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Direct numerical simulations of a turbulent channel flow submitted to a high temper-
ature gradient are performed. The temperatures of the channel walls are imposed to
293 K for the cold one and 586 K for the hot one. In this configuration, the flow is sub-
sonic, while temperature variations can be strong and induce significant variations of
the fluid properties. The unsteady low Mach number Navier-Stokes equations are solved
numerically at a Reynolds number of 6 400, based on the mean centreline velocity, mean
centreline viscosity and channel half-width. The mesh that contains about 470 millions
of grid points allows to resolve all essential turbulence scales and no subgrid model is
used. The independence of the mesh resolution is shown. A large number of turbulence
statistics are computed. The profiles obtained at the cold and at the hot walls are com-
pared using different non-dimensionalizations. The coupling between the turbulence and
the temperature gradient is shown to modify the mean and the fluctuation profiles.

1. Introduction

Wall-bounded turbulent flows a very active area of research (Lagha et al. (2011);
Marusic et al. (2011); Wei & Pollard (2011)). Many industrial processes have temper-
ature gradients in the near wall region (concentrated solar power tower as presented
by Daguenet-Frick et al. (2012), nuclear power plants, piston engines, propulsion systems,
heat exchangers ...). In the case of small temperature gradients, the turbulent boundary
layer with heat transfer remains an incompressible flow (Morinishi et al. (2007); Wu &
Moin (2010)). In the situation of high temperature gradients, the interactions between
the energy and the momentum equations are strong and the classical isothermal models
are valid . The temperature gradient can be considered as a strong external agency that
modify the turbulence properties (Serra et al. (2012c)). Turbulence modifications have
been shown, for example, for strong magnetic field, rotation, or stratification (Mahalov
et al. (1998); Ye & Zhou (2010); Zhou & Oughton (2011)). In the case of supersonic
compressible flow, the coupling between turbulence and high temperature gradients has
been studied extensively to increase the understanding of the turbulent boundary layer
mechanism (Huang et al. (1995); Coleman et al. (1995); Morinishi et al. (2004); Tamano
& Morinishi (2006); Spina et al. (1994)). In the case of low speed flow, only very few
studies are dedicated to this coupling. In particular, there is no reference data subsonic
flow without low Reynolds number effect and with compressible effect due to strong ther-
mal gradient. This case is missing in the literature. The present paper gives the results
of a direct numerical simulation (DNS) that studies this very specific situation. The
configuration is represented by figure 1. It is a bi-periodic channel flow with a cold wall



2 A. Toutant and F. Bataille

and a hot one. The lengths of the periodic directions (Lx and Lz) are different according
to litterature. The turbulent Reynolds number used in this table is defined by the mean
Reynolds number of the cold (subscript 1) and the hot (subscript 2) walls:

Reτm =
Reτ1 +Reτ2

2
(1.1)

The turbulent Reynolds number is based on the friction velocity uτ =
√

τw
ρw

(where τw is

the wall shear stress), the kinematic viscosity at the wall νw and the channel half-width
h:

Reτ =
uτh

νw
(1.2)

The table 1, that presents the previous studies dedicated to fully developed channel
flow, illustrates well the lack of reference data concerning high temperature gradients
and high Reynolds number. Kim et al. (1987); Moser et al. (1999) realized direct nu-
merical simulation (DNS) with a temperature ratio of 1 (the incompressible limit case).
Debusschere & Rutland (2004) made DNS of passive heat transfer in a plane channel
and Couette flow. These simulations appear only for a temperature ratio of 1 in the
table because they consider the temperature as a passive scalar (no dynamical effect).
Kawamura et al. (1999, 2000) realized DNS with different heat flux at the wall. Again,
these simulations appear only for a temperature ratio of 1 in the table because the fluid
properties are supposed constant (temperature is a passive scalar).

