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Abstract— The apoptotic signaling pathway designates a set of 

biochemical reactions involved in programmed cell death. One of 

the triggering mechanisms of apoptosis is the binding of death 

ligands to death receptors on the cell membrane, a known 

stimulus for the activation of the so-called extrinsic apoptosis 

signaling pathway. Stimulation by death ligands results in an 

important variability in cell response dynamics that elicits 

differing fates: cell survival or cell death. To understand the 

hallmarks of this cell fate decision and the heterogeneity of cell 

response, a system of ordinary differential equations based on 

mass-action rate laws was implemented to represent the 

reactions at the receptor level and evaluate the cell dynamics in 

response to anticancer drugs. 

I. INTRODUCTION 

Apoptosis is a complex network of biochemical reactions 
eventually leading to programmed cell death, a mechanism to 
ensure organism homeostasis and the elimination of tumor 
cells. The disruption of the apoptosis pathways can lead to 
diseases as diverse as cancer [the cells keep on growing and 
dividing despite death ligand (DL) stimulus] or infertility (an 
excess of germ cells death). In the past decades, studies have 
highlighted the importance of key proteins [such as Caspase-8 
(C8) or FLIP (F)] in the correct orchestration of this signaling 
pathway but the actual mechanisms of cell decision remain 
unclear, with no accurate prediction for when a given cell 
commits to apoptosis after exposure to anticancer drugs.  Early 
mathematical models emerged to tackle this problem and 
aimed for a general view of the apoptosis pathways, combining 
multiple interactions between pro- and anti-apoptotic 
molecular agents. These pioneering studies were important to 
identify the relevance of multiple protein contributors and were 
able to place the death receptor (R) proteins as important 
molecular targets in the activation of apoptosis (Fussenegger et 
al 2000). Posterior models, in the form of ordinary differential 
equations (ODEs), offered an organized and more rigorous 
molecular view of the apoptosis system, separating the known 
network of reactions of the extrinsic apoptosis pathway (EAP) 
into four groups: membrane, mitochondrial, cytoplasmic and a 
relevant positive feedback loop (Albeck et al 2008). Each 
module represented a local group of reactions with dynamics 
that were connected to the remaining blocks with possible 
feedbacks and distinct controls. The authors used a data set of 
HeLa cells treated with TNF-related apoptosis-inducing ligand 
[TRAIL (T)] and cycloheximide (an inhibitor of protein 
translation) to study the dynamic properties of the whole 
network and the heterogeneity on the time of cell death (Albeck 
et al 2008). This model was later on re-used to evaluate the 
impact of gene promoter’s ON-OFF switch (noise from the 
gene layer) on the fluctuations of protein quantities and 
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apoptotic signal dynamics (Bertaux et al 2014). More recently, 
an effective molecular determinant was proposed, with cell 
death propensity in individual cells correlating with the rate 
and timing of activation of the C8 protein. This study 
concluded that apoptotic cells (dead cells after treatment) had 
consistently higher rates of C8 activation and lower delay 
periods for beginning of C8 activation (Roux et al 2015). The 
result reinforced the importance of C8 in apoptosis 
commitment and strengthen the need to understand local 
dynamics that mediate the effective activation of C8 inside 
each cell. Following the results in Roux et al 2015, we 
developed a mass-action kinetics model that focuses on the set 
of reactions describing EAP at the receptor level and 
subsequent C8 activation: Apoptosis Receptor Reaction ODE 
Model (ARROM). This description differs from previous 
models by centering on a single module of EAP, the receptor 
compartment, giving it a higher level of detail and exploring 
new dynamics not yet contemplated in prior studies. The model 
was calibrated using single cell experimental data and was used 
to evaluate the role of the anti-apoptotic agent F and the 
molecular origins of cell-fate decision (CFD).  

