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Prescribed-time predictor control of LTI systems with input delay

Nicolás Espitia Wilfrid Perruquetti

Abstract— This paper deals with the problem of prescribed-
time stabilization of controllable linear systems with input delay.
The problem is reformulated under a cascade PDE-ODE setting
from which a prescribed-time predictor feedback is designed
based on the backstepping approach, and whose transformation
makes use of time-varying kernels. The bounded invertibility of
the transformation is guaranteed. It is proved that the solution
converges to the equilibrium in a prescribed-time. A simulation
example is presented to illustrate the results.

I. INTRODUCTION

Finite, fixed-time and prescribed-time stabilization and

estimation have been extensively considered in the frame-

work of linear and nonlinear ordinary differential equations

(ODEs) (see e.g. [9], [4], [20], [16], [11], [21], [10], [13]).

For infinite dimensional systems, namely partial differential

equations (PDEs), these non-asymptotic concepts have been

of great interest and some contributions can be highlighted

for 1D hyperbolic and parabolic PDEs: see e.g. [19], [5],

[2], [5], [7], [6], [8], [22], [20]. For systems in both finite

and infinite dimension, the need to meet some performance,

time constraints and precision has highly motivated the

stabilization and estimation in finite, fixed and prescribed-

time.

In the framework of time-delay systems, however, finite,

fixed and prescribed-time concepts have not achieved a

sufficient level of maturity and are still challenging topics.

Most of the results on stabilization and estimation are based

on asymptotic or exponential guarantees. In particular, the

exponential stabilization of LTI systems with input delay and

linear time-varying systems with delays can be performed

based on the predictor feedback and model reduction-based

techniques (see.e.g [15], [14], [3], [17]. One of the pioneering

contributions for stabilization in finite-time for time-delay

systems are e.g. [12] and [18], the latter having pointed out

some key obstructions for the design of static finite-time con-

trollers and having therefore come up with a controller which

is based on the Artstein’s transformation [1] to stabilize in

finite-time (with a settling time depending on initial condi-

tions of the system). Nevertheless, to the best of our knowl-

edge, prescribed-time stabilization for LTI systems with input

delay has not been studied yet in the literature. The main

feature of this type of non-asymptotic concept is that time of

convergence can be prescribed in the design independently of

initial conditions. Therefore, in this paper, we provide new

results for the the problem of prescribed-time stabilization
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of controllable linear systems with input delay. We rely on

a PDE-ODE cascade setting and on the use of an invertible

Volterra backstepping transformation whose kernels are time-

varying. We propose a target system which is prescribed-

time stable. This stability property can be related back to the

original system as long as the backstepping transformation is

bounded invertible. The resulting controller (predictor-like)

contains time-varying functions as the kernels turn out to

be time varying. We call it then prescribed-time predictor

control. In order to better communicate the key ideas of our

approach, we focus mainly on a simple linear scalar equation

with input delay, while being actually the main contribution

of this paper. An overview on the extension to more general

LTI systems with input delay is briefly presented.

This paper is organized as follows. In Section II, we

introduce the LTI system with input delay and some

preliminaries on prescribed-time stability. In Section III,

we use a PDE-ODE setting under a backstepping approach

to come up with a prescribed-time predictor controller.

We focus on the scalar case to better communicate the

main ideas of our approach. Then, an overview of the

generalization to a LTI systems is provided in Section IV.

In Section V we consider a numerical example to illustrate

the results. Finally, conclusions and perspectives are given

in Section VI.

The proofs of some results are omitted (some others are

sketched) due to space limitation.

Notations: R+ will denote the set of nonnegative real

numbers. For non zero integers m and n, let 0m×n be the

(m,n)−matrix with zero entries, Im be the identity matrix

of dimension m, Jn = ((0(n−1)×1, In−1)
⊤, 0n×1)

⊤ (Jordan

matrix) and Ln(p) = (0(n)×(n−1), p)
⊤, where p ∈ R

n.