Lessani & Papalexandris (2006, 2007) Wang & Pletcher (1996) Nicoud (1998) re-
alized the only DNS in this configuration and with a significant temperature ratio. He
considered temperature ratios of 1.01, 2 and 4 with two kinds of law for the property
variations. The mean and the turbulent profiles are asymmetric even with semi-local
scalings. Nevertheless, these studies consider only a low mean turbulent Reynolds num-
ber (Reτm = 180). Consequently, it is impossible to be sure that the observations are
due to the temperature gradient or to a low Reynolds number effect. Indeed, in Nicoud
(1998), the turbulent Reynolds number at the hot side is Reτ2 = 82 and the author
makes the hypothesis that some of the obtained results may be due to a low Reynolds
number effect. In our previous work (Serra et al. (2012a,b,c)), we realized LES paramet-
ric studies for different temperature ratios and turbulent Reynolds numbers. It allowed
to investigate the influence of the variations of the viscosity and the conductivity, the
effect of the choice of thermal subgrid-scale models and the modifications induced by a
rise in the temperature ratio. We observed that when the temperature ratio increases,
the profiles become asymmetric. Moreover, the levels and the locations of the peaks of
the fluctuations and correlations are modified. We are very confident of the tendency of
the obtained LES results. However, it is required to realize DNS for quantify precisely
the different peak levels.

The objective of the present work is to generate data which are not available for low
speed flow with large temperature gradient and without low Reynolds number effect.
The mean turbulent Reynolds number of the present study is Reτm = 400 with at the
cold side Reτ1 = 565 and at the hot side Reτ2 = 235. It corresponds to a Reynolds
number of 6 400, based on the mean centreline velocity, mean centreline viscosity and
channel half-width. The numerical method is described in section 2. The section 3 is
dedicated to the domain size and the grid spacing of the mesh. Statistics are calculated
and discussed in section 4.
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T2 Reτm = 180 Reτm = 395
T1

1 Kim et al. (1987) Moser et al. (1999)
Debusschere & Rutland (2004) Kawamura et al. (1999)

Kawamura et al. (2000)
1, 01 Nicoud (1998)

2 Nicoud (1998)

Table 1. in fully developed channel flow with variable properties. Reτm is the mean turbulent
Reynolds number. T2 is the temperature of the hot wall and T1 the temperature of the cold wall.

T1

2h

Lxx

Lz

T2 > T1

y

z

Figure 1. Computational domain

2. Numerical method

A low Mach number approximation is applied to the 3D Navier-Stokes equations (see
Paolucci (1982); Majda & Sethian (1985)). This decouples the density from the pressure
and avoids the acoustics and the corresponding CFL restriction on the time step. In the
case of an ideal gas without volume force (the gravity is negligible) and heat source, the
low Mach number equations are the following.
• Conservation of mass equation

∂ρ

∂t
+
∂ (ρUj)

∂xj
= 0 (2.1a)

• Conservation of momentum equation

ρ
∂Ui
∂t

+ ρUj
∂Ui
∂xj

= −∂Pdyn
∂xi

+
∂

∂xj

[
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
− 2

3

∂

∂xi

(
µ
∂Uj
∂xj

)
(2.1b)

• Conservation of energy equation

ρCp

(
∂T

∂t
+ Uj

∂T

∂xj

)
=
∂Pthermo

∂t
+

∂

∂xj

(
λ
∂T

∂xj

)
(2.1c)

• Equation of state

Pthermo = rρT (2.1d)

• The thermodynamic pressure is a spatial constant

∂Pthermo
∂xi

= 0 (2.1e)

In this set of equations, ρ is the density, Ui are the velocity components, T is the temper-
ature, t represents the time, xi are the coordinates, λ and µ are the conductivity and the
dynamic viscosity, Cp is the constant pressure heat capacity, Pdyn is the dynamic pres-
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sure, Pthermo is the thermodynamic pressure and r is the ideal gas specific constant. The
gas considered in this study is air. The ideal gas specific constant is r = 287 J.kg−1.K−1.
We chose a Prandtl number Pr equal to 0.71. We assume that the constant pressure
heat capacity is constant: Cp = 1005 J.kg−1.K−1. At the beginning of the simulation,
the thermodynamic pressure is Pthermo = 105 Pa. The conductivity λ and the dynamic
viscosity µ are solved using Sutherland law:

µ(T ) = 1.461.10−6
T 1.5

T + 111
(2.2)

λ(T ) =
µCp

Pr
=

1.468.10−3

Pr

T 1.5

T + 111
(2.3)

