
HAL Id: hal-03021400
https://hal.science/hal-03021400v1

Submitted on 24 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RobotDrlSim: A real time robot simulation platform for
reinforcement learning and human interactive

demonstration learning
Te Sun, Liang Gong, Xvdong Li, Shenghan Xie, Zhaorun Chen, Qizi Hu,

David Filliat

To cite this version:
Te Sun, Liang Gong, Xvdong Li, Shenghan Xie, Zhaorun Chen, et al.. RobotDrlSim: A real time
robot simulation platform for reinforcement learning and human interactive demonstration learning.
MSOTA 2020 - 3rd International Conference on Modeling, Simulation and Optimization Technologies
and Applications, Nov 2020, Beijing / Virtual, China. �hal-03021400�

https://hal.science/hal-03021400v1
https://hal.archives-ouvertes.fr

RobotDrlSim: A real time robot simulation platform for

reinforcement learning and human interactive demonstration

learning

Te Sun, Liang Gong*, Xvdong Li, Shenghan Xie, Zhaorun Chen, Qizi Hu and

David Filliat

*Corresponding author email: gongliang_m@sjtu.edu.cn

Abstract. Deep reinforcement learning (DRL) techniques give robotics research an AI boost in

many applications. In order to simultaneously accommodate the complex robotic behaviour

simulation and DRL algorithm verification, a new simulation platform, namely the RobotDrlSim,

is proposed.

First, we design a standardized API interfacing mechanism for coordinating diverse

environments on RobotDrlSim platform, where PyBullet simulator is equipped with an API to

form a physical engine for robotics simulation. Second, benchmark DRL models are included in

the baseline library for evaluation. Third, real-time human-robot interactions can be captured

and imported to drive the RobotDrlSim tasks, which provide big data-stream for reinforcement

learning. Experimentations show that cutting-edge DRL algorithms developed in python can be

seamlessly deployed to the robots, and human interactions can be availed in training the robots.

RobotDrlSim is valid for efficiently developing DRL algorithms for artificial intelligence models

of robots, and it is especially suitable for the robot educational purposes.

Keywords: Simulation platform, robot control, deep reinforcement learning, human interactive

demonstration learning.

1. Introduction

With rapid progress, the intelligent robot draws increasing attention from both academic and industrial

fields. Advanced learning models boost robot to achieve complex problems like [1]. Generally, these

kinds of self-taught intelligent architecture implement deep learning models for environment perception

and knowledge accumulation. Deep reinforcement learning that combines convolutional neural network

and bellman dynamic planning not only outperforms human experts in many domains [2][3][4] but also

enables robot to be trained in an end-to-end style. However, applying the direct reinforcement learning

algorithms to solve complex task would be inefficient, especially within robotic configuration where

interactions are lengthy and costly. A typical solution is to use a simulated virtual environment to

reconstruct the robot’s dynamics and external changes, which substitutes assiduous experiments in real

life.

Simulated environments provide models with fast, repeatable and flexible interaction experiences.

Growing computation capacity equips simulation with multi-threading, parallel computation and GPU

acceleration. Those novel technologies improve the performance of both dynamics simulation and

reinforcement learning. On the one hand, high-quality dynamics simulation is used to rapidly prototype

robots design and simulate virtual sensors, providing a virtual robotics testing platform. On the other

hand, reinforcement learning models will have a more stable and robust manner with large and reliable

training data source.

The narrowing gap between simulation and the real-life allows to train a simulated robot and then to

deploy the trained reinforcement learning model in real robotic control platform. Yet, the lack of a

standardized and plug-and-play robotic simulation solution requires researchers to redesign the platform

to fit the current reinforcement learning algorithm interface.

Within the scope of our work, we extend Bullet physic engine [5][6] to build our standardized robotic

simulation environment platform, which integrates APIs for reinforcement learning algorithms, remote

control and expert demonstration. We proposed two specially designed robotic environments:

InMooV[7] and Jaka. Both have their counterpart robots in real-life.

