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Key Insights
• Rust is the first industry-supported programming language

to overcome the longstanding tradeoff between the safety
guarantees of higher-level languages (like Java) and the
control over resource management provided by lower-level
“systems programming” languages (like C and C++).

• It tackles this challenge using a strong type system based
on the ideas of ownership and borrowing, which statically
prohibits the mutation of shared state. This approach en-
ables many common systems programming pitfalls to be
detected at compile time.

• There are a number of data types whose implementations
fundamentally depend on shared mutable state and thus
cannot be typechecked according to Rust’s strict ownership
discipline. To support such data types, Rust embraces the
judicious use of unsafe code encapsulated within safe APIs.

• The proof technique of semantic type soundness, together
with advances in separation logic and machine-checked
proof, has enabled us to begin building rigorous formal
foundations for Rust as part of the RustBelt project.

There is a longstanding tension in programming language
design between two seemingly irreconcilable desiderata.

• Safety. We want strong type systems that rule out large
classes of bugs statically. We want automatic memory
management. We want data encapsulation, so that we can
enforce invariants on the private representations of objects
and be sure that they will not be broken by untrusted code.

• Control. At least for “systems programming” applications
like web browsers, operating systems, or game engines,
where performance or resource constraints are a primary
concern, we want to determine the byte-level representa-
tion of data. We want to optimize the time and space usage
of our programs using low-level programming techniques.
We want access to the “bare metal” when we need it.

Sadly, the conventional wisdom goes, we can’t have
everything we want. Languages like Java give us strong
safety, but it comes at the expense of control. As a result, for
many systems programming applications, the only realistic
option is to use a language like C or C++ that provides
fine-grained control over resource management. However,

this control comes at a steep cost. For example, Microsoft
recently reported that 70% of the security vulnerabilities they
fix are due to memory safety violations [33], precisely the
type of bugs that strong type systems were designed to rule
out. Likewise, Mozilla reports that the vast majority of critical
bugs they find in Firefox are memory-related [16]. If only
there were a way to somehow get the best of both worlds: a
safe systems programming language with control. . .

Enter Rust. Sponsored by Mozilla and developed actively
over the past decade by a large and diverse community of
contributors, Rust supports many common low-level program-
ming idioms and APIs derived from modern C++. However,
unlike C++, Rust enforces the safe usage of these APIs with
a strong static type system.

In particular, like Java, Rust protects programmers from
memory safety violations (e.g., “use-after-free” bugs). But
Rust goes further by defending programmers against other,
more insidious anomalies that no other mainstream language
can prevent. For example, consider data races: unsynchro-
nized accesses to shared memory (at least one of which is
a write). Even though data races effectively constitute unde-
fined (or weakly-defined) behavior for concurrent code, most
“safe” languages (such as Java and Go) permit them, and they
are a reliable source of concurrency bugs [35]. In contrast,
Rust’s type system rules out data races at compile time.

Rust has been steadily gaining in popularity, to the point
that it is now being used internally by many major indus-
trial software vendors (such as Dropbox, Facebook, Ama-
zon, and Cloudflare) and has topped StackOverflow’s list
of “most loved” programming languages for the past four
years. Microsoft’s Security Response Center Team recently
announced that it is actively exploring an investment in the
use of Rust at Microsoft to stem the tide of security vulnera-
bilities in system software [25, 8].

The design of Rust draws deeply from the wellspring of
academic research on safe systems programming. In particu-
lar, the most distinctive feature of Rust’s design—in relation
to other mainstream languages—is its adoption of an own-
ership type system (which in the academic literature is often
referred to as an affine or substructural type system [36]).
Ownership type systems help the programmer enforce safe
patterns of lower-level programming by placing restrictions
on which aliases (references) to an object may be used to
mutate it at any given point in the program’s execution.
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However, Rust goes beyond the ownership type systems
of prior work in at least two novel and exciting ways:

1. Rust employs the mechanisms of borrowing and lifetimes,
which make it much easier to express common C++-style
idioms and ensure that they are used safely.

2. Rust also provides a rich set of APIs—e.g., for concur-
rency abstractions, efficient data structures, and memory
management—which fundamentally extend the power of
the language by supporting more flexible combinations
of aliasing and mutation than Rust’s core type system al-
lows. Correspondingly, these APIs cannot be implemented
within the safe fragment of Rust: rather, they internally
make use of potentially unsafe C-style features of the lan-
guage, but in a safely encapsulated way that is claimed
not to disturb Rust’s language-level safety guarantees.