The low Mach number equations are solved in a fully developed non-isothermal channel
flow (see figure 1). The DNS is carried out with the Trio U code (Calvin et al. (2002))
developed at the French Atomic Agency . To solve a fully developed flow, we use a periodic
boundary condition in the streamwise and spanwise directions. The DNS assumes a
constant mass flux. For the wall boundary condition, we use constant temperature and
no slip condition. The temperature at the lower wall is T1 = 293K and at the upper
wall T2 = 586K. Time integration is carried out by a third order Runge-Kutta scheme.
The convection scheme for the velocity is a second order centered scheme (Brillant et al.
(2005)). For the temperature, we use a third order quick scheme, as recommended by
Châtelain et al. (2004) and Brillant et al. (2005). The numerical method used to solve
the low Mach number equations is described in detail by Elmo & Cioni (2003).
•
•
•
•

The mesh contains about 470 millions of grid points. At our knowledge, it is the biggest
mesh for computational fluid dynamic with heat transfer. The simulation is realized in
several cores. The mesh is partitioned in 32x8x16=4 096 sub-domains. Each sub-domain
is attributed to a core and contains 115 000 cells. The mesh is also realized in parallel. The
projection step that calculates the dynamic pressure uses a parallel multigrid method.
The multigrid method allows to divide by ten the time of this projection step. It uses 5
grid levels (4 agglomerations: 2 in y and 2 isotropic).
•
•
•
•
•

The coarse level is 100 times lighter than the fine level. In the five grid levels, seven
multigrid V-cycles allow to divide the residual by a factor of 1010. We use a Jacobi
smoother with 12 iterations of pre-smoothing and 12 iterations of post-smoothing. The
preconditioned conjugate gradient with the symmetric successive over relaxation (SSOR)
preconditioner that resolves the dynamic pressure on the coarse level grid represents 40
percent of the projection step.

The statistics of section 3 are realized by time integration. The statistics of section 4
are realized by time integration and by averaging over horizontal planes (homogeneous
directions). The period of time integration for the turbulence statistics is about 3 000
non-dimensional units of time after the flow reaches the fully developed state. The non-
dimensional unit of time is calculated at the hot wall ν2/(uτ2)2 (because it is bigger
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at the hot wall than at the cold one). This time period (3 000 non-dimensional units
of time) corresponds to 11 diffusion times (h/uτm where uτm = uτ1+uτ2

2 is the mean
friction velocity). The statistically steady state is identified by the convergence of the
root-mean-square velocity and temperature fluctuations.

3. Computational domain and grid spacing

The computational domain and the coordinate system are shown in figure 1. In a
fully developed channel flow, the streamwise (x) and the spanwise (z) directions are
homogeneous and periodic boundary conditions are applied. The size of the domain has
to assure that the turbulence fluctuations are uncorrelated at the half of the channel.
The streamwise and the spanwise lengths are chosen to be Lx = 4πh and Lz = 2πh
where 2h is the distance between the walls and h = 0.015m. The computation is carried
out with 1537x397x769 = 469 235 341 grid points for a temperature ratio Tr = T2

T1
= 2

and a Reynolds number of 6 400, based on mean centreline velocity, mean centreline
viscosity and channel half-width. The mesh is non-uniform in the normal direction (y)
and uniform in the streamwise and spanwise directions. The grid points in the normal
direction are determined by the following hyperbolic tangent transformation

yk = h

{
1 +

1

a
tanh

[(
−1 + 2

k − 1

Ny − 1

)
atanh(a)

]}
, k ∈ [1, Ny] (3.1)

where Ny = 397 is the number of grid points the y axis and a is a constant equal to
0.857745. The non-dimensional grid spacings are scaled by wall variables

y+ =
yuτ
ν

(3.2)

uτ =

√
τw
ρw

(3.3)

where ν is the kinematic viscosity and τw the wall shear stress. Because the upper wall
is two times warmer than the lower wall, the kinematic viscosity ν and the wall shear
velocity uτ are bigger at the upper wall. At the opposite, the wall shear velocity divided
by the kinematic viscosity is bigger at the lower wall (the cold one). Consequently, we
use the kinematic viscosity and the wall shear velocity of the cold wall to calculate the
non-dimensional grid spacings. With this choice, we maximize the non-dimensional grid
spacings and make sure that the grid resolution is sufficiently fine. The non-dimensional
grid spacings in the streamwize and in the spanwise directions are the same:

∆x+ = ∆z+ = 4.5 (3.4)

In the normal direction, the first mesh point away from the wall is at y+ = 0.5 and the
maximum spacing at the centreline of the channel is 4.2 wall units.