II. ARROM MODEL 

A. Network reactions in extrinsic apoptosis pathway 

In this work we focused on the role of C8 as a critical 
regulator of EAP and investigated its impact in CFD. A local 
network describing the receptor layer reactions of EAP gathers 
the main chemical interactions interfering in C8 production 
inside the cell. The cascade of reactions starts with T, a ligand 
capable of activating the EAP signaling pathway. T interacts 
with R on the cell membrane, originating a signaling platform 
named DISC, which grows in complexity as it sequentially 
forms monomeric, dimeric or trimeric structures, after binding 
to one, two or three R, respectively. In every form, the 
assembled structure can allocate a subset of molecules, one per 
each attached R. Pro-caspase-8 (p), the precursor of C8, and F, 
a competitor of p and an inhibitor of apoptosis, can both anchor 
to a free R molecule These two agents attach to the DISC 
according to a set of stoichiometric rules limited to the 
availability of R sites. The rules can be written in compact form 
as T:nR:ip:jF, with n, j ϵ {0, 1, 2, 3}, i ϵ {0, 1, 2}, where both 
n, i and j represent stoichiometric quantities. The proteins p and 
F bind to DISC exclusively when at least one R protein is 
interacting with T (i ≤ n, j ≤ n), and only one molecule can 
attach per R site (i+j ≤ n). Activation of C8 takes place when 
two p proteins are introduced into the DISC platform, in the 
form of three possible complexes T:2R:2p, T:3R:2p or 
T:3R:2p:F. Once C8 is produced, it cleaves molecular targets, 
here Bid (B) or a fluorescent probe (L), converting them into a
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Figure 1.  ARROM schematic with the main reactions describing EAP. Reaction rates of the forward and reverse reactions are indicated outside and inside 

brackets, respectively. T stands for TRAIL, R for death receptors, F for FLIP, p for Pro-caspase-8, C8 for Caspase-8, B for Bid, L for fluorescent probe, tB for 
truncated Bid and cL for cleaved fluorescent probe protein. For instance, T3RF2p represents a complex composed of TRAIL bound to three receptors, one 

FLIP and two Pro-caspase-8 molecules.

truncated Bid (tB) or cleaved fluorescent probe (cL) forms. The 
representation of the receptor layer ends with the activation of 
tB and cL, which then propagate the apoptotic signal to 
downstream reactions not contemplated in this work. The cL 
protein emits a FRET signal in time that can be used to 
indirectly measure C8 levels inside a cell. This set of 
interactions is illustrated in Fig. 1. 

B. Mass-action law rates 

Mass-action law rates represent a realistic approach to 
describe the time-course dynamics of proteins in a given 
network of reactions and its application to every molecular 
species in Fig. 1 resulted in ARROM, a system of ODE’s with 
twenty-eight variables and thirty-two parameters. The deduced 
equations are available in Appendix A where each variable 
described the concentration of a given protein of the system 
and each parameter the reaction rate of the underlying chemical 
reaction. In a first step, ARROM was calibrated using the 
MATLAB command fminsearch which was used to retrieve 
the best vector solution minimizing the square-error distance 
between model output and a reference experimental curve. 
Among the data set, the FRET-signal of the median_cell was 
chosen as the reference experimental trajectory. Here, 
median_cell referred to the cell with the median-maximum 
derivative value of the whole data set. The maximum 
derivative is an important metric correlating to the maximum 
quantity of C8 protein activated inside the cell (Roux et al 
2015). The median_cell corresponded then to the median-
profile of C8 maximum values across the data set. FRET-signal 
was first converted into absolute numbers of cleaved cL protein 
and only then fitted to the ARROM model. Appendix B 
contains the full list of parameter values and protein initial 

concentrations fitting the reference curve to the model 
equations. The landscape of all the dataset trajectories and the 
median_cell is displayed in Fig. 2. All model simulations were 
performed in MatLab 2017 environment using the solver 
ode15s to compute the numerical solutions of the system of 
ODE’s. Conversion from FRET-signal to effective number of 
cL molecules follows the relationship in (1), which is derived 
elsewhere. Simulated maximum cL derivative values were 
extracted directly from model equations in Appendix A, 
according to (2). 

cL(t)=L(0) 
FRET(t)

1+FRET(t)
                         (1) 

maxslope=max (
d cL(t)

dt
)                   (2) 

III. VALIDATION OF ARROM 

The ARROM model, with the assigned set of parameters in 
Appendix B, was tested against known biological results to 
confirm its accuracy in the description of validated phenomena 
and to extract underlying properties of the chemical system.  