L
(α)
m (·) denotes the generalized Laguerre polynomials and

σn(·) denotes the elementary symmetric polynomials. The

set of all functions g : [0, h] → R
n such that

∫ h

0 g(x)2dx <

∞ is denoted by L2((0, h),Rn). A continuous function

α : [0, a) ⊂ R+ → R+, r 7→ α(r), is said to be a

class-K function if it is strictly increasing with α(0) = 0.

α is a class-K∞ function if it is a class-K function with

a = ∞ and α(r) → ∞ as r → ∞. A continuous function

β : [0, a) ⊂ R+×R → R+, (r, t) 7→ β(r, t), belongs to class-

KL if for each fixed t, the mapping r 7→ β(r, t) belongs to

class K∞ with respect to r; and, for each fixed r ∈ R+,

the mapping t 7→ β(r, t) is decreasing with respect to t and

limt→+∞ β(t, r) = 0.



II. PROBLEM STATEMENT AND PRELIMINARIES ON

PRESCRIBED-TIME STABILTY

Let us consider the following LTI system with input delay:

ż(t) = Az(t) +Bu(t− h), z ∈ R
n, u ∈ R, (1)

where h > 0 is a known constant delay. (A,B) are

matrices of appropriate dimensions and satisfy the Kalman

rank controllability condition for LTI systems. Thus (A,B)
can be assumed to be in the canonical controllability form

without loss of generality: this is A = Jn + Ln(a), a =
(a0, . . . , an−1)

⊤, B = (0, . . . , 0, 1)⊤. We assume u(t) =
0, ∀t ∈ [−h, 0). The goal is to design a control (predictor-

type) achieving "uniform fixed-time stability in a prescribed

time" (in short UPrTS). In order to better communicate the

key ideas for the design of the prescribed-time predictor

control for system (1), we are going to deal first with

some preliminary results of prescribed time stability and the

analysis and design for a simple linear scalar equation with

input delay.

Let us first recall the following general definition of UPrTS

(see e.g [21]).

Definition 1: The origin of the system ż = f(t, z) is said

to be UPrTS if there exist a class KL function β and a

function µ : [t0, t0 + T ) → R+ such that µ tends to infinity

as t goes to t0 + T and, ∀t ∈ [t0, t0 + T )

‖z(t)‖ ≤ β(‖z(t0)‖, µ(t− t0)).
We study the previous stability property on a scalar

linear time-varying autonomous system without delay. The

next lemma gives a sufficient condition for UPrTS of the

following scalar equation:

ż(t) = −c(t)z(t), z(t0) = z0. (2)

Lemma 1: Let c ∈ L1(R) with c(t) > 0 (a.e on R),

then (2) is UPrTS with a prescribed time T > 0 if

limt→t0+T c̄(t) = +∞ where c̄(t) =
∫ t

t0
c(τ)dτ .

In what follows, we consider the following blow-up function

defined on [t0, t0 + T ):

c(t) =
(c0T )

2

(T + t0 − t)2
, c(t0) = c20, (3)

Notice that (2) is UPrTS (in light of Lemma 1).

III. PRESCRIBED TIME PREDICTOR CONTROL:

PDE BACKSTEEPING APPROACH

We follow a cascade PDE-ODE setting (i.e. cascade linear

hyperbolic PDE with an LTI system) introduced in [15],

[14] under the backstepping approach which makes uses of

an invertible Volterra transformation. As we will see, the

key idea is to transform the original system into a target

system that is UPrTS and that meets the requirements for a

convergence in a time T + h+ t0 where T is fixed a priori,

h is the known input delay and t0 is the initialization time

(for simplicity, it will be selected as t0 = 0).

As aforementioned, in order to better communicate the

main ideas of our approach, we first study a scalar linear

system with input delay. The extension to the n-dimensional

case (i.e. LTI systems of the form (1)) follows as similar

reasoning related to the backstepping-based method studied

for the scalar case (which constitutes main keystone of this

paper contribution) as well as some transformations in the

framework of on liner time-varying systems. An overview

of such an extension is given, in a very informative way,

in Section IV. Indeed, the details of the proofs of the

formulas as well as the analysis are not provided due to space

limitation and require a complete and rigorous exposure

which is beyond the scope of this paper.