Lele (1992)Kim et al. (1987)
Two-point correlations, mean velocity, velocity fluctuations and energy spectra are

shown in figures 3 to 9 to demonstrate the correctness of the domain size and the grid
resolution. The two-point correlations shown in figures 3 and 4 are calculated in the
streamwise and in the spanwise directions at two distances from the wall (one very close
and the other close to the centreline). Figure 3 concerns two-point velocity correlations
and figure 4 two-point temperature correlations. The two-point velocity and temperature
correlations fall off to zero values. Therefore, the computational domain is sufficiently
large. To demonstrate the adequacy of the grid resolutions, we study the mesh conver-
gence. Three simulations with different grid resolutions are realized:
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(a) (b)

Figure 2. Kim et al. (1987).

• Rough mesh: 513x265x257,
• Fine mesh: 769x397x385,
• Very fine mesh: 1537x397x769.

The very fine mesh corresponds to the DNS studied in details in this contribution. Fig-
ure 5 shows the mean velocity profile for the three grid resolutions: the three profiles
match . In figure 6, the root-mean-square velocity fluctuations normalized by wall shear
velocity of the cold side are plotted in global coordinates and wall coordinates. One can
note small differencies between the rough mesh and the fine mesh and a very good ade-
quacy between the fine and very fine meshes. The three profiles of the mean temperature
for the three grid resolutions match perfectly figure 7. The root-mean-square temper-
ature fluctuations normalized by friction temperature of the cold side are plotted with
global coordinates in figure 8. Although there are differencies between the rough and
fine meshes, the profiles of the fine and very fine meshes are in very good agreement.
Richardson (1911) :

(3.5)

Consequently, mesh convergence is obtained and the very fine mesh allows to resolve
all essential turbulence scales. Finally, figure 9 represents the one-dimensional energy
spectra for the fine and the very fine meshes. The shape of these spectra is the same for
the two grid resolutions: the energy level and the slope of the spectra are identical. For
the very fine mesh, the energy level associated with the high wavenumbers is six decades
lower than the energy level associated to low wavenumbers. the smallest scales of the
very fine mesh are not resolved by the fine mesh and the spectrum shapes are the same
for the two grid resolutions, we can see that the dynamical roles of the non-resolved small
scales is negligible. (Hinze (1975))

(3.6)

Figure 10 shows the one-dimensional temperature spectra. It illustrates again that the
grid resolution is adequate since the level of temperature spectra associated with the high
wavenumbers is five decades lower than the level of temperature spectra corresponding
to low wavenumbers.

According these results, we can conclude that the domain size is large enough. We
also see that the grid resolution is sufficient required to resolve all essential scales of
turbulence for velocity and temperature.



Turbulence in a non-isothermal channel 7

-0
.2 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0
 1

 2
 3

 4
 5

 6

x/
h

R
11

R
22

R
33

(a
)

S
tr

ea
m

w
is

e
d
ir

ec
ti

o
n

(x
)

a
t

y
=

1
.2

5
m

m

-0
.2 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0
 1

 2
 3

 4
 5

 6

x/
h

R
11

R
22

R
33

(b
)

S
tr

ea
m

w
is

e
d
ir

ec
ti

o
n

(x
)

a
t

y
=

1
5

m
m

-0
.2 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

z/
h

R
11

R
22

R
33

(c
)

S
p
a
n
w

is
e

d
ir

ec
ti

o
n

(z
)

a
t

y
=

1
.2

5
m

m

-0
.2 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

z/
h

R
11

R
22

R
33

(d
)

S
p
a
n
w

is
e

d
ir

ec
ti

o
n

(z
)

a
t

y
=

1
5

m
m

F
ig

u
r
e

3
.

T
w

o
-p

o
in

t
v
el

o
ci

ty
co

rr
el

a
ti

o
n
s

a
t

th
e

co
ld

si
d
e

a
n
d

a
t

th
e

m
id

d
le

o
f

th
e

ch
a
n
n
el

in
th

e
st

re
a
m

w
is

e
a
n
d

sp
a
n
w

is
e

d
ir

ec
ti

o
n
s.



8 A. Toutant and F. Bataille

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

x/h

y = 1.25 mm
y = 15 mm

(a) Streamwise direction (x) at y=1.25 mm and y=15 mm
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Figure 4. Two-point temperature correlations at the cold side and at the middle of the
channel in the streamwise and spanwise directions.
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Figure 5. Mean velocity profiles at the cold wall. Comparison of the results obtained with
three different meshes.
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(a) Root-mean-square velocity in global coordinates
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Figure 6. Root-mean-square velocity fluctuations normalized by wall shear velocity of the cold
side in global coordinates and wall coordinates. Comparison of the results obtained with three
different meshes.
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Figure 7. Mean temperature profiles. Comparison of the results obtained with three different
meshes.