These aspects of Rust’s design are not only essential to
its success—they also pose fundamental research questions
about its semantics and safety guarantees that the program-
ming languages community is just beginning to explore.

In this article, we begin by giving the reader a bird’s-eye
view of the Rust programming language, with an emphasis
on some of the essential features of Rust that set it apart from
its contemporaries. Second, we describe the initial progress
made in the RustBelt project, an ongoing project funded
by the European Research Council (ERC), whose goal is to
provide the first formal (and machine-checked) foundations
for the safety claims of Rust. In so doing, we hope to inspire
other members of the computer science research community
to start paying closer attention to Rust and to help contribute
to the development of this groundbreaking language.

Motivation: Pointer Invalidation in C++
To demonstrate the kind of memory safety problems that
arise commonly in systems programming languages, let us
consider the following C++ code:

1 std::vector<int> v { 10, 11 };
2 int *vptr = &v[1]; // Points *into* ‘v‘.
3 v.push_back(12);
4 std::cout << *vptr; // Bug (use-after-free)

In the first line, this program creates a std::vector (a
growable array) of integers. The initial contents of v, the two
elements 10 and 11, are stored in a buffer in memory. In the
second line, we create a pointer vptr that points into this
buffer; specifically it points to the place where the second
element (with current value 11) is stored. Now both v and
vptr point to (overlapping parts of) the same buffer; we say
that the two pointers are aliasing. In the third line, we push
a new element to the end of v. The element 12 is added
after 11 in the buffer backing v. If there is no more space for
an additional element, a new buffer is allocated and all the
existing elements are moved over. Let us assume this is what
happens here. Why is this case interesting? Because vptr

still points to the old buffer. In other words, adding a new
element to v has turned vptr into a dangling pointer. This
is possible because both pointers were aliasing: an action
through a pointer (v) will in general also affect all its aliases
(vptr). The entire situation is visualized as follows:

v
10
11

10
11
12

vptr

The fact that vptr is now a dangling pointer becomes
a problem in the fourth line. Here we load from vptr, and
since it is a dangling pointer, this is a use-after-free bug.

In fact, the problem is common enough that one instance of
it has its own name: iterator invalidation, which refers to the
situation where an iterator (usually internally implemented
with a pointer) gets invalidated because the data structure it it-
erates over is mutated during the iteration. It most commonly
arises when one iterates over some container data structure in
a loop, and indirectly, but accidentally, calls an operation that
mutates the data structure. Notice that in practice the call to
the operation that mutates the data structure (push_back in
line 3 of our example) might be deeply nested behind several
layers of abstraction. In particular when code gets refactored
or new features get added, it is often near impossible to de-
termine if pushing to a certain vector will invalidate pointers
elsewhere in the program that are going to be used again later.

Comparison with garbage-collected languages
Languages like Java, Go, and OCaml avoid use-after-free
bugs using garbage collection: memory is only deallocated
when it can no longer be used by the program. Thus, there
can be no dangling pointers and no use-after-free.

One problem with garbage collection is that, to make it effi-
cient, such languages generally do not permit interior pointers
(i.e., pointers into data structures). For example, arrays int[]
in Java are represented similarly to std::vector<int> in
C++ (except arrays in Java cannot be grown). However, un-
like in C++, one can only get and set elements of a Java array,
not take references to them. To make the elements themselves
addressable, they need to be separate objects, references to
which can then be stored in the array—i.e., the elements need
to be “boxed”. This sacrifices performance and control over
memory layout in return for safety.

On top of that, garbage collection does not even properly
solve the issue of iterator invalidation. Mutating a collection
while iterating over it in Java cannot lead to dangling pointers,
but it may lead to a ConcurrentModificationException
being thrown at run time. Similarly, while Java does prevent
security vulnerabilities caused by null pointer misuse, it does
so with run-time checks that raise a NullPointerException.
In both of these cases, while the result is clearly better than
the corresponding undefined behavior of a C++ program, it
still leaves a lot to be desired: instead of shipping incorrect
code and then detecting issues at run time, we want to prevent
the bugs from occurring in the first place.
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Rust’s solution to pointer invalidation
In Rust, issues like iterator invalidation and null pointer
misuse are detected statically, by the compiler—they lead to a
compile-time error instead of a run-time exception. To explain
how this works, consider the following Rust translation of
our C++ example:

1 let mut v = vec![10, 11];
2 let vptr = &mut v[1]; // Points *into* ‘v‘.
3 v.push(12);
4 println!("{}", *vptr); // Compiler error

Like in the C++ version, there is a buffer in memory, and vptr
points into the middle of that buffer (causing aliasing); push
might reallocate the buffer, which leads to vptr becoming a
dangling pointer, and that leads to a use-after-free in line 4.