A. Scalar case

Let us consider the following control system:

ż(t) = az(t) + bu(t− h), (4)

where z ∈ R, h ≥ 0 and u(t) is the control input which is

delayed h > 0 units of time (u(t) = 0, ∀t ∈ [−h, 0)). For our

analysis and design, we assume that T ≥ h. Following [15],

[14], the system (4) can be rewritten as cascade PDE-ODE

system:

ż(t) =az(t) + bω(t, 0)

ωt(t, x) =ωx(t, x)

ω(t, h) =u(t),

(5)

t ≥ 0, x ∈ [0, h] and ω(t, ·) is the transport PDE state whose

solution is given by ω(t, x) = u(t + x − h). We aim at

stabilizing (5) (in turn (4)) in a prescribed time.

1) Backstepping control design and time-varying kernels:

The invertible Volterra integral transformation is chosen to

depend on time. It is given as follows:

ζ(t, x) = ω(t, x)−
∫ x

0

q(t− h, x, y)ω(t, y)dy

− γ(t− h, x)z(t)

(6)

whose kernel functions q and γ are time-varying. Under (6),

we want to transform (5) into the following target system:

ż(t) =− c(t− h)z(t) + bζ(t, 0)

ζt(t, x) =ζx(t, x)

ζ(t, h) =0,

(7)

where ζ : [0,∞)× [0, h] → R is the transport PDE state and

c is given by (3).

Following the standard methodology to find the kernel

equations and taking into account their time-dependence, it

can be shown that the kernels of transformation (6) satisfy

the following PDE system:

qx(t− h, x, y) + qy(t− h, x, y) =qt(t− h, x, y)

q(t− h, x, 0) =bγ(t− h, x)

γx(t− h, x)− γt(t− h, x) =aγ(t− h, x)

(8)

where q and γ are defined on the domains domains, respec-

tively Tq : {(t, x, y) : 0 ≤ y ≤ x ≤ h, 0 ≤ t < T + h− x}
and Tγ : {(t, x) : 0 ≤ x ≤ h, 0 ≤ t < T + h− x}.



Proposition 1: The system (8) has well-posed C∞ solu-

tions on Tq and Tγ , given by

q(t− h, x, y) = −(a+ c(t− h+ x)) exp (a(x− y)) , (9)

γ(t− h, x) = − (a+c(t−h+x))
b

exp (ax) , (10)

where c is defined by (3).

Proof: By the method of characteristics, one can derive

that the solution of the linear hyperbolic equation γ in (8) is

as follows:

γ(t− h, x) = exp (ax) Γ(t− h+ x), (11)

for some Γ to be characterized in the sequel. In (6) by letting

x = 0, we get ζ(t, 0) = ω(t, 0)− γ(t, 0)z(t) in conjunction

with the fact that ż(t) = az(t)+ bω(t, 0) = −c(t−h)z(t)+
bζ(t, 0), we obtain

az(t) + bω(t, 0) = −c(t− h)z(t) + b(ω(t, 0)− γ(t, 0)z(t))

yielding

γ(t− h, 0) =
−(a+ c(t− h))

b
(12)

Moreover, it holds:

Γ(t−h+x) = γ(t−h+x, 0) = − (a+ c(t− h+ x))

b
(13)

This yields:

q(t− h, x, 0) = b exp (ax) Γ(t− h+ x), (14)

Consequently,

q(t− h, x, y) = b exp (a(x− y)) Γ(t− h+ x). (15)

2) Inverse transformation and time-varying kernels: The

inverse transformation is given by

ω(t, x) = ζ(t, x) +

∫ x

0

m(t− h, x, y)ζ(t, y)dy

+ γ̄(t− h, x)z(t)