2. Background

Simulation is essential these days for robotic research. The simulated engine provides fast verification

for robot design. Meanwhile, it bridges the gap between the reinforcement learning algorithms and the

real-world robotic problems. In the work of Plasencia et al[8], they proposed two teaching platforms for

robotics simulation. The first of which combines OpenAI Gym with V-REP physical engine, providing

a large choice for reinforcement learning-ready API. The second tool they propose uses Deeplearning4J,

an open-source deep learning toolbox implemented with JAVA, which offers RL-Glue plug-in. Stephen

James[9] uses a 3D simulated robot simulation with V-REP built-in to train a v-rep robot arm to grasp

a cubic. To resolve the interface with python, they implement an internet communication protocol to

assemble simulated robot and DRL algorithms package. But the time lagging involved with server-client

communication prevents online training. Moreover, the survey conducted by Diego Ferigo et al[10]

shows that socket-based protocols are discouraged since the existence of multi-components in the

simulation makes firstly random initialization partially uncontrollable. Secondly, it may obstruct

reproductivity especially when the algorithms are very sensitive to numerical variation. Therefore,

client-server solution is not suitable for resolving simulated robots with reinforcement learning.

M. Kirtas et al[11] redesign Webots to fit Gym interface, enlarging the compatibility for both robotic

and gaming problems. This open-source toolbox equipped with possibility for more feature extensions

offers DRL verification platform for both researchers and students. Yet, the main experiments within

their work do not have counterparts in the real-life. And the framework does not contain DRL algorithm

customized setups, which leaves some tedious works to track the training and replay the trained model.

Meanwhile, many researchers have completed various tasks in the simulation system by applying the

method of reinforcement learning to the simulation. In the work of Jan Matas et al[12], they have used

a combination of several deep RL algorithms to solve the problem of manipulating deformable cloth

and completed three tasks in the Bullet simulation environment, including folding a towel up to a mark,

folding a piece of cloth diagonally and draping a face towel over a hanger. They also transferred the

learned policy to the real robot without any real-world data. Chelsea Finn et al[13]. develops a new

reinforcement learning algorithm ‘guided cost learning’ based on inverse optimal control. They used the

MuJoCo physics simulator to test their algorithm by running experiments on three tasks of varying

difficulty, like 2D navigation around obstacles, a 3-link arm reaching towards a goal location in 2D in

the presence of physical obstacles. And then they take this result to compare the ‘guided cost learning’

with the prior sample-based algorithm to determine which one is better. Finally, in the research

conducted by Deirdre Quillen et al.[14], they build a robotic arm with 7 degrees of freedom in the Bullet

simulator with the task of grasping objects from a bin. Then different RL algorithms are applied to the

simulation environment. After evaluation, every algorithm will be given with a benchmark to decide

which one is the most suitable for grasping situation. However, even with numerous works to apply

DRL algorithm in simulated framework, short of readily employed simulation platform poses difficulty

for massive benchmarking upcoming state-of-the-art algorithms.

Our RobotDrlSim platform that supports pure Python API abstraction allows direct interaction between

the robotic kinematic simulation and the DRL model without socket-based data transmission. The robots

in real life also provide possibility to test the simulation accuracy. The stacked 10 DRL algorithms will

also facilitate the researcher and students for further development.

3. Methodology

Our platform mainly consists of several task-oriented simulated environments. We have standardized

its interfaces to associate with the supported DRL algorithms and the operators themselves. To cooperate

PyBullet simulator with DRL algorithms implementation, we migrate Gym API as the wrapper to skip

some tedious environment configuration at the very start.

Among the provided environments, our platform contains 2 robotic environments: InMoov and Jaka.

Therefore 2 interfaces are built to fit Gym and RL states information with ground truth and raw pixels.

3.1. Build Up the Environment

The simulated environments adopt gym module to interfere with RL algorithm. Within the framework

of simulation platform, we integrate several featured functions, some of those are highlighted along with

built-in parameters in the Table 1.

Table 1. Parameters and member functions of basis environments wrapper class.

Parameters Effect

urdf_root Path to pyBullet urdf files

Renders Whether to display the GUI or not

is_discrete Whether to use discrete or continuous actions

multi_view Whether to return images from multiple camera

max_distance Max distance between the effector and the button

Functions Effect

getState Get the state with a given observation

Reset Reset simulation in PyBullet and initial positions

get_observation Get observation according to the state format

Render Set the cameras and obtain the images

As for the on-the-shelf SDK configuration of our RobotDrlSim platform, we have already imported the

urdf files which describe the InMoov robot with more than 50 controllable joints, and the Jaka robot

which has 6. Both of these two robots are representative for their humanoid and cooperative features.

For instance, we utilize the loadURDF() function compiled in PyBullet toolkit to load InMoov model,

materializing the simulated subject as well as some other auxiliary objects or scenes such as plane.urdf

and table.urdf etc.To instantiate our environments as Gym objects, the final step is to register the

environment in a registry lists by grouping concerned modules in the script registry.py.