But none of this happens; instead the compiler shows an
error: “cannot borrow v as mutable more than once at a time”.
We will come back to “borrowing” soon, but the key idea—
the mechanism through which Rust achieves memory safety
in the presence of pointers that point into a data structure—
already becomes visible here: the type system enforces the
discipline (with a notable exception that we will come to
later) that a reference is never both aliased and mutable at
the same time. This principle should sound familiar in the
context of concurrency, and indeed Rust uses it to ensure
the absence of data races as well. However, as our example
that is rejected by the Rust compiler shows, the unrestricted
combination of aliasing and mutation is a recipe for disaster
even for sequential programs: in line 3, vptr and v alias (v
is considered to point to all of its contents, which overlaps
with vptr), and we are performing a mutation, which would
lead to a memory access bug in line 4.

Ownership and Borrowing
The core mechanism through which Rust prevents uncon-
trolled aliasing is ownership. Memory in Rust always has a
unique owner, as demonstrated by the following example:

1 fn consume(w: Vec<i32>) {
2 drop(w); // deallocate vector
3 }
4 let v = vec![10, 11];
5 consume(v);
6 v.push(12); // Compiler error

Here, we construct v similar to our first example, and then
pass it to consume. Operationally, just like in C++, parame-
ters are passed by value but the copy is shallow—pointers get
copied but their pointee does not get duplicated. This means
that v and w point to the same buffer in memory.

Such aliasing is a problem if v and w would both be used
by the program, but an attempt to do so in line 6 leads to a
compile-time error. This is because Rust considers ownership
of v to have moved to consume as part of the call, meaning
that consume can do whatever it desires with w, and the caller
may no longer access the memory backing this vector at all.

Resource management. Ownership in Rust not only pre-
vents memory bugs—it also forms the core of Rust’s approach
to memory management and, more generally, resource man-
agement. When a variable holding owned memory (e.g., a
variable of type Vec<T>, which owns the buffer in memory
backing the vector) goes out of scope, we know for sure that
this memory will not be needed any more—so the compiler
can automatically deallocate the memory at that point. To
this end, the compiler transparently inserts destructor calls,
just like in C++. For example, in the consume function, it is
not actually necessary to call the destructor method (drop)
explicitly. We could have just left the body of that function
empty, and it would have automatically deallocated w itself.

As a consequence, Rust programmers rarely have to worry
about memory management: it is largely automatic, despite
the lack of a garbage collector. Moreover, the fact that mem-
ory management is also static (determined at compile time)
yields enormous benefits: it helps not only to keep the max-
imal memory consumption down, but also to provide good
worst-case latency in a reactive system such as a web server.
And on top of that, Rust’s approach generalizes beyond mem-
ory management: other resources like file descriptors, sockets,
lock handles, and so on are handled with the same mecha-
nism, so that Rust programmers do not have to worry, for
instance, about closing files or releasing locks. Using destruc-
tors for automatic resource management was pioneered in
the form of RAII (Resource Acquisition Is Initialization) in
C++ [31]; the key difference in Rust is that the type system
can statically ensure that resources do not get used any more
after they have been destructed.

Mutable references. A strict ownership discipline is nice
and simple, but unfortunately not very convenient to work
with. Frequently, one wants to provide data to some function
temporarily, but get it back when that function is done. For
example, we want v.push(12) to grant push the privilege
to mutate v, but we do not want it to consume the vector v.

