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Beyond-mean-field crossover from one dimension to three dimensions in quantum
droplets of binary mixtures
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Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS,
Universit Paris-Saclay, Avenue Augustin Fresnel, 91127 Palaiseau CEDEX, France

(Dated: March 18, 2021)

The existence of quantum droplets in binary Bose-Einstein condensate mixtures rely on beyond-
mean field effects, competing with mean-field-effects. Interestingly, the beyond-mean field effects
change from repulsive in three dimension (3D) to attractive in 1D leading to drastically different
behaviors. We quantitatively model quantum droplets in the beyond-mean-field crossover from 1D
to 3D in the relevant case of an elongated harmonic trap and give realistic numbers for experimental
realizations. We identify and quantify two main limiting factors: three-body losses and tiny energy
scales. The crossover region is appealing as it offers a trade-off between these two main limitations
opening the possibility of observing stable flat-top density profiles, a yet unobserved, characteristic
feature of quantum droplets. It would permit testing beyond-mean-field theories to an unprecedented
precision.

PACS numbers:

I. INTRODUCTION

Ultracold quantum gases are uniquely well controlled
many-body systems [1]. Their diluteness permits accu-
rate ab initio theoretical treatment using zero range in-
teraction. They are thus good candidates for tests of
many-body theories. As an example, the energy of a
zero temperature Bose gas can be calculated within the
Bogoliubov theory beyond the usual mean-field approxi-
mation [2, 3]. Experimentally, there has been a quest for
the measurement of these beyond mean-field corrections
mostly by increasing na3, where n is the density and a is
the scattering length [4–7].

Recently, it was discovered that quantum mixtures
of two Bose-Einstein condensates with repulsive in-
traspecies interaction and attractive interspecies inter-
actions permit a cancellation of the global mean-field in-
teraction without a reduction of the magnitude of the
beyond mean-field effects [8]. They can then play a
dominant role in the dynamics of the system and com-
pete with the reduced mean-field energy. In this con-
text, quantum droplets, i.e. self-bound Bose-Einstein
condensates due to beyond-mean field effects have been
predicted [8] and experimentally observed [9–12]. The
name droplet is given in analogy to liquid droplets which
have similar properties such as a constant density pro-
file although their stabilization mechanism is different.
Quantum droplets were also observed in dipolar conden-
sates where the magnetic interaction competes with the
usual contact interaction [13] (see Refs [14, 15] and ref-
erences therein for recent reviews on quantum droplets).
Experimentally, the droplets are observed at high densi-
ties (typically ∼ 1021m−3). Three-body losses thus play
an important role in the droplet dynamics [16] and have
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hindered the observation of the predicted characteristic
flat-top density profile of a stable droplet.

Interestingly, the beyond-mean-field energy, which
originates from the summation of the zero point energies
of the Bogoliubov modes in the Lee-Huang-Yang descrip-
tion [17], strongly depends on the dimension of the sys-
tems with important consequences [18]. For example, the
three-dimensional (3D) beyond-mean-field energy den-
sity is positive and scales as n5/2, whereas the 1D beyond-
mean-field energy density is negative and scales as n3/2.
In the 1D case, a dominant beyond-mean-field energy is
obtained at low density in contrast to the 3D case. Quan-
tum droplets thus exist in both cases in however quite dif-
ferent conditions, requiring in particular an opposite sign
of the mean-field interaction [19]. The beyond-mean-field
energy density in the 1D-3D crossover was calculated pre-
dicting the existence of quantum droplets for any value
and sign of the mean-field interaction term in elongated
geometries [20, 21].

Experimentally, droplets in Bose-Bose mixtures have
been observed not only in free-space [10] but also in cigar
and pancake traps corresponding to quasi-1D [11] and
quasi-2D situations [9], where the motion of particles is
frozen in one or two directions. Nevertheless, the beyond-
mean-field effects were still in a 3D regime. This possibil-
ity of hybrid dimension comes from the different energy
scales associated with the two excitation branches, which
are relevant in droplets of binary mixtures, i.e. the low
energy density branch (the two condensates oscillate in
phase) and the high energy spin branch (the two conden-
sates oscillate out of phase). The latter is responsible for
the main beyond-mean field effects [21].