On the other side, we constructed reinforcement learning algorithms interface with similar idea. We

generate algorithms interface from stable-baselines[15] and include several customized adaptations.

Since then, the RobotDrlSim platform can conveniently combine DRL algorithms with registered

environments, which render a quick verification on the subjects. Take "ppo2" and Jaka for instance:
Algorithm 1 JakaButtonGymEnv(GymEnv)

import PPO2 from stable_baselines

import StableBaselinesRLObject from rl_baselines.base_classes

initializing algorithm PPO2 in the class StableBaselinesRLObject

adding arguments: --num-cpu

Algorithm 1: environment-algorithm interaction process for Jaka environment

Finally, the interfaces of client-environments and algorithms in our platform are built. With this platform,

robotic simulation with standardized RL algorithms can be easily deployed.

3.2. Training the Model

Everything being prepared, we can train the model whose entrance locates in rl_baselines.train.py.

Similarly, we need to input some configurational parameters for ArgumentParser to parse. The table

below demonstrates some significant inputs. Please refer to train.py for the complete list.

Table 2. Key parameters for RL training setup.

Parameters Effect

algo RL algorithm to be trained

env environment registered to interact with

log_dir Directory to save agent logs and RL model

srl_model SRL model to use to reduce the dimensions

During the training process, the corresponding logs will be saved to the directory input as log_dir refers

to. Later we can observe the results or retrain the model directly via the logs. Naturally, we can utilize

the visdom toolkit to supervise the training process in real time.

Figure 1. The interaction process of simulator platform and RL algorithm.

3.3. Remote Control

In order to integrate our platform with demonstration learning and take full advantage use of

computation resource, we extend the environments to support remote control. Within remote control

setup, we separate control and simulation into 2 computers. Through TCP protocol, connection

exchanges simulated data and robotic control command. We re-encapsulate the data along with a tokento

assure the integrity and reliability of remote data transmission.

Figure 2. First-perspective camera perspective and joint control from local PC.

Take example for a single time interaction between the local and the server. We firstly initiate socket

protocol on both ends: server and client. After establishing connection, GUI will be activated on the

local side and corresponding environments will be created on the server side. At one step interaction,

local platform broadcasts control command, which will be received by activated RobotDrlSim simulator.

The first advantage of this implementation aims to maximize the computational power from server side

and to free local computer from complex python configuration. Secondly, most popular real robot

control systems like ROS, are designed with C++. The data encapsulation and Internet-styled data

transfer protocol offer flexibility of programming languages, which paves the path for direct migration

of trained DRL model to real-life configuration. Finally, the implementation allows expert

demonstration to support data collection and Learn from Demonstration (LfD) algorithm development.

4. Experimental Demonstration

Our simulation platform contains a collection of ready-to-use environments, including Jaka and InMoov

robot. In this part, we investigate the performance of our platform and its compatibility with state-of-

the-art DRL algorithms.

4.1. Jaka Robot’s Point to Point Control

Jaka robot’s point to point task tries to guide the end of Jaka robot to reach the position pre-set by us.

We set a button at a fixed position. The goal for the robot is to reach the button. The action space of

robot is discretized, containing six possible movements for each time step: moving forward, backward,

up, down, left and right. We use pybullet’s inverse kinematics algorithms to compute the needed joints-

level control movements for robot at each step. In ground_truth model, the observation contains the

relative position between the end of robot and the button. In raw_pixels model, the observation is a

photo taken by a global camera we set in the simulation environment. We define d(robot, button) as the

distance between robot and button, and for every step taken, the agent is rewarded with -d(robot,button).

The learning curves using different algorithms are depicted in Figure 3.

Figure 3. Robot in simulation (left) and learning curves (right) for point-to-point task for Jaka robot

4.2. Jaka robot contacts with the button and avoids obstacles

On the basis of point-to-point training above, an obstacle (a column) is added between the robot and the

target button. In this scope, the robot should learn to touch the button while avoiding the obstacle.

Figure 4. The environment set(left) and the learning curve(right) of obstacles avoiding and reaching

The action space is the same as last mission. The observation contains the relative position between the

end of robot and the button and the relative position between the end of robot and the obstacle. For every

step taken, the agent is rewarded with -d(robot,button). If the robot gets bumped by the obstacle during

training, the agent would get a reward -200. The robot succeeds in making a circular move to approach

the button and staying away from the obstacle. The learning curves using different algorithms are

depicted in Figure 4.