4. Turbulence statistics

We recall that in the present study the mean turbulence Reynolds number isReτm = 400
with at the cold wall Reτ1 = 565 and at the hot wall Reτ2 = 235.

4.1. Velocity

In this section, some comparisons are done with the incompressible case at a turbulent
Reynolds number Reτ = 395. In the incompressible case, the fluid properties do not
depend on the temperature and the turbulent Reynolds number are the same at the
two walls (Reτ = Reτm = Reτ1 = Reτ2). The data are provided by the database of
Kawamura (2008). In figure 11, we can see in a semi-log plot that the mean velocity
profile of the cold and hot walls scaled by the local friction velocity (the friction velocity
is different at the cold and the hot walls) does not collapse. Furthermore, these profiles
do not matched the classical law-of-the-wall:

u+ = 2.5ln(y+) + 5.5 (4.1)

We observe that, at the hot wall, the additive constant is modified (4.5 instead of 5.5)
and that, at the cold wall, the slope is increased by the temperature gradient (2.8 instead
of 2.5). However, once transformed as proposed by Van Driest (1951)

u+ =
2

Prt Tτ/Tw

(
1−

√
1− Prt Tτ/Tw u/uτ

)
(4.2)
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Figure 8. Root-mean-square temperature fluctuations normalized by friction temperature in
global coordinates. Comparison of the results obtained with three different meshes Richardson
(1911).

where Prt = 0.9 is the turbulent Prandtl number, Tτ the friction temperature (eq. 4.7)
and Tw the wall temperature, the cold and the hot profiles collapse perfectly (see fig-
ure 12). Moreover, the classical incompressible behavior is clearly obtained for the slope
and the additive constant (see figure 12). This result shows that, the modification of the
additive constant obtained by Nicoud (1998) seems to be due to low Reynolds effect.
Nicoud & Bradshaw (2000) underlined the fact that the Van Driest transformation is
mathematically analogous to the Simpson transformation of the velocity profile for in-
compressible turbulent wall flows with uniform injection (Simpson (1970)). Identifying
the two transformations, one that the equivalent transpiration velocity used in the Van
Driest scaling is:

Vinj = Prt Tτ/Twuτ (4.3)

Figure 13 shows that this equivalent transpiration velocity is a very good aproximation
of the wall-normal velocity at the cold and the hot walls†. Consequently, a possible
mechanism of the interaction between the dynamic and thermal fields is the following:

• the temperature gradient creates a significant variation of density,
• the density variation creates a mean wall-normal velocity (mass conservation),
• the mean wall-normal velocity modifies the mean streamwise velocity.

† In the incompressible case, the mean wall-normal velocity is equal to zero.
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(a) Streamwise direction (kx) at y=1.25 mm (b) Streamwise direction (kx) at y=15 mm

(c) Spanwise direction (kz) at y=1.25 mm (d) Spanwise direction (kz) at y=15 mm

Figure 9. One-dimensional energy spectra at the cold side and at the middle of the channel in
the streamwise and spanwise directions.Comparison of the results obtained with two different
meshes.
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(a) Streamwise direction (kx) at y=1.25 mm and
y=15 mm

(b) Spanwise direction (kz) at y=1.25 mm and
y=15 mm

Figure 10. One-dimensional temperature spectra at the cold side and at the middle of the
channel in the streamwise and spanwise directions.

This mechanism illustrates that the mathematical analogy between the Simpson and
the Van Driest transformations has a physical basis. The mean streamwise velocity is
modified by the wall-normal velocity created by the temperature gradient or coming
from the injection.