(16)

whose kernels can be shown to satisfy the following PDE

system:

mx(t− h, x, y) +my(t− h, x, y) = mt(t− h, x, y)

m(t− h, x, 0) = bγ̄(t− h, x)

γ̄x(t− h, x)− γ̄t(t− h, x) = −c(t− h)γ̄(t− h, x)
(17)

defined on the domains Tm : {(t, x, y) : 0 ≤ y ≤ x ≤
h, 0 ≤ t < T + h − x} and Tγ̄ : {(t, x) : 0 ≤ x ≤
h, 0 ≤ t < T + h− x}.

Proposition 2: The system (17) has well-posed solutions

C∞ on Tm and Tγ̄ given by

m(t− h, x, y) = −(a+ c(t− h+ x))

× exp
(

c0T
√

c(t− h+ y)
)

exp
(

−c0T
√

c(t− h+ x)
)

(18)

γ̄(t− h, x) =
−(a+ c(t− h+ x))

b

× exp
(

c0T
√

c(t− h)
)

exp
(

−c0T
√

c(t− h+ x)
)

.

(19)

and c defined by (3).

Proof: It follows the same reasoning as in the proof

of Proposition 1 with a slight adaptation to deal with a

linear hyperbolic equation with time-varying source term.

Indeed, by the method of characteristics one can obtain that

the solution to (17) is given as follows:

γ̄(t− h, x) = −(a+c(t−h+x))
b

× exp

(

−
∫ x

0

c(t− h+ x− s)ds

)

(20)

Then,

m(t− h, x, y) = −(a+ c(t− h+ x))

× exp

(

−
∫ x−y

0

c(t− h+ x− s)ds

)

(21)

Using the fact that under (3), it holds that

−
∫ x

0

c(t− h+ x− s)ds

= c0T
√

c(t− h)− c0T
√

c(t− h+ x)

(22)

and

−
∫ x−y

0

c(t− h+ x− s)ds

= c0T
√

c(t− h+ y)− c0T
√

c(t− h+ x)

(23)

then, (18),(19) follow. This concludes the proof.

Prescribed-time predictor control: From (6), at x = h,

and using (11), (13),(15), the boundary control is then:

u(t) = − (a+c(t))
b

eah

(

z(t) +

∫ h

0

e−aybu(t− h+ y)dy

)

,

(24)

where u(t− h+ y) = ω(t, y). Equivalently, we have:

u(t) = − (a+c(t))
b

(

eahz(t) +

∫ t

t−h

ea(t−θ)bu(θ)dθ

)

(25)

Or, from (16) at x = h, along with (19)-(18), the boundary

control can equivalently be written as follows:

u(t) = − (a+c(t))
b

(

ec0T
√

c(t−h)e−c0T
√

c(t)
)

z(t)

+

∫ h

0

ec0T
√

c(t−h+y)e−c0T
√

c(t)bζ(t, y)dy

)

.

(26)



3) Stability analysis: We perform the stability analysis on

the target system and then we establish the bounded invert-

ibility of the transformations by a suitable norm equivalence.

Lemma 2: Let c be given by (3) with c0, T > 0 fixed.

Let h > 0 be a known delay. Then, the target system (7)

is UPrTS stable in the following sense: for any z0 ∈ R it

holds, for all t ∈ [h, T + h):

|z(t)|2 ≤ ηz exp
(

−c0T
√

c(t− h)
)

|z0|2 (27)

where ηz = exp(2c0T
√

c(−h)). Moreover,

|z(t)|2 → 0, as t → T + h (28)

Proof: We exploit the cascade nature of the chosen

target system (7) along with the fact that the transport PDE

ζ is fixed-time stable. After t = h, one has that ζ ≡ 0 and

then compute explicitly the solution z(t) starting from z(h)
to get (27).