4.3. InMoov robot’s point to point control

Figure 5. Simulated tomato tree and robot(left); Learning curves of object grasping task for

InMoov(right).

InMoov robot’s point to point control is meant to let the right hand of InMoov robot reach the position

of one tomato on a tomato tree we ‘plant’ in the simulation environment.

The action space is discrete, containing six possible actions for each time step, the same as that in Jaka

point-to-point training. The observation contains the relative position between the right hand of the robot

and the tomato. For every step taken, the agent is rewarded with -d(right hand,tomato). The learning

curves using different algorithms are depicted in Figure 5.

4.4. Simulation Platform fps Verification
State_model Jaka InMoov

Ground_truth 506 76

Raw_pixels 22 8

Table 3. The simulation fps for Jaka and InMoov environment.

Experiments on fps defines the number of frames per second the simulator can interact with the

environment. The fps of our simulation with different robots and input is shown in the Table 3.

5. Conclusion

RobotDrlSim plays an important role in training robot with deep reinforcement learning methods.

The RobotDrlSim platform breaks the barriers of multiple simulation environment coordination and

supports visualization of robot training, which accelerates the deployment of robot control algorithms

with complex tasks. Human-robot interactions could also be utilized to guide the robot training, which

paves an efficient way for improving the performance of DRL algorithms.

In the next step, we will concentrate on GPU acceleration to achieve real-time simulation with higher

image resolution. The future work could also be focused on the deployment of DRL model down to real

robot to solve tasks. Moreover, task-specified algorithm and demonstration algorithm could be

developed in the future to accelerate the training process.

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No.51775333) and

the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant

No.18391901000).

References

[1] S. Levine and A. Krizhevsky, “Learning Hand-Eye Coordination for Robotic Grasping with Deep

Learning and Large-Scale Data Collection,” 2012.

[2] O. Vinyals et al., “Grandmaster level in StarCraft II using multi-agent reinforcement learning,”

Nature, vol. 575, no. 7782, pp. 350–354, 2019, doi: 10.1038/s41586-019-1724-z.

[3] D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,” Nature,

vol. 529, no. 7587, pp. 484–489, 2016, doi: 10.1038/nature16961.

[4] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,” CoRR, vol. abs/1312.5, 2013,

[Online]. Available: http://arxiv.org/abs/1312.5602.

[5] E. Coumans and others, “Bullet physics library,” Open source bulletphysics. org, vol. 15, no. 49,

p. 5, 2013.

[6] E. Coumans and Y. Bai, “PyBullet, a Python module for physics simulation for games, robotics

and machine learning.” .

[7] G.Langevin, “InMoov.” 2014.

[8] A. Plasencia, Y. Shichkina, I. Suárez, and Z. Ruiz, “Open source robotic simulators platforms for

teaching deep reinforcement learning algorithms,” Procedia Comput. Sci., vol. 150, pp. 162–170,

2019.

[9] S. James and E. Johns, “3D Simulated Robot Manipulation Using Deep Reinforcement Learning,”

2016.

[10] D. Ferigo, S. Traversaro, G. Metta, and D. Pucci, “Gym-Ignition: Reproducible Robotic

Simulations for Reinforcement Learning,” Proc. 2020 IEEE/SICE Int. Symp. Syst. Integr. SII

2020, pp. 885–890, 2020, doi: 10.1109/SII46433.2020.9025951.

[11] M. Kirtas, K. Tsampazis, N. Passalis, and A. Tefas, “Deepbots: A Webots-Based Deep

Reinforcement Learning Framework for Robotics,” in Artificial Intelligence Applications and

Innovations, 2020, pp. 64–75.

[12] J. Matas, “Learning end-to-end robotic manipulation of deformable objects,” 2018, [Online].

Available:https://www.imperial.ac.uk/media/imperial-college/faculty-of-

engineering/computing/public/1718-ug-projects/Jan-Matas-Learning-end-to-end-robotic-

manipulation-of-deformable-objects.pdf.

[13] C. Finn, P. Abbeel, P. Eecs, and B. Edu, “Guided Cost Learning : Deep Inverse Optimal Control

via Policy Optimization,” vol. 48, 2016.

[14] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine, “Deep Reinforcement Learning

for Vision-Based Robotic Grasping : A Simulated Comparative Evaluation of Off-Policy

Methods,” pp. 6284–6291, 2018.

[15] A. Hill et al., “Stable Baselines,” GitHub repository. GitHub, 2018.

