slope, as illustrated by the term αD: for the sensitive cell,
in the first 50 minutes αD increases in a much steeper manner. The feedback
represents a supplementary set of regulatory mechanisms that is surely indepen-
dent from the complex TRAIL/receptors and possibly downstream, yet with a
decisive impact on C8 activation.

The next step is evaluating the effect of variability in initial conditions on
both C8 and cell fate.

4.3 Initial conditions impacts on slope values

This section analyses the initial conditions distributions and compares them with
our reference values, to identify some mathematical patterns that can help pre-
dicting the cell fate. The goal is to find those distributions for which the resistant
and sensitive phenotypes present a significant difference, or a link between the
initial conditions and C8 dynamics.

To represent the data obtained after model’s fitting, the bar chart of the
cell density after model fitting according to their parameter distribution and
the scatter plot of the initial condition distribution in logscale according to
our reference values (for example, the slope) are used. For each type of graph,
resistant and sensitive cells are differenciated to find specific behaviours.

The parameters used for comparison are those obtained from fit F3 (only on
the initial conditions), to evaluate the environmental impacts. A clear difference
for C100 between resistant and sensitive cells is observed on the logscale scatter
plots in Figure 5, with a linear correlation between the slope and the initial pro-
tein value with highly clustered points for the two types of cells. This is also the
case for the FD distribution that can be found in Figure 10. To understand how

(a) EAICM-cf (b) EAICM-c

Fig. 5: Scatter plot of C100 values according to the slope, depending on cell fate,
for the EAICM-cf and EAICM-c

these two initial conditions, as well as R0 variation, affect the C8 dynamics, Fig-
ure 6 shows the evolution of the C8c curves for each model, as two of the initial
conditions are fixed and the third is given by the median value obtained with the
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fit on all the parameters for resistant cells (given in appendix D, in black dash
dots on Figure 6) multiplied by m ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, 1.8, 2, 4, 10} .

(a) EAICM-cf - R0 (b) EAICM-c - R0

(c) EAICM-af - R0 (d) EAICM-a - R0

(e) EAICM-cf - C100 (f) EAICM-c - C100

(g) EAICM-af - FD,0 (h) EAICM-a - FD,0

Fig. 6: Initial condition variation effects on C8 dynamic. The estimated param-
eters Pi are indicated at the top left corners and used as reference values to
vary the initial condition, in the range [0, 10X0], where X0 = R0 in (a)-(d);
X0 = C100 in (e)-(f); and X0 = FD,0 in (g)-(h).

First of all, observe that an increase in the receptor number enhances the
slope of C8 and so it speeds up the C8 production and delays the C8 degrada-
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tion since the stabilization happens later but it doesn’t influence the total C8
production (C8 stabilization at the same value). Hence, R0 is likely to contribute
to determination of the C8 activation threshold.

A saturation effect is observed in every model, for the recruited C8, that can’t
exceed a certain threshold in the total C8 production. This is in agreement with
single cell traces since, independently of the TRAIL dose, even at saturated con-
centration with all the receptors occupied, not every cell commits to apoptosis.
An improvement in our models may be necessary to take into account the nec-
essary receptors trimerization that leads to DISC formation [16].

Another observation is that larger C100 induce larger values for C8 stabiliza-
tion. An increase in C100 enhances the C8 production speed but doesn’t impact
the degradation beginning time. Observe that C100 also plays a significant role
in feedback loop-free models. This effect of C100 on C8 behaviour confirms the
essential role of caspase cluster to trigger cell-death, as shown in Dickens and al.
[16].
Finally, increasing FD,0 delays C8 degradation and improves C8 production or
recruitment, but doesn’t speed up the C8 production since the activation slope
doesn’t show much variation. Furthermore, increasing FD,0 leads to an increase
in C8, thus making it possible to exceed the C8 threshold responsible for cell
death and confirming that FADD is necessary to trigger the extrinsic cell death
as demonstrated by Kuang and al. in [18]. Similarly to C100, FD also has more
influence on the model without feedback loop, suggesting that the feedback loop
has a saturation effect on C8 dynamic.