A. Irreversible binding of FLIP 

F has been described as a strong anti-apoptotic protein and 
its overexpression blocks the formation of p chains, an 
essential intermediate state crucial for the activation of C8 
(Hughes et al., 2016).  A proportion of 2:3 in the ratio of F:p 
proteins was also verified to set the C8 activity levels to nearly 
insignificant values and reduce the death rate to less than 5% 
in HeLa cell populations treated with T (Roux et al., 2015). 
Accordingly, the simulated initial amount of F, for an average  

 



 

 

 

 

Figure 2.  FRET signal trajectories of HeLa cells treated with TRAIL at 

50ng/ml. Cells were analyzed for a time span of 600 min. Dead cells after 
treatment are represented in green (sensitives) and survivors in red 

(resistants). The median_cell used as reference to fit ARROM model is 

represented in black. 

HeLa cell, was augmented in the same established proportions. 
As explained in the introduction section, a difference in the 
strength of the apoptotic signal should translate into a variation 
of the maxslope value of the simulated cL signal. Since F is an 
anti-apoptotic protein, an increase in its concentration should 
induce a decrease in maxslope. However, model simulations 
for increasing levels of F initial quantity, F(0), showed no 
significant variation in maxslope for the set of parameters in 
Appendix B. The binding and unbinding rates of p and F to the 
DISC were initially assumed to be equal based on the structural 
similarities of these two proteins. In this scenario and given that 
the mean p and F abundances in an average HeLa cell are 
around 150,000 and 10,000 molecules, respectively, the pro-
apoptotic signal is thus overrepresented. To equilibrate the pro- 
and anti-apoptotic contributions of the two proteins, a 
compensation effect could rely on differences in their 
binding/unbinding rates to the DISC or in their clustering 
hierarchy. We first hypothesized the unbinding rates to be 
different. With that, a decrease in the apoptotic signal (decrease 
in maxslope) for a ratio of 2:3 on F:p levels could be recovered 
by imposing lower F dissociation rates, pointing to an 
irreversible-like reaction of this protein after anchoring into the 
DISC. Simulations confirming these results are shown in Fig. 
3, using the fitted median_cell as the control curve. For the 
above-mentioned ratios between F and p, a lower-threshold 
trend was nonetheless detected, with the increase in F(0) and/or 
decrease of the dissociation rates [k8, k10, k14] below one 
hundred-fold showing no further difference in maxslope (Fig. 
3A). This result supports the role of F as a strong anti-apoptotic 
agent forbidding the attachment of other molecules to the DISC 
and also identifies a maximum limit for F inhibitory effect 
(independent of F concentration).  

B. High-order DISC clusters are increasingly stable 

DL with valency up to 8 (capable of binding 8 R) have been 
experimentally tested, and higher ligand valency has proved to 
be positively correlated with an increase in the potency of the 
resulting death signal (Roux et al., 2015; Swers et al., 2013). In 
this work, T was the DL molecule used to induce an apoptotic 

response in a population of treated HeLa cells. This agent 
forms trimeric clusters with the associating R proteins and no 
experimental data was available to study the dynamics of a 
specific DL with valency higher than three. Therefore, we used 
ARROM to analyze the cL signal produced by a trimeric 
assembled cluster and compare it against the cL signal of a 
dimeric assembled cluster. The trimeric cluster configuration 
relates to the original ARROM with all its elements (the 
dimeric cluster version corresponds to all reactions leading to 
the formation of trimeric structures set to zero). The initial 
assumption, provided in the beginning of this section, is that 
the maxslope of a cL signal derived from trimeric assembled 
clusters should be higher when compared to that generated 
from dimeric assembled clusters. Simulations were performed 
for both trimeric and dimeric versions of the ARROM model, 
including the result of section III-A with [k8, k10, k14]/100, 
but no differences were obtained in the maxslope of the 
simulated cL trajectories. Further analysis clarified that for a 
maxslope augmentation in the trimeric configuration, an 
increase in stability had to be assumed. Here, we refer to “stabi- 