In Rust, this is achieved through borrowing, which takes
a lot of inspiration from prior work on region types [34, 13].
For example, we could write:

1 fn add_something(v: &mut Vec<i32>) {
2 v.push(11);
3 }
4 let mut v = vec![10];
5 add_something(&mut v);
6 v.push(12); // Ok!
7 // v.push(12) is syntactic sugar for
8 // Vec::push(&mut v, 12)

The function add_something takes an argument of type
&mut Vec<i32>, which indicates a mutable reference to a
Vec<i32>. Operationally, this acts just like a reference in
C++, i.e., the Vec is passed by reference. In the type system,
this is interpreted as add_something borrowing ownership
of the Vec from the caller.
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The function add_something demonstrates what borrow-
ing looks like in well-formed programs. To see why the com-
piler accepts that code while rejecting our pointer invalidation
example from page 3, we have to introduce another concept:
lifetimes. Just like in real life, when borrowing something,
misunderstanding can be prevented by agreeing up front on
how long something may be borrowed. So, when a reference
gets created, it gets assigned a lifetime, which gets recorded
in the full form of the reference type: &’a mut T for life-
time ’a. The compiler ensures that (a) the reference (v, in
our example) only gets used during that lifetime, and (b) the
referent does not get used again until the lifetime is over.

In our case, the lifetimes (which are all inferred by the
compiler) just last for the duration of add_something and
Vec::push, respectively. Never is v used while the lifetime
of a previous borrow is still ongoing.

In contrast, consider the example from page 3:

1 let mut v = vec![10, 11];
2 let vptr : &’a mut i32 = &mut v[1];
3 v.push(12);
4 println!("{}", *vptr); // Compiler error

Lifetime’a

The lifetime ’a of the borrow for vptr starts in line 2 and
goes on until line 4. It cannot be any shorter because vptr
gets used in line 4. However, this means that in line 3, v is
used while an outstanding borrow exists, which is an error.

To summarize: whenever something is passed by value (as
in consume), Rust interprets this as ownership transfer; when
something is passed by reference (as in add_something),
Rust interprets this as borrowing for a certain lifetime.

Shared references. Following the principle that we can
have either aliasing or mutation, but not both at the same
time, mutable references are unique pointers: they do not
permit aliasing. To complete this picture, Rust has a second
kind of reference, the shared reference written &Vec<i32> or
&’a Vec<i32>, which allows aliasing but no mutation. One
primary use-case for shared references is to share read-only
data between multiple threads:

1 let v = vec![10,11];
2 let vptr = &v[1];
3 join( || println!("v[1] = {}", *vptr),
4 || println!("v[1] = {}", *vptr));
5 v.push(12);

Here, we create a shared reference vptr pointing to (and
borrowing) v[1]. The vertical bars here represent a closure
(also sometimes called an anonymous function or “lambda”)
that does not take any arguments. These closures are passed
to join, which is the Rust version of “parallel composition”:
it takes two closures, runs both of them in parallel, waits until
both are done, and returns both of their results. When join
returns, the borrow ends, so we can mutate v again.

Just like mutable references, shared references have a
lifetime. Under the hood, the Rust compiler is using a lifetime
to track the period during which v is temporarily shared
between the two threads; after that lifetime is over (on line 7),
the original owner of v regains full control. The key difference
here is that multiple shared references are allowed to coexist
during the same lifetime, so long as they are only used for
reading, not writing. We can witness the enforcement of this
restriction by changing one of the two threads in our example
to || v.push(12): then the compiler complains that we
cannot have a mutable reference and a shared reference to
the Vec at the same time. And indeed, that program has a
fatal data race between the reading thread and the thread
that pushes to the vector, so it is important that the compiler
detects such cases statically.

Shared references are also useful in sequential code; for
example, while doing a shared iteration over a vector we can
still pass a shared reference to the entire vector to another
function. But for this article, we will focus on the use of
sharing for concurrency.

Summary
In order to obtain safety, the Rust type system
enforces the discipline that a reference is never
both aliased and mutable. Having a value of
type T means you “own” it fully. The value
of type T can be “borrowed” using a mutable
reference (&mut T) or shared reference (&T).

Aliasing
+

Mutation

Relaxing Rust’s Strict Ownership Discipline
via Safe APIs
Rust’s core ownership discipline is sufficiently flexible to
account for many low-level programming idioms. But for im-
plementing certain data structures, it can be overly restrictive.
For example, without any mutation of aliased state, it is not
possible to implement a doubly-linked list because each node
is aliased by both its next and previous neighbors.