4.4 Model validation and degradation specificity

Comparison of the reaction rates distributions, singles out C8 degradation rate
which exhibits a large discrepancy between resistant and sensitive populations,
with values related by a factor Kr

deg ≈ 10Ks
deg.

As seen in Section 4.2, degradation is the process that counteracts C8 acti-
vation and, when the term KdegC8 becomes sufficiently high, the stabilization
phase sets in. Decreasing the degradation rate constant should lead to higher
activation slopes and effectively “switch” cells from the resistant to the sensitive
populations.

Data from [17] includes a second group of 563 cells treated with 50ng/mL of
TRAIL and 100ng/mL of Bortezomib, a proteasome inhibitor drug that blocks
C8 degradation and drives the cell to commit apoptosis. To validate our models,
our hypothesis is that, setting Kdeg to zero in model EAICM-cf (while keeping
other parameters as estimated for each resistant cell), will elicit the same re-
sponse as Bortezomib, thus transforming the resistant population into sensitive.
Figure 7(a) shows the FRET ratio of the two groups of cells: the resistant pop-
ulation of 100 cells treated only with TRAIL and the second group of 563 cells
treated with TRAIL and Bortezomib. These experimental results are to be com-
pared with Figure 7(b), that represents the C8c EAICM-cf model curves for our
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original resistant population, with all the corresponding estimated parameters
except for Kdeg, which is set to 0.

(a) Comparison of FRET ratio between re-
sistant cells treated only with TRAIL and
cells treated with TRAIL and Bortezomib.

(b) Comparison of C8c from EAICM-cf for
resistant cells treated only with TRAIL,
with Kdeg = 0 and with classic degrada-
tion.

(c) Slope distribution according to the model used and the C8 degradation rate.

Fig. 7: Degradation study

Observe that the model predictions in Figure 7(b) and (c)

are quite similar to the experimental data. Figure 7

shows that, imposing a null degradation for our model, allows to reproduce
a large heterogeneity range and the main features (delay and bigger slope) of
C8 dynamic of the population treated with Bortezomib, thus validating our
hypothesis.

Why does the sensitive population of the first group of cells show a markedly
lower Kdeg constant? Perhaps a (negative) feedback or similar mechanism is also
acting on the degradation process, annulling its effect in the case of a steep C8
activation. However, it might be the case that the estimation of Kdeg among
the sensitive population is not fully reliable: indeed, recall that the degradation
term is linear, KdegC8, and that active caspase 8 is absent at the beginning
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(C8(0) = 0), implying a very low degradation when compared to terms of the
form K2Z1 or αD which are proportional to T0R0. In addition, sensitive cells
die relatively early during the first 150 minutes, so that there are much fewer
measurement points available than for resistant cells. New modeling steps are
needed to further study the C8 degradation process.

5 Discussion and Conclusion

This paper studies the role and the relevance of several components of the ex-
trinsic apoptosis initiation pathway in cell response heterogeneity. Four minimal
ODE models are proposed, taking into account the major steps of the extrin-
sic pathway: the TRAIL/receptors association, the DISC formation with the
recruitment of pro-caspase 8 and, either a focus on the FADD action, or a par-
ticular attention to the cluster formation of pC8 and pC10. These models also
represent the C8 activation with (or without) a positive feedback loop on C8 to
integrate a supplementary regulation of C8 downstream. Finally, as cell decision
to commit apoptosis seems to happen before effective caspase activation and
MOMP, all the downstream apoptosis steps were combined in a single variable.

The models were calibrated to single cell data from a cloned population treated
with death ligand TRAIL. The corresponding initial conditions and/or param-
eters were analysed to search for correlations between molecular factors and/or
network interactions, and the resulting cell fates.

Our analysis selects two mechanisms that significantly contribute to cell re-
sponse heterogeneity: the clusterization of the caspases C8/C10 and subsequent
C8 activation and, to a larger extent, the positive feedback loop. The formation
of C8/C10 clusters accelerates C8 activation by increasing C8 production as well
as the slope of the curve (see the effect of C100), while the FD reaction does
not greatly affect the slope but delays the stabilization time. Therefore, caspase
clusterization has a greater capacity to generate variability in cell response.