Figure 3.  F inhibitory effect shows evidence of an irreversible-like 
reaction: A) Increasing the initial concentration F(0) from 9985 (fitted 

median_cell value) to 2p(0)/3 molecules (~140000) causes important 

variation on the maxslope of the simulated cL trajectory for decreasing F 
dissociation rates [k8, k10, k14]. B) Simulated cL trajectories for [k8, k10, 

k14]/100 and increasing F(0) levels. The maxslope of the trajectories 

decreases while gradually increasing F(0). 
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Figure 4.  Increase in stability” of the trimeric complexes translate into 

higher cL maxslope values. The stability values in the trimeric complex are 
represented by means of “s” which refers to the ratio k5 / k6. 

lity” as the difficulty of the trimeric complex to dissociate and 
change into another molecular form, measured by the ratio k5 
/ k6 (proportion of production rate compared to dissociation 
rate). By increasing the “stability” of the trimeric forms, an 
increase in maxslope of the cL trimeric output was observed. 
The relationship between “stability” increase of the trimeric 
structures and consequent amplification of maxslope is 
represented in Fig. 4. The trend is qualitative but shows a 
consistent and significant augmentation in the form of a linear 
correlation. This result lead to new biological hypotheses on 
the binding/unbinding scheme between R proteins. Once a 
dimeric complex is formed, the addition of a third R seems to 
give rise to a more stable structure. In this case, the dissociation 
of an R from this more stable structure would become less 
optimal, concomitant with a decrease of the correspondent 
dissociation rate. A general conclusion can be set relative to a 
higher-order ligand valency. If C8 activity is to increase for a 
valency of order n, then the complex of valency n is expected 
to be more “stable” than the complex of valency order n-1 (with 
a consistent higher value for the ratio production 
rate/dissociation rate in the order n). With this finding, a 
cooperative binding effect among R is proposed and a 
theoretical explanation is provided for the observed increase in 
the proportion of dead cells with a DL of higher valency. 
Increasing number of R interlinked at the DISC may increase 
the complex stability and contribute to propagate a more 
efficient apoptotic signal.  

IV. THE EFFECT OF STOCHASTIC FLUCTUACTIONS 

In this section, we study the effect of intrinsic stochastic 
fluctuations on cell fate decision. Signals in biology are 
naturally noisy and even when experimental-associated errors 
are minimized, cells have nonetheless their own inherent 
stochastic fluctuations. These fluctuations are caused by inter-
cellular differences in genetic and non-genetic expression 
levels that contribute for unique cell signatures in time and that 
ultimately cause important variability on a population scale 
(Elowitz, 2002; Newman et al., 2006; Stewart-Ornstein et al., 
2012). Intrinsic noise, a stochastic factor related to the 
uncertainty on the reaction times, is a natural consequence of 
the thermodynamics of each chemical process and has been 