Rust adopts a somewhat unusual approach to this problem.
Rather than either (1) complicating its type system to account
for data structure implementations that do not adhere to it, or
(2) introducing dynamic checks to enforce safety at run time,
Rust allows its ownership discipline to be relaxed through the
development of safe APIs—APIs that extend the expressive
power of the language by enabling safely controlled usage
of aliased mutable state. Although the implementations of
these APIs do not adhere to Rust’s strict ownership discipline
(a point we return to on page 6), the APIs themselves make
critical use of Rust’s ownership and borrowing mechanisms
to ensure that they preserve the safety guarantees of Rust as a
whole. Let us now look at a few examples.

Shared mutable state
Rust’s shared references permit multiple threads to read
shared data concurrently. But threads that just read data are
only half the story, so next we will look at how the Mutex
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API enables one to safely share mutable state across thread
boundaries. At first, this might seem to contradict everything
we said so far about the safety of Rust: isn’t the whole point
of Rust’s ownership discipline that it prevents mutation of
shared state? Indeed it is, but we will see how, using Mutex,
such mutation can be sufficiently restricted so as to not break
memory or thread safety. Consider the following example:

1 let mutex_v = Mutex::new(vec![10, 11]);
2 join(
3 || { let mut v = mutex_v.lock().unwrap();
4 v.push(12); },
5 || { let v = mutex_v.lock().unwrap();
6 println!("{:?}", *v) });

We again use structured concurrency and shared references,
but now we wrap the vector in a Mutex: the variable mutex_v
has type Mutex<Vec<i32>>. The key operation on a Mutex
is lock, which blocks until it can acquire the exclusive lock.
The lock implicitly gets released by v’s destructor when the
variable goes out of scope. Ultimately, this program prints
either [10, 11, 12] if the first thread manages to acquire
the lock first, or [10, 11] if the second thread does.

In order to understand how our example program type-
checks, let us take a closer look at lock. It (almost1) has type
fn(&’a Mutex<T>) -> MutexGuard<’a, T>. This type
says that lock can be called with a shared reference to a mu-
tex, which is why Rust lets us call lock on both threads: both
closures capture an &Mutex<Vec<i32>>, and as with the
vptr of type &i32 that got captured in our first concurrency
example, both threads can then use that reference concur-
rently. In fact, it is crucial that lock take a shared rather
than a mutable reference—otherwise, two threads could not
attempt to acquire the lock at the same time and there would
be no need for a lock in the first place.

The return type of lock, namely MutexGuard<’a, T>, is
basically the same as &’a mut T: it grants exclusive access
to the T that is stored inside the lock. Moreover, when it goes
out of scope, it automatically releases the lock (an idiom
known in the C++ world as RAII [31]).

In our example, this means that both threads temporarily
have exclusive access to the vector, and they have a mutable
reference that reflects that fact—but thanks to the lock prop-
erly implementing mutual exclusion, they will never both
have a mutable reference at the same time, so the unique-
ness property of mutable references is maintained. In other
words, Mutex can offer mutation of aliased state safely be-
cause it implements run-time checks ensuring that, during
each mutation, the state is not aliased.

Reference counting
We have seen that shared references provide a way to share
data between different parties in a program. However, shared

1 The actual type of lock wraps the result in a LockResult<...> for error
handling, which explains why we use unwrap on lines 3 and 5.

references come with a statically determined lifetime, and
when that lifetime is over, the data is uniquely owned again.
This works well with structured parallelism (like join in
the previous example), but does not work with unstructured
parallelism where threads are spawned off and keep running
independently from the parent thread.

In Rust, the typical way to share data in such a situation is
to use an atomically reference-counted pointer: Arc<T> is a
pointer to T, but it also counts how many such pointers exist
and deallocates the T (and releases its associated resources)
when the last pointer is destroyed. (This can be viewed as a
form of lightweight library-implemented garbage collection.)
Since the data is shared, we cannot obtain an &mut T from
an Arc<T>—but we can obtain an &T (where the compiler
ensures that during the lifetime of the reference, the Arc<T>
does not get destroyed), as in this example:

1 let arc_v1 = Arc::new(vec![10, 11]);
2 let arc_v2 = Arc::clone(&arc_v1);
3 spawn(move || println!("{:?}", arc_v2[1]));
4 println!("{:?}", arc_v1[1]);

We start by creating an Arc that points to our usual vector.
arc_v2 is obtained by cloning arc_v1, which means that
the reference count gets bumped up by one, but the data
itself is not duplicated. Then we spawn a thread that uses
arc_v2; this thread keeps running in the background even
when the function we are writing here returns. Because this
is unstructured parallelism we have to explicitly move (i.e.,
transfer ownership of) arc_v2 into the closure that runs
in the other thread. Arc is a “smart pointer” (similar to
shared_ptr in C++), so we can work with it almost as if it
were an &Vec<i32>. In particular, in lines 3 and 4 we can
use indexing to print the element at position 1. Implicitly, as
arc_v1 and arc_v2 go out of scope, their destructors get
called, and the last Arc to be destroyed deallocates the vector.