The positive feedback is important in the timing of C8 dynamics, particularly
in reproducing the initial delay observed in C8 activation. Studying the com-
ponents of the C8 equation shows that activation of C8 is triggered when the
feedback loop has a maximum effect on C8 and degradation is still negligible.
Conversely, when the degradation and the feedback loop terms reach similar lev-
els C8 leaves the high slope phase, revealing that the balance between feedback
loop and C8 degradation plays a major role in cell fate.

Another role of the feedback loop is to introduce a saturation on the maxi-
mum level of C8 induced by variability in initial conditions: indeed, for our two
models with positive feedback, increasing the initial numbers of molecules leads
to an increase in the maximum C8 levels, but this maximum value has an up-
perbound independent of the initial numbers. This reveals a large robustness of
the feedback models with respect to variations in initial amounts of molecules.

Finally, our models faithfully reproduce the experiments involving Borte-
zomib, a drug that blocks C8 degradation. In our models, application of Borte-
zomib is represented by setting Kdeg = 0, and the corresponding effect is to

15



increase all activation slopes into the range observed for the sensitive popula-
tion. Based on the mechanisms and interactions selected by our methods, future
work includes the development of a more detailed model to answer further ques-
tions such as the need for trimerization of the death receptor, understand the
process of caspase degradation during the first hours of C8 activation, or adding
new variables to investigate the impact of the anti-apoptotic component c-FLIP.
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U and Öztürk, S., Schnölzer, M., Naumann, M., Krammer, P. H. and Lavrik, IN.
: Molecular architecture of the DED chains at the DISC: regulation of procaspase-
8 activation by short DED proteins c-FLIP and procaspase-8 prodomain. In Cell
death and differentiation, vol. 23, n. 4, p. 681. Nature Publishing Group (2016)

21. Albeck, J. G., Burke, J. M., Spencer, S. L., Lauffenburger, D. A. and Sorger, P.
K. : Modeling a snap-action, variable-delay switch controlling extrinsic cell death.
In PLoS biology, vol.6, n. 12, p. e299. Public Library of Science (2008)

22. Lederman, E. E.Hope, J. M. and King, M. R. : Mass Action Kinetic Model of
Apoptosis by TRAIL-Functionalized Leukocytes. In Frontiers in oncology, vol. 8.
Frontiers Media SA (2018)

23. Bertaux, F., Stoma, S., Drasdo, D. and Batt, G. : Modeling dynamics of cell-to-
cell variability in TRAIL-induced apoptosis explains fractional killing and predicts
reversible resistance. In PLoS computational biology, vol. 10, n. 10, p. e1003893.
Public Library of Science (2014)

17



24. Chong, K. H., Samarasinghe, S., Kulasiri, D. and Zheng, J. : Mathematical mod-
elling of core regulatory mechanism in p53 protein that activates apoptotic switch.
In Journal of theoretical biology, vol. 462, p. 134–147. Elsevier (2019)

25. Ballweg, R., Paek, A. L .and Zhang, T.: A dynamical framework for complex
fractional killing. In Scientific reports, vol.7, n. 1, p. 8002. Nature Publishing Group
(2017)

26. Buchbinder, J. H., Pischel, D., Sundmacher, K., Flassig, R. J. and Lavrik, I. N. :
Quantitative single cell analysis uncovers the life/death decision in CD95 network.
In PLoS computational biology, vol. 14, n. 9, p. e1006368. Public Library of Science
(2018)

27. Bentele, M., Lavrik, I., Ulrich, M., Stösser, S., Heermann, DW., Kalthoff, H., Kram-
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Appendices