described and analyzed in the context of protein networks. In 
mathematical terms, given a network of N molecular species, 
the stochastic time-evolution of the number of molecules of 
each species can be simulated by means of the Gillespie 
algorithm, a method which returns an exact solution of the 
network-associated chemical master equation (Gillespie, 
1977). One of the assumptions of this method is that the 
molecular network is contained in a well-mixed environment, 
allowing molecules to come into contact and react inside a 
given volume Ω. The probability of a given reaction A+B→C 
between two species A and B, is proportional to the amount of 
molecules of each species, i.e., k*nA*nB. This probability can 
be directly recovered from an ODE model, using the volume 
parameter Ω to transform concentrations into numbers of 
molecules. In this scenario, a large Ω reflects a system with 
large molecular numbers inside a substantial volume and with 
dynamics that are closer to the deterministic model behavior. 
Considering that the cell signal trajectories in Fig. 2 show an 
important degree of heterogeneity, we tested if the addition of 
intrinsic noise into the median_cell could reproduce the 
variability of the data set and justify CFD. For that matter, 
ARROM was re-written into a stochastic version, with 
concentrations converted into number of molecules by means 
of the tuning parameter Ω. For multiple values of Ω three 
features were defined to evaluate the stochasticity of the 
Gillespie simulated trajectories and compare the simulated 
protein fluctuation numbers against that of the data set: delay, 
maxslope and steady_state values. These metrics characterize 
three important aspects of the sigmoidal-shaped trajectories 
and capture multiple effects of intrinsic noise addition into the 
system. In each feature, the relative deviation between 
maximum and minimum detected values was determined. The 
maxslope value was obtained by smoothing the original 
trajectory with a moving filter. As illustrated in Fig. 5, the 
variability introduced by intrinsic noise does not exactly match 
with that observed in the data set, never in the three features 
simultaneously. For lower Ω values, variation in both delay and 
maxslope largely surpassed the amplitudes detected in the data 
set and steady_state values are under-represented in the three 
simulated scenarios. Simulations for Ω > 0.05 returned a 
pronounced overall decrease of variability for all three features 
and values of Ω ≤ 0.01 produced exaggerated ranges of 
variations in delay and maxslope. Therefore, it appears that the 
dispersion obtained with the Gillespie algorithm cannot reflect 
the window of variability observed in the experimental data set, 
indicating that stochastic fluctuations on reactions times alone 
is insufficient to generate an adequate degree of variability on 
protein numbers and can’t justify, alone, the dynamics of the 
three represented features. As so, the dynamics of CFD, which 
depend mostly on variation of maxslope among different cells, 
should derive from other stochastic sources inside the cell.  
This result agrees with previous studies in the field of 
apoptosis, where intrinsic noise contribution was shown to be 
minimal in large scale signaling networks, where protein 
quantities are commonly high (Iwamoto et al., 2016; Labavić 
et al., 2019). Heterogeneity on cell-to-cell response is thus the 
result of more complex phenomena possibly controlled, at least 
partially, by the cell machinery and not by an entirely random 
factor as the fluctuation on reaction times. 

 

 



 

 

 

 

Figure 5.  Relative deviation of the data set and that of Gillespie 
simulations, quantified in terms of delay, maxslope and steady_state 

obtained values. Deviation with the Gillespie algorithm was studied for three 

Ω values, relating system volume with the generated degree of variability. 

V. CONCLUSION 

In this paper, a model of extrinsic apoptosis reactions at the 
death receptor layer (ARROM) was proposed to analyze the 
role of major pro- and anti-apoptotic proteins, such as Caspase-
8 and FLIP, in cell fate decision (decision between cellular life 
or death). Numerical analysis suggests that the anti-apoptotic 
role of FLIP is irreversible but limited in blocking the death 
signal. In contrast, death signaling seems to increase when the 
receptor stability is enhanced in ligands of higher valency. 
Finally, a stochastic version of ARROM was also implemented 
to evaluate the role of biochemical fluctuations in cell fate 
decision. ARROM predicts that intrinsic noise does not play a 
relevant role in generating the observed cellular signal 
variability, in agreement with results obtained for heat stress or 
epidermal signaling pathways. 