Thread safety
There is one last type that we would like to talk about in
this brief introduction to Rust: Rc<T> is a reference-counted
type very similar to Arc<T>, but with the key distinction that
Arc<T> uses an atomic (fetch-and-add) instruction to update
the reference count, whereas Rc<T> uses non-atomic memory
operations. As a result, Rc<T> is potentially faster, but not
thread-safe. The type Rc<T> is useful in complex sequential
code where the static scoping enforced by shared references
is not flexible enough, or where one cannot statically predict
when the last reference to an object will be destroyed so that
the object itself can be deallocated.

Since Rc<T> is not thread-safe, we need to make sure that
the programmer does not accidentally use Rc<T> when they
should have used Arc<T>. This is important: if we take our
previous Arc example, and replace all the Arc by Rc, the
program has a data race and might deallocate the memory
too early or not at all. However, quite remarkably, the Rust
compiler is able to catch this mistake. The way this works is
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that Rust employs something called the Send trait: a property
of types which is only enjoyed by a type T if elements of
type T can be safely sent to another thread. The type Arc<T>
is Send, but Rc<T> is not. Both join and spawn require
everything captured by the closure(s) they run to be Send,
so if we capture a value of the non-Send type Rc<T> in a
closure, compilation will fail.

Rust’s use of the Send trait demonstrates how sometimes
the restrictions imposed by strong static typing can lead to
greater expressive power, not less. In particular, C++’s smart
reference-counted pointer, std::shared_ptr, always uses
atomic instructions2, because having a more efficient non-
thread-safe variant like Rc is considered too risky. In contrast,
Rust’s Send trait allows one to “hack without fear” [26]: it
provides a way to have both thread-safe data structures (such
as Arc) and non-thread-safe data structures (such as Rc) in
the same language, while ensuring modularly that the two do
not get used in incorrect ways.

Unsafe Code, Safely Encapsulated
We have seen how types like Arc and Mutex let Rust pro-
grams safely use features such as reference counting and
shared mutable state. However, there is a catch: those types
cannot actually be implemented in Rust. Or, rather, they can-
not be implemented in safe Rust: the compiler would reject an
implementation of Arc for potentially violating the aliasing
discipline. In fact, it would even reject the implementation
of Vec for accessing potentially uninitialized memory. For
efficiency reasons, Vec manually manages the underlying
buffer and tracks which parts of it are initialized. Of course,
the implementation of Arc does not in fact violate the alias-
ing discipline, and Vec does not in fact access uninitialized
memory, but the arguments needed to establish those facts
are too subtle for the Rust compiler to infer.

To solve this problem, Rust has an “escape hatch”: Rust
consists not only of the safe language we discussed so
far—it also provides some unsafe features such as C-style
unrestricted pointers. The safety (memory safety and/or
thread safety) of these features cannot be guaranteed by the
compiler, so they are only available inside syntactic blocks
that are marked with the unsafe keyword. This way, one can
be sure to not accidentally leave the realm of safe Rust.

For example, the implementation of Arc uses unsafe code
to implement a pattern that would not be expressible in safe
Rust: sharing without a clear owner, managed by thread-safe
reference counting. This is further complicated by support for
“weak references”: references that do not keep the referent
alive, but can be atomically checked for liveness and upgraded
to a full Arc. The correctness of Arc relies on rather subtle
concurrent reasoning, and the Rust compiler simply has no
way to verify statically that deallocating the memory when
the reference count reaches zero is in fact safe.

2 More precisely, on Linux it uses atomic instructions if the program uses
pthreads, i.e., if it or any library it uses might spawn a thread.