In this paper, we study the 1D-3D crossover for quasi-
1D quantum droplets in the experimentally relevant case
of a cigar-shaped harmonic trap. Our work crucially
uses a calculation of the beyond-mean-field energy den-
sity, in which the radial wave-function is fixed to the
radial harmonic oscillator one [20]. There is a smooth
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1D-3D crossover where the spin mode excitations and
thus also the Lee-Huang-Yang energy density are pro-
gressively modified by the radial trapping. In the whole
crossover, we study important experimental parameters
such as the droplet density, size, binding energy or three-
body loss rate as a function of the relevant dimensionless
parameters. The paper first describes large bulk droplet
properties and second introduces finite size effects within
an extended Gross-Pitaevskii equation formalism. We
study the ground state droplets with and without lon-
gitudinal trapping and find the conditions in which a
flat-top density profile is expected. We also study the
breathing mode frequency which gives the relevant time
scale for an adiabatic preparation of quantum droplets.
We find that the crossover regime offers an experimen-
tally favorable trade-off between high three-body losses
close to the 3D regime and tiny energy scales in the 1D
regime.

II. QUANTUM DROPLETS IN THE BULK

We consider a mixture of two atomic Bose-Einstein
condensates in states |1〉 and |2〉 (of equal mass m for
simplicity) and radially harmonically trapped with a fre-
quency ω⊥/2π. We assume that we are in the quasi-1D
regime such that the radial condensate wave-functions
are Gaussian characterized by the harmonic oscillator
size aoh =

√
~/mω⊥, where ~ is the reduced Planck con-

stant. The three relevant scattering lengths are a11 >
0, a22 > 0, a12 < 0 associated with the 1D coupling con-
stants gij = 2~ω⊥aij . We first consider the homogenous
case with the two 1D densities n1, n2 and the total den-
sity n = n1 + n2.

The mean field energy density can be written as:

EMF = g11n
2
1/2 + g22n

2
2/2 + g12n1n2

EMF =
(
√
g11n1 −

√
g22n2)2

2
+
gδg(
√
g11n2 +

√
g22n1)2

(g11 + g22)2

with δg = g12 +
√
g11g22 and g =

√
g11g22

(1)

In the vicinity of the mean-field collapse δg/g � 1, the
first term is much larger than the second one. The system
thus minimizes its mean-field energy by locking the two
densities such that

√
g11n1 =

√
g22n2. In this situation,

the mean-field energy density reduces to

EMF

~ω⊥
=

2aδa

(
√
a11 +

√
a22)2

n2 (2)

with δa = a12 +
√
a11a22 and a =

√
a11a22 (3)

This equation can be written in a more convenient form

EMF

~ω⊥
= δa′λκ2/2a (4)

with κ = na, λ = a/aoh, and δa′ = 4δa

λ(a
1/2
11 +a

1/2
22 )2

being

a dimensionless parameter characterizing the mean-field
interaction.

The beyond-mean-field energy density has been cal-
culated in two limits depending on the value of κ. For
κ� 1 corresponding to large densities such that the spin
healing length is smaller than aoh, one can make a local
density approximation along the radial Gaussian density
profile and integrate the usual 3D beyond-mean-field ex-
pression [20]:

E3D
BMF

~ω⊥
=
λ

a

512

75π
κ5/2. (5)

In the opposite limit κ . 1, the summation over the ra-
dial oscillation modes has been performed in order to cal-
culate the beyond-mean field energy density of a quasi-1D
Bose-Einstein condensate in the 1D-3D crossover [20]. In-
terestingly, the result can also be used for the spin modes
in a Bose-Bose mixture, giving the following beyond-
mean field contribution.

EcBMF

~ω⊥
=
λ

a
f(κ) , with (6)

f(κ) =
Ch1D√

2
κ2 − 4

√
2

3π
κ3/2 +

4
√

2 ln( 4
3 )

π
κ5/2 +Bh1Dκ

3.

(7)

The first term in f(κ) is a mean-field correction due to
the confinement-induced resonance (Ch1D ≈ 1.4603). The
second term is the beyond mean-field contribution of a
purely one-dimensional system [18], which dominates at
small κ. The third and fourth terms are corrections for
higher values of κ (Bh1D ≈ 1.13 [22]). For κ ∼ 1, the
beyond-mean-field energy density cannot be written in
a simple form but one can interpolate between the two
previous expressions with a relatively good accuracy.