Figures 14, 15 and 16 plot the root-mean-square (rms) velocity fluctuations at the
cold and hot walls with classic and semi-local scalings in the streamwise, normal and
respectively spanwise directions. The semi-local scaling suggested in Huang et al. (1995)
is performed using the following equations

u?τ =

√
τw

< ρ > (y)
; y? =

yu?τ
< ν > (y)

(4.4)

where < . > is a Reynolds average operator. In the 3 directions, the root-mean-square
velocity fluctuations are very different at the hot and cold walls: the temperature gradient
creates an important asymmetry. The root-mean-square velocity fluctuations are always
more important at the cold wall that is the most turbulent side. Moreover, the velocity
fluctuation peak location of the hot side is always closer to the wall than the one of
the cold side when classic scaling is used. Both the level and the peak location of the
incompressible rms velocity fluctuations are included between the hot and the cold rms
velocity fluctuations. The semi-local scaling allows to reduce significantly the differences
between the hot and the cold walls. In particular, with the semi-local scaling the peak
location of the hot . Furthermore, with the semi-local scaling, the rms velocity fluctuations
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Cold

Hot

u+ 

y+

Figure 11. Non transformed mean velocity profile in wall units at the cold and hot walls.

Cold

Hot

u+ = 2,5 ln(y+)+5,5

u+ 

y+

Figure 12. Transformed (Van Driest (1951)) mean velocity profiles in wall units at the cold
and hot walls.
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Hot

Cold

v+ 

y+

Equivalent transpiration velocity

used in the Van Driest transformation

Equivalent transpiration velocity

used in the Van Driest transformation

Figure 13. Comparison in wall units between the wall-normal velocity and the equivalent
transpiration velocity used in the Van Driest transformation at the cold and hot walls.

of the cold side are in very good agreement with the incompressible case. However,
even with this scaling, the fluctuation profiles of the hot and cold sides do not collapse.
This suggests that the between the turbulence and the temperature gradient is more
complex than a simple effect of the fluid property variations. can note that the most
important differences between hot and cold sides are in the spanwise direction ; then, get
the normal direction and finally the streamwise direction. It seems that the asymmetry
increases when the mean velocity decreases (the minimum of asymmetry is obtained in
the streamwise direction).

Figure 17 shows the correlations between the streamwise velocity and the wall-normal
velocity. With the classic scaling, the profiles of the hot and cold sides are very different.
The correlations of the cold side are much bigger than those obtained at the hot side.
With the semi-local scaling, the profiles of the cold and hot sides collapse until y∗ = 30.
However, the asymmetry remains important for y∗ > 50. The cold side profile matches
well with the incompressible case. Figure 18 plots the correlation coefficient of the
streamwise and wall-normal velocity fluctuations at the cold and hot walls:

Ruv = − < u′v′ >

UrmsVrms
(4.5)

Again, we observe an asymmetry between the hot and cold side profiles. For y/h < 0.1,
the cold side and the incompressible case plots are in perfect agreement. However, for
y/h > 0.1, none of the hot and cold side profiles match with the incompressible case.
Moreover, the correlation coefficient of the hot side is bigger than the one of the cold
side contrary to the velocity fluctuation profiles. It suggests that there is a turbulence
production phenomena at the hot side due to the temperature gradient. This result
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Figure 14. Root-mean-square velocity fluctuations in the streamwise direction at the cold and
hot walls. Left side: classic scaling, right side: semi-local scaling.

is coherent with those of Serra et al. (2012a) who compare the fluctuation profiles of
isothermal and anisothermal flows at equivalent Reynolds number. The maximum of the
hot side correlation coefficient is located further from the wall than the cold one. It
implies that, for the cold side, the local peak has the same location than the maximum
streamwise velocity fluctuation as observed by Kim et al. (1987). Nevertheless, for the
hot side, these two peaks have a different location.

In summary, the fluid property variations explain well the modifications of the mean
velocity but do not explain the modification of the velocity fluctuations. The Van Driest
transformation allows the hot and cold mean velocity profiles to collapse. Neither the
classic nor the semi-local scaling the hot and cold velocity fluctuations . The same
trend was observed by Nicoud (1998) for a mean turbulent Reynolds number equal to
180.

4.2. Temperature

In figures 20-24 presented in this section, the graphs for the “incompressible case”
correspond to fluid properties independent of temperature. For density, it is realized by
a very small temperature ratio Tr = 1 + ε with ε = 0.01. The non-dimensionalized mean
temperature is defined by

T+ =
Tw− < T >

Tτ
(4.6)

where Tw is the temperature at the wall, < . > is a Reynolds average operator, Tτ is the
friction temperature