Alternatives to unsafe blocks. One could turn things like
Arc or Vec into language primitives. For example, Python
and Swift have built-in reference counting, and Python has
list as a built-in equivalent to Vec. However, these language
features are implemented in C or C++, so they are not actually
any safer than the unsafe Rust implementation. Beyond that,
restricting unsafe operations to implementations of language
primitives also severely restricts flexibility. For example,
Firefox uses a Rust library implementing a variant of Arc
without support for weak references, which improves space
usage and performance for code that does not need them.
Should the language provide primitives for every conceivable
spot in the design space of any built-in type?

Another option to avoid unsafe code is to make the type
system expressive enough to actually be able to verify safety
of types like Arc. However, due to how subtle correctness of
such data structures can be (and indeed Arc and simplified
variants of it have been used as a major case-study in several
recent formal verification papers [12, 18, 9]), this basically
requires a form of general-purpose theorem prover—and a
researcher with enough background to use it. The theorem
proving community is quite far away from enabling develop-
ers to carry out such proofs themselves.

Safe abstractions. Rust has instead opted to allow pro-
grammers the flexibility of writing unsafe code when neces-
sary, albeit with the expectation that it should be encapsulated
by safe APIs. Safe encapsulation means that, regardless of the
fact that Rust APIs like Arc or Vec are implemented with un-
safe code, users of those APIs should not be affected: so long
as users write well-typed code in the safe fragment of Rust,
they should never be able to observe anomalous behaviors
due to the use of unsafe code in the APIs’ implementation.
This is in marked contrast to C++, whose weak type system
lacks the ability to even enforce that APIs are used safely. As
a result, C++ APIs like shared_ptr or vector are prone
to misuse, leading to reference-counting bugs and iterator
invalidation, which do not arise in Rust.

The ability to write unsafe code is like a lever that Rust
programmers use to make the type system more useful
without turning it into a theorem prover, and indeed we
believe this to be a key ingredient to Rust’s success. The
Rust community is developing an entire ecosystem of safely
usable high-performance libraries, enabling programmers to
build safe and efficient applications on top of them.

But of course, there is no free lunch: it is up to the author
of a Rust library to somehow ensure that, if they write unsafe
code, they are being very careful not to break Rust’s safety
guarantees. On the one hand, this is a much better situation
than in C/C++, because the vast majority of Rust code is
written in the safe fragment of the language, so Rust’s “attack
surface” is much smaller. On the other hand, when unsafe
code is needed, it is far from obvious how a programmer is
supposed to know if they are being “careful” enough.
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To maintain confidence in the safety of the Rust ecosystem,
we therefore really want to have a way of formally specifying
and verifying what it means for uses of unsafe code to be
safely encapsulated behind a safe API. This is precisely the
goal of the RustBelt project.

RustBelt: Securing the Foundations of Rust
The key challenge in verifying Rust’s safety claims is ac-
counting for the interaction between safe and unsafe code.
To see why this is challenging, let us briefly take a look at
the standard technique for verifying safety of programming
languages—the so called syntactic approach [37, 14]. Using
that technique, safety is expressed in terms of a syntactic
typing judgment, which gives a formal account of the type
checker in terms of a number of mathematical inference rules.

Theorem 1 (Syntactic type soundness). If a program e is
well-typed w.r.t. the syntactic typing judgment, then e is safe.

Unfortunately, this theorem is too weak for our purposes,
because it only talks about syntactically safe programs, thus
ruling out programs that use unsafe code. For example,
if true { e } else { crash() } is not syntactically
well-typed, but it is still safe since crash() is never executed.

The key solution: Semantic type soundness
To account for the interaction between safe and unsafe code,
we instead use a technique called semantic type soundness,
which expresses safety in terms of the “behavior” of the
program rather than a fixed set of inference rules. The key
ingredient of semantic soundness is a logical relation, which
assigns a safety contract to each API. It expresses that if the
inputs to each method in the API conform to their specified
types, then so do the outputs. Using techniques from formal
verification, one can then prove that an implementation of the
API satisfies the assigned safety contract:

∀Σ.
∃Φ. . . .

 �

API Safety
contract

Code

Logical
relation

Formal
verification

Semantic type soundness is ideal for reasoning about
programs that use a combination of safe and unsafe code. For
any library that uses unsafe code (such as Arc, Mutex, Rc,
and Vec) one has to prove by hand that the implementation
satisfies the safety contract. For example:

Theorem 2. Arc satisfies its safety contract.