In the two cases, one can simply minimize the energy
per particles E = (EMF + EBMF )/n as a function of
κ in order to find the equilibrium density in the bulk,
i.e. neglecting the kinetic energy. We plot the result-
ing value of κ as a function of the mean-field parameter
δa′ (see Fig. 1). Note that in the 3D beyond-mean field
case, the minimization leads to a non-zero density only
for attractive mean-field interaction which compensates
a repulsive beyond-mean-field term (red curve). In con-
trast, the crossover expression leads to the existence of
a finite density droplet for any value of the mean-field
parameter (black curve). For large and negative mean-
field parameter δa′, we find κ� 1 and the 3D expression
is the valid one. For δa′ & −3, the crossover expression
finds κ . 1 and it is thus valid. By interpolating the two
results from their validity region, we find droplets for any
value of the mean-field interaction and an approximated
value of κ in the whole crossover. The equilibrium den-
sity is drastically reduced when increasing the mean-field
interaction parameter.

We also plot the energy per particle in Fig. 2. It is
negative as a droplet is a self bound object. One can in-
terpolate between the two solid curves in order to find its
behavior for any parameter δa′. The binding energy of
the droplet significantly decreases as one goes toward the
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FIG. 1: (Color online) Dimensionless density κ in a bulk quan-
tum droplet as a function of the mean-field parameter δa′.
The black (red) curve corresponds to the 1D-3D crossover
(3D) beyond-mean-field model. The curves are dashed in the
regions where the theory is expected not to be valid.
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FIG. 2: (Color online) Energy per particle in the bulk. The
black (red) curve corresponds to the energy minimization us-
ing the 1D-3D crossover (3D) formula. The curves are dashed
in the regions where the corresponding theory is expected not
to be valid.

1D regime. The relevant scaling for the binding energy

λ~ω⊥ ∝ ω
3/2
⊥ shows the influence of the radial confine-

ment.

In this context, we can thus wonder whether the in-
creased lifetime of the droplet due to reduced densities
and three-body loss rates is sufficient to counterbalance
its reduced energy scale and thus increased time scale.
The three-body loss rate is characterized by a three-
body loss coefficient K3. By integration over the Gaus-
sian radial profile, we find the loss rate 1

N
∂N
∂t = −Γ =

−K3
κ2

3π2a4oha
2 . We then plot the dimensionless ratio of the

droplet binding energy to the three-body loss rate, which
is a measure of the relative importance of losses as com-
pared with the droplet intrinsic time scale (see Fig. 3).
Small values imply that losses play an important role in
the droplet dynamics [16]. We find that it is indeed fa-

vorable to move toward δa′ > 0 in order to minimize
the relative effect of losses. Note that the ratio is plot-
ted in units of the dimensionless quantity ~a3aoh/(mK3)
which reveals the importance of the different parameters.
In particular, we find that reducing the confinement ω⊥
is favorable to reduce the relative role of losses in the
droplet dynamics despite the reduction in the droplet
binding energy.
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FIG. 3: (Color online) Ratio of the binding energy per particle
to the three-body loss rate in the beyond-mean-field 1D-3D
crossover. Larger ratios are favorable to minimize the relative
effect of losses.

We now discuss experimentally realistic numbers. We
consider droplets made of potassium-39 in the second and
third spin states around 56.8 G as used in previous ex-
periments. In this case a11 ≈ 33 a0, a22 ≈ 84 a0, and
a12 ≈ 53 a0, where a0 is the Bohr radius. The mean-
field parameters δa and δa′ can be varied around zero
by slight adjustment of the magnetic field. As an ex-
ample, we take ω⊥/2π = 500 Hz and the energy scale
λ~ω⊥ ≈ (2π~) × 2 Hz is relatively low. For δa = −5 a0,
a value close to the experimental ones [9–11], δa′ = −20
and the binding energy per particle ∼ (2π~) × 60 Hz is
such that droplet physics can be observed on a time scale
of tens of milliseconds [11]. With an effective three-body
loss rate coefficient K3 = 1.4 × 10−40 m6.s−1 that can
be assumed to be constant in the relevant region of the
magnetic field [11, 23], the loss rate is ∼ 80 s−1 and losses
play a significant role in the droplet dynamics.