APPENDIX 

A. ARROM EQUATIONS 

d T(t)

dt
 = - k1T(t)R(t) +  k2T:R(t) - k24T(t)                                         (3)                     

d R(t)

dt
= k20 +  k1T(t)R(t) - k4T:2R(t) - k5R(t)T:2R(t) +  

 k6T:3R(t) + k2T:R(t) - k3R(t)T:R(t) - k25R(t)                              (4)                                                                         

d T:R(t)

dt
  = k1T(t)R(t) + k4T:2R(t) - k2T:R(t) - k3T:R(t)R(t) -  

k7T:R(t)F(t) + k8T:R:F(t)                                                                  (5) 

d T:2R(t)

dt
 = - k4T:2R(t) - k5T:2R(t)R(t) - k9F(t)T:2R(t) - 

k11p(t)T:2R(t) + k17T:2R:2p(t) + k10T:2R:F(t) +   

k12T:2R:p(t) +  k6T:3R(t) + k3R(t)T:R(t)                          (6)                                                                        

d T:3R(t)

dt
    =  - k5R(t)T:2R(t) - k6T:3R(t) - k13F(t)T:3R(t) - 

k15p(t)T:3R(t) - k17T:3R:2p(t) + k14T:3R:F(t) -                   

k16T:3R:p(t)                                                                               (7) 

d F(t)

dt
  =   k22 - k9F(t)T:2R(t) + k10T:2R:2F(t) + k10T:2R:F(t) -  

k9F(t)T:2R:F(t) - k13F(t)T:3R(t) + k14T:3R:2F(t) - 
k13F(t)T:3R:2F(t) + k14T:3R:3F(t) + k14T:3R:F -  

k13F(t)T:3R:F(t) - k7F(t)T:R(t) + k8T:R:F(t) -  

k26F(t)+k10T:2R:F:p(t)+k14T:3R:2F:p(t)                                      (8) 

d T:R:F(t)

dt
 =  k7F(t)T:R(t) - k8T:R:F(t)                                                                 (9) 

d T:2R:F(t)

dt
 =  k9F(t)T:2R(t) + k10T:2R:2F(t) - k10F(t)T:2R:F(t) -  

k11p(t)T:2R:F(t) + k12T:2R:F:p(t)                                             (10)                                                                

d T:2R:2F(t)

dt
    = - k10T:2R:2F(t) + k9F(t)T:2R:F(t)                                (11) 

d p(t)

dt
 = k21 - k11p(t)T:2R(t) - k11p(t)T:2R:F(t) + 

k12T:2R:F:p(t) + k
12

T:2R:p(t) - k11T:2R:p(t)p(t) - 

k15p(t)T:3R(t) - k15p(t)T:3R:2F(t) + k16T:3R:2F:p(t) - 

k15p(t)T:3R:F(t) + k16T:3R:F:p(t) - k15p(t)T:3R:F:p(t) +  

k16T:3R:p(t) - k15p(t)T:3R:p(t) - k27p(t)                                 (12)                       

d T:2R:F:p(t)

dt
    = k11p(t)T:2R:F(t) - k12T:2R:F:p(t) - 

k10T:2R:F:p(t)                                                           (13)    

d T:3R:F(t)

dt
  = k13F(t)T:3R(t) + k14T:3R:2F(t) - k13F(t)T:3R:F(t) - 

k15p(t)T:3R:F(t) + k17T:3R:F:2p(t) + 

k16p(t)T:3R:F:p(t)                                                     (14)  

d T:3R:2F(t)

dt
    = - k14T:3R:2F(t) - k13F(t)T:3R:2F(t) - 

k15p(t)T:3R:2F(t) + k16F(t)T:3R:2F:p(t) +       

k14T:3R:3F(t) + k13F(t)T:3R:F                                  (15)               

d T:3R:3F(t)

dt
    = k13F(t)T:3R:2F(t) - k14T:3R:3F(t)                                        (16) 

d T:3R:2F:p(t)

dt
    = k15p(t)T:3R:2F(t) - k16p(t)T:3R:2F:p(t) - 

k14p(t)T:3R:2F:p(t)                                                         (17)                               

d T:2R:p(t)

dt
    = - k17T:2R:2p(t) + k11p(t)T:2R:p(t)                                       (18) 