Proposition 3: For the backstepping transformations (6)

and (16), the following estimates hold:

‖ζ(t, ·)‖2L2 ≤ Mq(t−h)‖ω(t, ·)‖2L2+Mγ(t−h)|z(t)|2 (29)

‖ω(t, ·)‖2L2 ≤ Nm(t−h)‖ζ(t, ·)‖2L2+Nγ̄(t−h)|z(t)|2, (30)

where

Mq(t− h) = 4
(

1 + h
∫ h

0

(∫ x

0
|q(t− h, x, y)|2dy

)

dx
)

(31)

Mγ(t− h) = 2
∫ h

0
γ2(t− h, x)dx (32)

Nm(t− h) = 4
(

1 + h
∫ h

0

(∫ x

0
|m(t− h, x, y)|2dy

)

dx
)

(33)

Nγ̄(t− h) = 2
∫ h

0
γ̄2(t− h, x)dx. (34)

Lemma 3: Let Nγ̄(t − h) be given by (34). Then, the

following holds true:

lim
t→T+h

exp
(

−c0T
√

c(t− h)
)

Nγ̄(t− h) = 0. (35)

Proof: [Sketch] Using (19), we have Nγ̄(t − h) =

2 exp
(

c0T
√

c(t− h)
)

× I(t, h) (where I is some integral

depending on time t and t−h). Then using Young’s inequal-
ity we split the integral into two terms each of them is again
split into two terms to get:

exp
(

−c0T
√

c(t− h)
)

Nγ̄(t− h) ≤

exp
(

c0T
√

c(0)
)

(F11(t) + F21(t) +F12(t− h) + F22(t− h))

(36)

It can be shown that each term Fij(·) goes to zero in time

either T or T + h yielding (35).

Theorem 1: Let c be given by (3). Let h > 0 be a known

delay and c0 > 0, T > 0 fixed and such that T ≥ h. Let

Nγ̄ be given by (34) and ηz > 0 as in Lemma 2. Then, the

solution of the closed-loop system (5) with prescribed-time

predictor control (24) (or (26)) satisfies for any z0 ∈ R and

for all t ∈ [h, T + h):

|z(t)|2+‖ω(t, ·)‖2L2 ≤ ηz (Nγ̄(t− h) + 1)

× exp
(

−c0T
√

c(t− h)
)

|z0|2
(37)

Moreover,

|z(t)|2 + ‖ω(t, ·)‖2L2 → 0, as t → T + h (38)

and |u(t)| → 0 as t → T .

Proof: [Sketch] Using (30) in Proposition 3, it holds,

for t ∈ [0, T + h) that

|z(t)|2 + ‖ω(t, ·)‖2L2 ≤ Nm(t− h)‖ζ(t, ·)‖2L2

+ (Nγ̄(t− h) + 1) |z(t)|2
(39)

By Lemma 2 and the fact that ‖ζ(t, ·)‖L2 → 0 as t → h (as

well as the fact that Nm(t−h) < ∞, for all t ∈ [0, h]), then

it holds for t ∈ [h, T + h),

|z(t)|2+‖ω(t, ·)‖2L2 ≤ ηz (Nγ̄(t− h) + 1)

× exp
(

−c0T
√

c(t− h)
)

|z0|2
(40)

Then, by Lemma 3, we finally obtain that |z(t)|2 +
‖ω(t, ·)‖2

L2 → 0, as t → T + h. It remains to show that
|u(t)| → 0. Indeed, from (26) it holds

|u(t)| ≤
|a+ c(t)|

b
exp

(

−c0T
√

c(t)
)

exp
(

c0T
√

c(t− h)
)

|z(t)|

+ ‖m(t− h, h, ·)‖L2‖ζ(t, ·)‖L2 .
(41)

The term ‖m(t−h, h, ·)‖L2 < ∞ for all t ∈ [0, h]. Moreover,

we use the fact that ‖ζ(t, ·)‖L2 ≡ 0 from t ≥ h. Therefore,

by Lemma 2, it holds, for t ≥ h:

|u(t)| ≤ |a+ c(t)|
b

ηz exp
(

−c0T
√

c(t)
)

|z0|, (42)

from which we can conclude that |u(t)| → 0 as t → T .