When one goes toward the 1D regime, the energy scale
decreases rapidly. Nevertheless, the loss rate decreases
even more rapidly and the crossover regime is an ade-
quate region to look for more stable droplets. For exam-
ple at δa′ = 0, where the droplet is solely stabilized by
the peculiar density dependence of the beyond-mean field
energy as a function of density [20], the droplet density is
reduced by a factor ∼100 and three-body losses are then
negligible. The energy per particle is then of the order
of ∼ (2π~) × 0.2 Hz. Note that such a low energy scale
implies long experimental times as well as a control of
the trap parameters such as its longitudinal flatness to
an extreme precision.
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III. QUANTUM DROPLETS IN A FINITE
SYSTEM

Whereas the above discussion focused on the properties
of droplets in the bulk, we now turn to the question of
finite atom numbers and finite sizes in quasi-1D droplets
in the beyond-mean-field crossover from 1D to 3D. One
of our goals is to identify realistic parameters where a
stable flat-top droplet density profile could be observed.

A. Extended Gross-Pitaevskii equation

In the same spirit as before, we suppose that the spin
modes are unpopulated such that the ratio of densities
between the two spin-states is fixed. Within this as-
sumption the system can be described by a single wave-
function ψ(x, t) solution of the following extended Gross-
Pitaevskii equation:

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ ~ω⊥

(
δa′λ|ψ2|+ λg(κ)

)
ψ +

1

2
mω2
‖x

2ψ

(8)

where g(κ) = ∂f(κ)
∂κ is the beyond-mean-field interaction

potential.
This equation can be written in dimensionless units

using the following scalings

t = t0t
′ =

1

λω⊥
t′ (9)

x = x0x
′ =

a⊥
λ1/2

x′ (10)

ψ = ψ0ψ
′ =

1

a1/2
ψ′ (11)

i
∂ψ′

∂t′
= −1

2

∂2ψ′

∂x′2
+
(
δa′|ψ′2|+ g(|ψ′2|)

)
ψ′ +

1

2

ω2
‖

ω2
⊥λ

2
x′2ψ′

(12)

with the normalization condition
∫
|ψ′2|dx′ = N ′ =

Nλ3/2. In addition to this rescaled atom number, there
are two dimensionless parameters: δa′ for the mean-field
interaction and

ω‖
ω⊥λ

for the trapping potential.

B. Ground state solutions

We find the droplet ground state using the split step
Fourier method and imaginary time evolution. We first
study the solution with no longitudinal trapping (ω‖ =
0). Remarkably we always find a self-bound solution
for all parameters. This is in contrast to the 3D situ-
ation where a minimal atom number is needed to form
a droplet. We now plot the ground state density profiles
for two different atom numbers N ′ = 0.3 and N ′ = 3 and
mean-field interaction parameters in the crossover δa′ =-
6.7, 0, and 6.7 (corresponding to δa/a0 =-1.6, 0, and
1.6, for the previously given experimental parameters) in

(a)

(b)

(c)

FIG. 4: (Color online) Quantum droplet density profiles in
the absence of longitudinal trap (ω‖ = 0) for N ′ = 0.3 and
N ′ = 3 for three values of δa′. (a): δa′ = −6.7. (b): δa′ = 0.
(c): δa′ = 6.7. Please note, the different scales both in x
and in κ in (a)-(c). The solid black curves correspond to the
exact minimization of the extended Gross-Pitaevskii equation
in the 1D-3D crossover using imaginary time evolution. The
superimposed dashed red curves are the results using the two
parameter ansatz presented in the text.

Fig. 4. For large atom numbers N ′ ≥ 3, the droplet pro-
file exhibits a flat-top profile corresponding to the bulk
solution whose edges are rounded because of the kinetic-
energy term. The droplet density gets smaller and its
size larger as δa′ goes from negative to positive values.
For small atom numbers N ′ ≤ 0.3, the droplets do not
show an extended flat region and the kinetic energy plays
a dominant role.