For safe pieces of a program, the verification is automatic.
This is expressed by the following theorem, which says that
if a component is written in the safe fragment of Rust, it
satisfies its safety contract by construction.

Theorem 3 (Fundamental theorem). If a component e is
syntactically well-typed, then e satisfies its safety contract.

Together, these imply that a Rust program is safe if the only
appearances of unsafe blocks are within libraries that have
been manually verified to satisfy their safety contracts.

Using the Iris logic to encode safety contracts
Semantic type soundness is an old technique, dating back at
least to Milner’s seminal 1978 paper on type soundness [28],
but scaling it up to realistic modern languages like Rust
has proven a difficult challenge. In fact, scaling it up to
languages with mutable state and higher-order functions
remained an open problem until the development of “step-
indexed Kripke logical relations” (SKLR) models [5, 3] as
part of the Foundational Proof-Carrying Code project [4, 2]
in the early 2000s. Even then, verifications of safety contracts
that were encoded directly using SKLR models turned out to
be very tedious, low-level, and difficult to maintain.

In RustBelt we build upon more recent work on Iris [21,
19, 23, 20], a verification framework for higher-order, con-
current, imperative programs, implemented in the Coq proof
assistant [1]. Iris provides a much higher-level language for
encoding and working with SKLR models, thus enabling us
to scale such models to handle a language as sophisticated as
Rust. In particular, Iris is based on separation logic [29, 30],
an extension of Hoare logic [15] geared specifically toward
modular reasoning about pointer-manipulating programs, and
centered around the concept of ownership. This provides us
with an ideal language in which to model the semantics of
ownership types in Rust.

Iris extends traditional separation logic with several addi-
tional features that are crucial for modeling Rust:

• Iris supports user-defined ghost state: the ability to define
custom logical resources that are useful for proving cor-
rectness of a program but do not correspond directly to
anything in its physical state. Iris’s user-defined ghost state
has enabled us to verify the soundness of libraries like
Arc, for which ownership does not correspond to physical
ownership (e.g., two separately-owned Arc<T>’s may be
backed by the same underlying memory)—a phenomenon
known as “fictional separation” [11, 10]. It has also en-
abled us to reason about Rust’s borrowing and lifetimes
at a much higher level of abstraction, by deriving (within
Iris) a new, domain-specific “lifetime logic”.

• Iris supports impredicative invariants: invariants on the
program state that may refer cyclically to the existence
of other invariants [32]. Impredicative invariants play an
essential role in modeling central type system features
such as recursive types and closures.

The complexity of Rust demands that our semantic sound-
ness proofs be machine-checked, as it would be too tedious
and error-prone to do proofs by hand. Fortunately, Iris comes
with a rich set of separation-logic tactics, which are patterned
after standard Coq tactics and thus make it possible to interac-
tively develop machine-checked semantic soundness proofs
in a time-tested style familiar to Coq users [24, 22].
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Conclusion and Outlook
In this article we have given a bird’s-eye view of Rust, demon-
strating its core concepts like borrowing, lifetimes, and un-
safe code encapsulated inside safe APIs. These features have
helped Rust become the first industry-supported language to
overcome the tradeoff between safety and control.

To formally investigate Rust’s safety claims, we described
the proof technique of semantic type soundness, which has
enabled us to begin building a rigorous foundation for Rust
in the RustBelt project. For more details about Rust and
RustBelt, we refer the interested reader to our POPL’18
paper [18] and the first author’s forthcoming PhD thesis [17].

There is still much work left to do. Although RustBelt has
recently been extended to account for the relaxed-memory
concurrency model that Rust inherits from C++ [9], there
are a number of other Rust features and APIs that it does
not yet cover, such as its “trait” system, which is complex
enough to have been the source of subtle soundness bugs [7].
Moreover, although verifying the soundness of an internally-
unsafe Rust library requires, at present, a deep background
in formal semantics, we hope to eventually develop formal
methods that can be put directly in the hands of programmers.

Finally, while RustBelt has focused on building founda-
tions for Rust itself, we are pleased to see other research
projects (notably Prusti [6] and RustHorn [27]) beginning to
explore an exciting, orthogonal direction: namely, the poten-
tial for Rust’s strong type system to serve as a powerful tool
in simplifying the formal verification of systems code.
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