IV. EXTENSION TO LTI SYSTEMS WITH SINGLE INPUT

DELAY

In this section, we present an overview of the results

concerning the general case for the design of the predictor-

feedback prescribe time stabilization of (1). Consider the

cascade PDE-ODE formulation of (1), i.e.

ż(t) =Az(t) +Bω(t, 0)

ωt(t, x) =ωx(t, x)

ω(t, h) =u(t),

(43)

1) Backstepping control design and time-varying kernels:

The backstepping transformation is as follows:

ζ(t, x) = ω(t, x)−
∫ x

0

q(t− h, x, y)ω(t, y)dy

− γ⊤(t− h, x)z(t)

(44)

such that γ⊤(t− h, x)z(t) =
∑n

i=1 γi(t− h, x)zi(t). Under

(44), system (43) is mapped into the following target system:

ż(t) =C(t− h)z(t) +Bζ(t, 0)

ζt(t, x) =ζx(t, x)

ζ(t, h) =0,

(45)

with C(t − h) = Jn + Ln(−p(t − h)) where p(t − h) =
(p0(t−h), . . . , pn−1(t−h)) with functions pi−1, i = 1, . . . , n
being defined by

p0(t− h) = σn(r1, .., rn)c
n(t− h), (46)



and for j = 1, . . . , n− 1,

pj(t− h) =
(
√

c(t− h))n−j

(c0T )n−j

×

n
∑

k=j

(−1)k−j
σn−k(r1, ..., rn)

(

k − 1

j − 1

)

k!

j!

(

c0T
√

c(t− h)
)n−k

(47)

where c(·) is given by (3), ri > 0, ri 6= rj for i 6= j in

the range of n and σn−k(·) are the elementary symmetric

polynomials defined by

σ0(r1, ..., rn) = 1, (48)

σk(r1, ..., rn) =
∑

1≤i1≤i2≤...ik≤n

ri1ri2 . . . rik , (49)

σn(r1, ..., rn) =
n
∏

i=1

ri, (50)

and σk(r1, ..., rn) = 0, for k ≥ n.

The Kernel PDE equations of transformation (44) are:

qx(t− h, x, y) + qy(t− h, x, y) =qt(t− h, x, y)

q(t− h, x, 0) =γ⊤(t− h, x)B

γx(t− h, x)− Inγt(t− h, x) =A⊤γ(t− h, x),

(51)

where q and γ are defined on the Tq and Tγ .

Proposition 4: The system (51) has well-posed C∞ solu-

tions on Tq and Tγ , given by

q(t− h, x, y) = Γ⊤(t− h+ x) exp (A(x− y))B, (52)

γ(t− h, x) = exp
(

A⊤x
)

Γ(t− h+ x), (53)

where

Γi(t− h+ x) = −(ai−1 + pi−1(t− h+ x)), i = 1, . . . , n
(54)

and functions pi−1 are defined by (46), (47).

2) Inverse transformation and time-varying kernels: The

inverse transformation is given by

ω(t, x) = ζ(t, x) +

∫ x

0

m(t− h, x, y)ζ(t, y)dy

+ γ̄⊤(t− h, x)z(t)

(55)

whose kernels satisfy the following PDE system:

mx(t− h, x, y) +my(t− h, x, y) = mt(t− h, x, y)

m(t− h, x, 0) = γ̄⊤(t− h, x)B

γ̄x(t− h, x)− Inγ̄t(t− h, x) = C⊤(t− h)γ̄(t− h, x),
(56)

defined on the domains Tm and Tγ̄ .