For the realistic experimental parameters chosen pre-
viously, N ′ = 1 corresponds to 3800 atoms and the quasi-
1D situation offers the possibility of saturating a droplet
with realistic atom numbers. This is in contrast to the
quasi-2D and even more the 3D droplets where the crit-
ical atom number to reach a flat top can be too high
especially for low values of |δa|, which are favorable to
reduce the role of three-body losses [8].
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Another way to get an idea of the density profiles is to
minimize the energy of an ansatz wavefunction. Here, an
appropriate choice for the density profile is

n(σ, r) =
N

2σΓ(1 + 1/2r)
exp

(
− (

x2

σ2
)r
)
. (13)

This two-parameter function has the ability to interpo-
late between a peaked density profile for low values of r,
a Gaussian density profile for r = 1 and a flat-top den-
sity profile for r � 1. Its typical width is given by σ. It
has the great advantage that the different energy terms
are analytical and can be simply written in terms of the
Γ function. The energy minimization is then straightfor-
ward. In Fig. 4, it is obvious that the ansatz minimization
method is able to approximate the exact ground state.

C. Maximum density and RMS size: Scalings

(a)

(b)

FIG. 5: (Color online) Maximum rescaled density κ0 (a) and
RMS size (b) of a droplet as a function of the atom number
in the absence of a longitudinal trap (ω‖ = 0). The three
curves correspond to three values of the mean-field parameters
δa′: black, δa′ = 6.7; red (middle curve), δa′ = 0; blue,
δa′ = −6.7.

We now plot the maximum rescaled density κ0 and the
root-mean-square (RMS) size of the ground-state profile
as a function of the atom number for δa′ =-6.7, 0, and
6.7 (see Fig. 5). In all cases, the density increases with

the atom number until it reaches a saturation value cor-
responding to the bulk density, when the droplet exhibits
a flat-top profile. It also appears that a lower atom num-
ber is necessary to reach a flat-top droplet as one moves
toward the 1D regime. The ground-state size first de-
creases as the atom number increases and then increases
when a flat-top droplet is formed.

For the above figures, one can extract scalings in differ-
ent regimes. For low atom numbers, all three curves are
superimposed and κ0 � 1. The dominant energy terms
are the 1D beyond-mean-field attractive terms and the
kinetic energy. The mean-field term is negligible. In
this case, the size scales as N ′−1/3 and the density scales
as N ′2/3. For a large atom number, the ground-state is
a flat-top quantum droplet. The dominant energies are
then the mean-field and beyond mean-field terms. The
kinetic energy can be neglected in the analysis. In this
case, the size simply scales as N ′ as the density is fixed.
For attractive mean-field δa′ < 0, there exists an inter-
mediate atom number region in which the solution corre-
sponds to a standard mean-field bright soliton [11, 24, 25]
for which the size scales as N ′−1 and the density scales
as N ′2.

D. Trapped case

We now turn to the trapped case. As an exam-
ple, we choose

ω‖
ω⊥λ

= 5 × 10−3 (which corresponds to

w‖/2π = 0.01 Hz, for the previously chosen parameters)
and find the ground state by imaginary time evolution
(see Fig. 6). For intermediate atom number, the trap has
no effect. It corresponds to a regime where the trap po-
tential energy is negligible as compared with the other
energy scales. For low atom number, the size reaches a
plateau in contrast to the untrapped case. This corre-
sponds to a situation where the gas can be considered as
non-interacting and the condensates occupy the ground
state of the longitudinal harmonic trap.

At high atom numbers, the trap prevents the droplet
from growing in size at a constant density as observed
in the absence of a longitudinal trap. In this regime,
the kinetic energy can be neglected and the density pro-
file can be found in an approximation analogous to the
Thomas-Fermi approximation. A local chemical poten-
tial is then directly linked to the density through the
homogenous equation of state. In the 3D case, this was
presented in [26]. The entrance in this last regime can
be simply estimated by comparing the bulk energy per
particle to the potential energy given by the RMS size of
the droplet. The value of N ′ where this happens drasti-
cally depend on δa′. As an example, density profiles for
N ′ = 10 are plotted in figure 7 for different values of δa′.
The profile indeed resembles a Thomas-Fermi profile for
δa′ = 6.7 with dominant mean-field and potential ener-
gies. Oppositely, a flat-top droplet profile with negligible
trap influence is found for δa′ = −6.7. For δa′ = 0, the
situation is intermediate. Our results show that even a
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(a)

(b)

FIG. 6: (Color online) Maximum rescaled density κ0 (a) and
RMS size (b) as a function of the atom number in the presence

of a longitudinal harmonic trap
ω‖
ω⊥λ

= 5 × 10−3. The three

curves follow the same coding as in Fig. 5.

minute axial confinement can greatly affect the droplet
shape in particular for δa & 0 where the droplet energy
scale is especially low.