Tτ =
Qw

ρwCpuτ
(4.7)
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Figure 15. Root-mean-square velocity fluctuations in the wall-normal direction at the cold
and hot walls. Left side: classic scaling, right side: semi-local scaling.
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Figure 16. Root-mean-square velocity fluctuations in the spanwise direction at the cold and
hot walls. Left side: classic scaling, right side: semi-local scaling.
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Figure 17. Correlation of the streamwise and wall-normal velocity fluctuations at the cold
and hot walls. Left side: classic scaling, right side: semi-local scaling.

with Qw the heat flux at the wall. For the semi-local scaling suggested by Huang et al.
(1995), the previous friction temperature is replaced by:

T ?τ =
Qw

< ρ > (y)Cpu∗τ
(4.8)

The mean temperature profiles at the hot and cold walls are plotted figure 19 using the
classic and the semi-local scalings. The mean profiles of the hot and cold sides seem to
roughly collapse with the classic scaling. However, one can note that the curves realised
with the classic scaling do not match with the standard law suggested by Kader (1981).
In the logarithmic region, the Kader’s law is:

T+ = 2.12 ln(y+) + f(Pr) (4.9)

f(Pr) =
(

3.85Pr(1/3) − 1.3
)2

+ 2.12 ln(Pr) (4.10)

The semi-local scaling allows the mean temperature profile of the cold side to be in
perfect agreement with Kader’s law. At the opposite, the profile of the hot side does
not collapse with this law. Nicoud (1998) observed the same trend for a mean turbulent
Reynolds number equal to 180. As he explained, in this case, it is due to a low Reynolds
number effect: at the hot wall, the Peclet number (Pe2,Nicoud = 62) is too low for seeing
the logarithmic region before the inflexion point. In the present case, this explanation
is no valid . Indeed, as the turbulent Reynolds number (Reτm = 400) is higher, the
Peclet number of the present DNS at the hot wall (Pe2 = 166)† is bigger than the Peclet
number at the cold wall (Pe1,Nicoud = 152) in the DNS of Nicoud (1998). Consequently,
a logarithmic region exists at the hot side but the mean temperature profile does not

† The Peclet number of the present DNS at the cold wall is Pe1 = 401.
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Figure 18. Correlation coefficient of the streamwise and wall-normal velocity fluctuations at
the cold and hot walls.

match with Kader’s law. Again, it suggests that the asymmetries created by the high
temperature gradient cannot be reduced to a simple effect of the fluid property variations.
The strong coupling between turbulence and temperature gradient modifies the standard
law. Figure 20 presents the root-mean-square temperature fluctuations at the hot and
cold sides. The profiles do not collapse neither for the classic nor for the semi-local
scalings. Contrary to the rms velocity fluctuations, the semi-local scaling does not allow
the rms temperature fluctuations of the cold side to be in very good agreement with
the incompressible case. In particular, the rms temperature plots for the incompressible
case and the cold wall deviate considerably for y+ > 50. Contrary to the rms velocity
fluctuations, the semi-local scaling allows the rms temperature of the hot side to be
higher than the one of the cold side which is physically coherent. Indeed, .

Gaviglio (1987) shows that temperature and velocity fluctuations are highly correlated
within large coherent structures. Defining the characteristic length as lu = Urms

∂<u>/∂y for

the velocity and as lT = Trms
∂<T>/∂y for the temperature, he assumes that lu ∝ lT and

derives:

Trms
Urms

∣∣∣∂<u>∂y

∣∣∣∣∣∣∂<T>∂y

∣∣∣ = R0 (4.11)

Figure 21(a) illustrates this hypothesis that appears to be a reasonable representation
of the present results. One can note that R0 = 1

Prt
with Prt ≈ 0.9 proposed by Huang

et al. (1995) is a good choice. The turbulent Prandtl number is calculated from the DNS
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Figure 19. Mean temperature profile in wall units at the cold and hot walls. Left side: classic
scaling, right side: semi-local scaling.
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Figure 20. Root-mean-square temperature fluctuations in wall units at the cold and hot
walls. Left side: classic scaling, right side: semi-local scaling.
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results using:

Prt =
νt
αt

=
< u′v′ >

< v′T ′ >

∂ < T > /∂y

∂ < u > /∂y
(4.12)

The profiles are given by figure 21(b). The turbulent Prandtl numbers of the cold and
hot sides of the channel look more similar than for smaller turbulent Reynolds number
(Reτm = 180). In particular, the absence of peak at the wall of the hot side showed by
Nicoud (1998) for Reτm = 180 seems to be a low Reynolds effect. The present results
with Reτm = 400 show a peak at the wall of the cold and hot sides. However, the
profiles of the hot and cold sides have an opposite behavior for y

h > 0.4. The peak at the
hot side is due to the asymmetry created by the temperature gradient. The asymmetry
has for consequence that the location of sign change is different for the velocity-velocity
correlation < u′v′ > and for the mean velocity gradient ∂ < u > /∂y.