A Comparison models tables

H
HHH

HHFit
Model fate EAICM-cf EAICM-c EAICM-af EAICM-a Best model

F1
S. cells 177 20 95 8 EAICM-cf

R. cells 51 3 52 8 EAICM-cf/EAICM-af

F2
S. cells 0 20 0 280 EAICM-a

R. cells 0 102 0 12 EAICM-c

F3
S. cells 0 63 1 236 EAICM-a

R. cells 2 95 0 17 EAICM-c

Table 2: Number of cell best approached per model and type of fits, comparing
C value

HH
HHHHFit

Model fate EAICM-cf EAICM-c EAICM-af EAICM-a Best model

F1
S. cells 132 98 20 50 EAICM-cf

R. cells 46 43 9 16 EAICM-cf

F2
S. cells 130 103 8 59 EAICM-cf

R. cells 55 48 1 10 EAICM-cf

F3
S. cells 222 20 17 41 EAICM-cf

R. cells 64 10 33 7 EAICM-cf

Table 3: Number of cell best approached per model and type of fits comparing
the delay,ie |T100000,EAICM,i − T100000,data,i|, i ∈ {1, ..., 414}
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H
HHH

HHFit
Model fate EAICM-cf EAICM-c EAICM-af EAICM-a Best model

F1
S. cells 91 108 46 55 EAICM-c

R. cells 45 16 35 18 EAICM-cf

F2
S. cells 68 111 59 62 EAICM-c

R. cells 51 10 44 9 EAICM-cf

F3
S. cells 263 0 23 14 EAICM-cf

R. cells 9 26 62 17 EAICM-af

Table 4: Number of cell best approached per model and type of fits according to
C8 final value, ie comparing |Vfinal,EAICM,i − Vfinal,data,i|, i ∈ {1, ..., 414}

B Feedback loop effects for EAICM-af and EAICM-a

(a) Real FRET ratio and C8c for
EAICM-af

(b) C8 equation component dynamics
for EAICM-af

(c) Real FRET ratio and C8c for
EAICM-a

(d) C8 equation component dynamics
for EAICM-a

Fig. 8: Comparison of C8 main features with the dynamic of each C8 equation
component of EAICM-af (a),(b) and EAICM-a (c),(d) for the resistant cell n.
10
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(a) Real FRET ratio and C8c for
EAICM-af

(b) C8 equation component dynamics
for EAICM-af

(c) Real FRET ratio and C8c for
EAICM-a

(d) C8 equation component dynamics
for EAICM-a

Fig. 9: Comparison of C8 main features with the dynamic of each C8 equation
component of EAICM-af (a),(b) and EAICM-a (c),(d) for the sensitive cell n.
121 - simulations were performed for 600 min for comparison needs

C Initial condition and cell fate correlations for
EAICM-af

(a) EAICM-af (b) EAICM-a

Fig. 10: Scatter plot of FD,0 values according to the slope, depending on the cell
fate for EAICM-af and EAICM-a
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D Median parameter values from the fit on both initial
conditions and reaction rates used in Figure 6

EAICM-cf EAICM-c EAICM-af EAICM-a

R. cells S. cells R. cells S. cells R. cells S. cells R. cells S. cells
→
K1 4.3955e-07 2.7388e-07 6.5892e-08 1.2254e-07 1.6320e-07 4.0018e-07 6.5892e-08 1.2254e-07
←
K1 0.0052 0.01129 1.1176 1.7906 3.4358e-04 0.0011 1.1177 1.7907
→
K2 1.5590e-05 2.4304e-05 0.0525 0.0649 25.5081 14.8725
←
K2 2.9114e-04 9.6920e-04 3.6929e-06 1.2142e-05 2.3934 2.1489
→
K3 0.0012 0.002792 0.002045 0.002206 4.5915e-05 2.1800e-04
←
K3 0.0273 0.1607 20.1550 26.9179 2.0294 9.2971
→
K4 16.5523 25.6951 16.5524 25.6952
←
K4 2.6201 2.6749 2.6202 2.6750

Kdeg 0.0133 0.004012 0.0001165 0.001765 0.0122 0.0108 0.0117 0.0018

α 36.2215 48.8287 1.3188 279.2583 27.3338 76.6511 131.8895 279.2584

R0 7.6248e+04 6.7850e+04 8.6019e+04 4.0387e+04 4.8968e+04 5.6593e+04 8.6020e+04 4.0388e+04