d T:3R:p(t)

dt
 = k15p(t)T:3R(t) - k16T:3R:p(t) - k15p(t)T:3R:p(t) - 

k13F(t)T:3R:p(t)                                                               (19) 

d T:3R:2p(t)

dt
    = - k17T:3R:2p(t) + k15p(t)T:3R:p(t)                                        (20) 

d T:3R:F:p(t)

dt
    = k15p(t)T:3R:F(t) - k16T:3R:F:p(t) - 

k15p(t)T:3R:F:p(t) + k14T:3R:2F:p(t) + 

k13F(t)T:3R:p(t)                                                            (21)              

d T:3R:F:2p(t)

dt
    = - k17T:3R:F:2p(t) + 

k15pC8(t)TRAIL:3R:FLIP:pC8(t) + 

k13TRAIL:3R:2pC8(t)                                               (22) 

d C8(t)

dt
    = - k18C8(t)B(t) + k19C8:B(t) - k18C8(t)L(t) +            

k19C8(t)L(t) + k19C8:B(t) + k17 T:2R:2p(t) + 

k17T:3R:2p(t) + k17T:3R:F:2p(t) - k28C8(t)                            (23)                                                                           

d B(t)

dt
    = k23 - k18C8(t)B(t) - k29B(t)                                                  (24) 

d C8:B(t)

dt
    = k18C8(t)B(t) - k19C8:B(t)                                                             (25) 

d tB(t)

dt
    = k19C8:B(t) - k30tB(t)                                                          (26) 

d L(t)

dt
    = k32 - k18C8(t)L(t)                                                           (27) 

d C8:L(t)

dt
    = k18C8(t)L(t) - k19C8:L(t)                                                            (28) 

d cL(t)

dt
    = k19C8:L(t) - k31cL(t)                                                  (29) 

 



 

 

 

 

B. ARROM FIT TO MEDIAN_CELL 

TABLE I.  REACTION RATE VALUES AND NON-ZERO PROTEIN INITIAL 

CONDITIONS 

 

𝑘1 = 7.14 x 10−6    
* 

𝑘2 = 20.68    
** 

𝑘3 = 1.4 x 10−5   * 

𝑘4 = 19.22   
** 

𝑘5 = 9.9 x 10−6   * 𝑘6 = 6.91   
** 

𝑘7 = 7.14 x 10−6    
* 

𝑘8 = 4 x 10−4   
** 

𝑘9 = 7.2 x 10−6    
* 

𝑘10 = 7.8 x 10−4   

** 

𝑘11 = 7.14 x 10−6    

* 

𝑘12 = 1.1 x 10−3   

** 

𝑘13 = 7.15 x 10−6    
* 

𝑘14 = 3.1 x 10−4   
** 

𝑘15 = 7.14 x 10−6    
* 

𝑘16 = 2.07   

** 
𝑘17 = 2.1 x 10−1   

** 

𝑘18 = 7.14 x 10−6    

* 

𝑘19 = 3.9   

** 
𝑘20 = 1.05 x 10−5    

* 

𝑘21 = 1.6 x 10−4    

* 

𝑘22 = 8.5 x 10−3    

* 

𝑘23 = 5.9 x 10−3    

* 

𝑘24 = 7.4 x 10−6   

** 

𝑘25 = 7.2 x 10−6   
** 

𝑘26 = 2.8 x 10−4   
** 

𝑘27 = 9.5 x 10−6   
** 

𝑘28 = 1.6 x 10−3   
** 

𝑘29 = 7.1 x 10−6   
** 

𝑘30 = 7.5 x 10−6   
** 

𝑘31 = 7.1 x 10−6   
** 

𝑘32 = 1.1 x 10−2    
* 

 

T(0)=1500;  R(0)=9600;  F(0)=104;  p(0)=2.1 x 105;  

B(0)=3.2 x 106;  L(0)=1.7 x 106    *** 

*    mol-1.s-1           ** s-1    *** molecules 
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