Proposition 5: The system (56) has well-posed solutions

C∞ on Tm and Tγ̄ given by

m(t− h,x, y) = Γ⊤(t− h+ x)V (t− h+ x)

×D(t− h+ x)D−1(t− h+ y)V −1(t− h+ y)B,

(57)

γ̄(t− h, x) = V −⊤(t− h)D−1(t− h)

D(t− h+ x)V T (t− h+ x)Γ(t− h+ x),
(58)

where

D(s)

= diag
(

exp
(

−r1c0T
√

c(s)
)

, . . . , exp
(

−rnc0T
√

c(s)
))

,

Γi(t− h+ x) = −(ai−1 + pi−1(t− h+ x))

pi−1 defined by (46), (47), and V is polynomial-based

Vandermonde matrix given as follows:

V (t) =











1 · · · 1
(δ0ρ1)(t− h) · · · (δ0ρn)(t− h)

...
. . .

...

(δn−2ρ1)(t− h) · · · (δn−2ρn)(t− h)











(59)

with

(δkρi)(t− h) =

−ric(t−h)(
√

c(t−h))k

(c0T )k k!L
(1)
k

(

ric0T
√

c(t− h)
)

,

(60)

k = 0, . . . , n− 2.

Prescribed-time predictor control

From 44, at x = h, and using (52)-(54), the boundary

control is then:

u(t) =Γ⊤(t) exp (Ah) z(t)

+

∫ h

0

Γ⊤(t) exp (A(h− y))Bu(t− h+ y)dy,
(61)

where u(t − h + y) = w(t, y). Using the inverse trans-
formation, from (55), at x = h, the boundary control can
equivalently be written as follows:

u(t) = Γ⊤(t)
(

V (t)D(t)D−1(t− h)V −1(t− h)
)

z(t)+
∫ h

0

Γ⊤(t)
(

V (t)D(t)D−1(t− h+ y)V −1(t− h+ y)
)

Bζ(t, y)dy.

(62)

3) Stability result:

Theorem 2: Let c be given by (3) and let rmin =
mini=1,...,n{ri} with ri > 0 involved in (46)-(47). Let h > 0
be a known delay and c0 > 0, T > 0 fixed and such that

T ≥ h. Let Nγ̄ = 2
∫ h

0 γ̄⊤(t−h, x)γ̄(t−h, x)dx where γ̄ is

given by (58). Then, the solution of the closed-loop system

(43) with prescribed-time predictor control (61) (or (62))

satisfies, for any z0 ∈ R
n and for all t ∈ [h, T + h):

‖z(t)‖2+‖ω(t, ·)‖2L2 ≤ ηz (Nγ̄(t− h) + 1)P (
√

c(t− h))

× exp
(

−rminc0T
√

c(t− h)
)

‖z0‖2

for some ηz > 0 and P a positive polynomial in
√

c(t− h).
Moreover,

‖z(t)‖2 + ‖ω(t, ·)‖2L2 → 0, as t → T + h

and |u(t)| → 0 as t → T .
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Fig. 1. Evolution of the L
2-norm of the closed-loop system (5) (logarithmic

scale)
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Fig. 2. Evolution of the delayed control (24).

V. SIMULATIONS

We consider a scalar linear equation with input delay (4).

We borrowed the example from [18] with a = 1, b = exp(h)
and h = 0.2s. We fix T = 0.6s. Numerical simulations

were done by discretizing the cascade PDE-ODE system (7)

and making use of transformation (16). Figure 1 shows the

evolution of the L2-norm of the closed-loop system (plotted

in logarithmic scale) with boundary control u(t) (26). One

can observe convergence to the origin as t → 0.8s. Figure 2

shows the time evolution of the delayed control.

VI. CONCLUSION

We have addressed the problem of prescribed-time sta-

bility of linear systems with input delay. The key ideas are

developed for delay compensation of a scalar linear equation

with input delay. The prescribed-time predictor feedback

design is carried out based on the backstepping approach

which makes use of time-varying kernels, for which, the

bounded invertibility of the backstepping transformation is

guaranteed. An overview of the results for a more general

case (n-dimesnional LTI systems) is presented.

Future work includes prescribed-time stabilization of

LTI systems with time-varying delay and observer-based

predictor-feedback.
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