E. Breathing mode

We now turn to the study of excitations of the quasi-
1D droplets in the absence of a longitudinal trap. They
can be studied by real time integration of the extended
Gross-Pitaevskii equation. More specifically, we start
from a situation close from equilibrium by rescaling the
first computed ground state wave-function by a coeffi-
cient of 1.01 [19]. After this modification, we study in
particular, the evolution of the RMS size of the droplet
as a function of time and extract its main (lowest) os-
cillation frequency, which is plotted in Fig. 8. Interest-
ingly, we find that these small breathing oscillations are
essentially undamped. This can be expected as their fre-
quency remains below the particle emission threshold for
all parameters. High frequency modes can evaporate but
there are only weakly excited in our excitation scheme
[8]. This behavior is in contrast to the 3D situation,
where there is a region just above the critical atom num-
ber where the droplets quickly evaporate to their ground
state [8]. Importantly, the excitation mode period gives

(a)

(b)

(c)

FIG. 7: (Color online) Droplet profiles in the presence of a

longitudinal confinement
ω‖
ω⊥λ

= 5 × 10−3 for N ′ = 10 and

three different values of δa′. (a): δa′ = −6.7. (b): δa′ = 0.
(c): δa′ = 6.7.

a time scale in which a droplet can be prepared in an
adiabatic (quasi-static) way by time variation of the ex-
perimental parameters.

We find that the breathing mode frequency first in-
creases with the atom number as can be expected from
an increasing binding energy. It then reaches a maximum
close to the point where the droplet becomes flat topped.
Then, it decreases when the droplet size increases. This
observed behavior is qualitatively similar to the behavior
previously predicted in the pure 1D regime (δa′ > 0) [19]
but quantitatively differs. For an increasing value of δa′,
the maximum frequency takes significantly lower values.
For the above mentioned parameters in potassium-39
mixtures, the frequency scale λω⊥/2π = 2Hz is already
quite low and the droplet breathing mode frequency ap-
pears to be reasonably large only in the attractive mean
field region. An adiabatic preparation of a ground state
(unexcited) flat-top density droplet by a slow sweep of
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FIG. 8: (Color online) Frequency of the breathing mode as a
function of the rescaled atom number for three values of the
mean-field parameter δa′: black top points, δa′ = −6.7; red
middle points, δa′ = 0; blue lower points, δa′ = 6.7.

the parameters seems challenging. Creating the droplet
already close to its stable shape by releasing the gas from
a longitudinal box potential appears to be a more realis-
tic solution to avoid too strong excitations.

IV. CONCLUSIONS

In a mixture of two Bose-Einstein condensates with
repulsive intraspecies interaction and attractive inter-
species interaction, we have studied quantum droplets
in the 1D-3D crossover for the beyond-mean-field energy,
which changes from positive in 3D to negative in 1D. The

equilibrium density is found to decrease rapidly when
moving toward the 1D regime, which would be experi-
mentally favorable in order to reduce the role of three-
body losses. This reduction comes with a reduction in
the typical energy scale of the droplets imposing severe
experimental constrains on the control of the residual
potential such as the longitudinal trapping or the prepa-
ration of the droplets close to their ground state. Never-
theless, stable quasi-1D quantum droplets with a charac-
teristic flat-top profile should be realistically observable
with a δa′ that is negative and of the order of a few
units in potassium 39 experiments [9–11]. The condi-
tions would be even more favorable for low loss mixtures
such as Rb-K [12].

The realization of quasi-1D droplets in the beyond-
mean-field crossover from 1D to 3D would allow precise
studies of the beyond-mean-field effects in Bose gases. Ef-
fects beyond the standard Lee-Huang-Yang energy used
in this paper will appear [27], either because of higher-
order terms in the density expansion [28], because of
finite-range interacting potentials [29, 30], or because of
temperature effects [31].
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[30] V. Cikojević, L.V. Markić, M. Pi, M. Barranco, and J.

Boronat, Phys. Rev. A 102, 033335 (2020).
[31] G. De Rosi, P. Massignan, M. Lewenstein, and G.E. As-

trakharchik, Phys. Rev. Research 1, 033083 (2019).