Figures 22 and 23 give the correlations of the streamwise velocity respectively the
wall-normal velocity and the temperature. With the classic scaling, the profiles of the
hot and cold sides are very different. The correlations obtained at the cold side are much
higher than the one of the hot side. With the semi-local scaling, the correlations of the
streamwise velocity and temperature are almost identical for the hot and cold sides. For
the correlations of the wall-normal velocity and temperature, the asymmetry remains
even with the semi-local scaling. More interesting, the correlations at the hot side are
higher than at the cold side. Figure 24 plots the coefficient correlation of the velocity
and temperature fluctuations for the streamwise velocity

RuT =
< u′T ′ >

UrmsTrms
(4.13)

and the wall-normal velocity:

RvT =
< v′T ′ >

VrmsTrms
(4.14)

The maximum of RuT and RvT is located further from the wall at the hot side. The
same trend is obtained by Nicoud (1998). In agreement with Nicoud (1998), we find also
that the profile of RuT is higher at the hot side. However, the differences are lighter
in our case. Indeed, at y/h = 0.5, we have RuT,1 ≈ RuT,1,Nicoud ≈ 0.5 compared to
RuT,2 ≈ 0.6 < RuT,2,Nicoud ≈ 0.8. Consequently, it seems that the asymmetry of the
coefficient correlation of streamwise velocity and temperature fluctuations is linked to
the turbulent intensity.

Serra et al. (2012c)Serra et al. (2012c) Zhou (1995)

5. Conclusion

Direct numerical simulations of a turbulent channel flow submitted to a high tempera-
ture gradient are carried out with 470 millions (1537x397x769) mesh points at a Reynolds
number of 6 400. The computed results of the cold and hot walls are compared. The non-
dimensionnalization that takes into account the variations of the fluid properties damps
the asymmetry between the cold and the hot walls. In particular, the Van Driest non-
dimensionnalization allows to recover the classical log law for the mean velocity. We show
that the mean velocity normal to the wall and due to temperature gradient creates the
asymmetry. It explains that the mathematical analogy between the Van Driest and the
Simpson transformations has a physical basis: the wall-normal velocity created respec-
tively by the temperature gradient or the injection. The Kader’s law is not recovered for
the mean temperature profile. It illustrates that the coupling between the turbulence and
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Figure 21. R0 coefficient (left) and turbulent Prandtl number (right) from DNS at the hot
and cold walls.
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Figure 22. Correlation of the streamwise velocity and temperature fluctuations at the cold
and hot walls. Left side: classic scaling, right side: semi-local scaling.
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Figure 23. Correlation of the wall-normal velocity and temperature fluctuations at the cold
and hot walls. Left side: classic scaling, right side: semi-local scaling.
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Figure 24. Coefficient correlation of the velocity and temperature fluctuations at the cold and
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the temperature gradient is more complex than the mean variations of fluid properties.
The rms velocity fluctuations are higher at the cold side and, at the opposite, the rms
temperature fluctuations are higher at the hot side. The following physical mechanism
can explain this behavior:
• the increase of viscosity at the hot side tends to dissipate turbulent kinetic energy

(rms velocity fluctuations are higher at the cold side),
• consequently the turbulent mixing is smaller at hot side, the temperature is less

homogeneous and rms temperature fluctuations are higher.
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It is worth noting that one observes the same behavior at the channel flow center where
rms velocity fluctuations are small and rms temperature fluctuations are high. It is also
important to precise that the high rms temperature fluctuations at the hot side pro-
duces turbulent kinetic energy thanks to dilatational effect. This production process is
in competition with the viscous effect (dissipation mechanism). This behavior has also
been shown in a previous work where we compare the rms velocity profiles of isothermal
and anisothermal case at equivalent Reynolds number (see Serra et al. (2012b)). The
correlations (velocity-velocity, temperature-velocity) of the hot and cold walls do not
collapse. Finally, we showed and identified the low Reynolds effects and the influence of
the temperature gradients on the turbulent statistic quantities.
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