C8,0 288.9734 905.9665 667.2585 337.2630 368.2512 663.5847 667.2585 337.2631

C10,0 2.2325e+03 3.1050e+04 761.9486 1.0829e+04

FD,0 2.9291e+03 5.3681e+04 761.9486 1.0830e+04

Table 5: Median reaction rates and initial conditions for all models determined
with the fit on both initial conditions and reactions rates

E Operation of the parameter model and reference value
tables

In addition of this article,, we provide all the parameters tables and the reference values
tables obtained with our 3 types of fit for the 414 cells treated with TRAIL only. A line

corresponds to one parameter in that order (C,
→
K1,

←
K1,

→
K2,

←
K2,

→
K3,

←
K3,

→
K4,

←
K4, α, Kdeg, R0, C80, C100
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or FD,0) and without
→
K4 and

←
K4 for models with feedback loop.

Parameters EAICM-cf NON resist fit Pr only.mat
Parameters EAICM-c NON resist fit Pr only.mat
Parameters EAICM-af NON resist fit Pr only.mat
Parameters EAICM-a NON resist fit Pr only.mat


12× 300 table that gives the 8 reactions
rates (10 for models without feedback loop)

in the first lines and the 3 initial conditions
obtained from the fit only on reaction
rates for the 300 sensitive cells for each

model in the last lines.

Parameters EAICM-cf resist fit Pr only.mat
Parameters EAICM-c resist fit Pr only.mat
Parameters EAICM-af resist fit Pr only.mat
Parameters EAICM-a resist fit Pr only.mat


12× 300 table that gives the 8 reactions rates

(10 for models without feedback loop) in the first
lines and the 3 initial conditions obtained from
the fit only on reaction rates for the 114 resistant
cells for each model in the last lines.

Parameters EAICM-cf NON resist fit Pi only.mat
Parameters EAICM-c NON resist fit Pi only.mat
Parameters EAICM-af NON resist fit Pi only.mat
Parameters EAICM-a NON resist fit Pi only.mat


12× 300 table that gives the 8 reactions rates

(10 for models without feedback loop) in the first
lines and the 3 initial conditions obtained from
the fit only on intial conditions for the 300
sensitive cells for each model in the last lines.

Parameters EAICM-cf resist fit Pi only.mat
Parameters EAICM-c resist fit Pi only.mat
Parameters EAICM-af resist fit Pi only.mat
Parameters EAICM-a resist fit Pi only.mat


12× 300 table that gives the 8 reactions rates

(10 for models without feedback loop) in the first
lines and the 3 initial conditions obtained from the fit
only on initial conditions for the 114 resistant cells

for each model in the last lines.

Parameters EAICM-cf NON resist fit Pi Pr.mat
Parameters EAICM-c NON resist fit Pi Pr.mat
Parameters EAICM-af NON resist fit Pi Pr.mat
Parameters EAICM-a NON resist fit Pi Pr.mat


12× 300 table that gives the 8 reactions rates

(10 for models without feedback loop) in the first
lines and the 3 initial conditions obtained from the
fit on both reaction rates and initial conditions for

the 300 sensitive cells for each model in
the last lines.

Parameters EAICM-cf resist fit Pi Pr.mat
Parameters EAICM-c resist fit Pi Pr.mat
Parameters EAICM-af resist fit Pi Pr.mat
Parameters EAICM-a resist fit Pi Pr.mat


12× 300 table that gives the 8 reactions rates

(10 for models without feedback loop) in the
first lines and the 3 initial conditions obtained

from the fit on both reaction rates and intial
conditions for the 114 resistant cells for each
model in the last lines.

With the same classification, the files that begin by ”Reference value” followed by the
model’s name, the cell fate (”resist” or ”NON resist”) and the type of fit (”Pr only”,
”Pi only”, ”Pi Pr”), contained 3 lines that gives the value of the slope, the C8 final
value and the delay with T100000 in this order with as many columns as cells.
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