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Introduction

Resting-state functional MRI (rs-fMRI) provides insight into brain function in the absence of stimuli and allows
to map brain activity for subjects whose condition does not allow to perform tasks. This has emphasized the
need to recover neural activations from fMRI signals in the absence of an experimental paradigm. To avoid the
need for prior information on the timing of the activations, techniques to deconvolve brain activity from the
blood-oxygen-level-dependent (BOLD) response have been proposed [1, 2, 3, 4]. In particular, by supposing
the brain activates in constant blocks, Farouj et al. [4] developed an approach which involves both spatial and
temporal regularization (Total Activation, TA). However, it splits the optimization problem into two decoupled
spatial and temporal regularization which doubles the number of parameters to set and requires the solver to
alternate between the constraints. Starting from the idea that large image variations should be preserved as
they occur during brain activation, whereas small variations should be smoothed to remove noise, we previously
proposed an alternative paradigm-free algorithm based on partial differential equations (PDEs) named PFFMRI
(Paradigm-Free fMRI) [5, 6]. In this work, we validate PFFMRI on task-fMRI data from 51 subjects using
the experimental paradigm as ground truth and compare its performance to TA. We also show that PFFMRI
recovers activity that agrees with the general linear model (GLM) without knowledge of the experimental
paradigm.

Methods

PFFMRI recovers brain activations and smooths small variations by solving the following optimization problem:

I = arg min
I
||I0 −H ? I||22 + λ||∇I||22 (1)

where ||I0−H?I||22 is the data fitting term, ||∇I||22 is the regularization term, λ is the regularization parameter,
I0 and I are the original and regularized image, and H the hemodynamic response function [7]. Note that the
regularization applies on the 4-D image, acting simultaneously in the 3-D space and time and attempts to
preserve large image variations occurring in time or space. To solve the problem in Eq. 1 we derived a
regularization process based on gradient descent computed with PDEs as explained in previous works [5, 6].
To evaluate the performance of PFFMRI, we quantified its ability to recover brain activation during a motor
task. It should be noted that, while PFFMRI was designed to be used in the absence of an experimental
paradigm, testing it on task-fMRI data provides us with a ground truth to quantitatively assess performance.
We used the preprocessed data [8] of 51 subjects provided by the Human Connectome Project (HCP) [9] that
were additionally detrended and normalized. We focused on the motor tasks where subjects were asked to move
fingers of their left or right hand. To highlight the ability of PFFMRI to recover brain activations without
knowledge of the experimental paradigm, we qualitatively compared brain regions recovered using PFFMRI to
those recovered using the GLM implemented in FSL. We also compared the performance of PFFMRI with the
deconvolution implemented in TA [4]. Spherical 3mm-radius ROIs in the motor cortex were defined for each
finger starting from the coordinates centers proposed by Roux et al. [10] and concatenated to obtain a single
ROI for each task. The task ground truth time-courses were constructed as piece-wise constant signals with
ones when the subjects were performing the movements and zeros elsewhere. We computed the whole-brain
voxel-wise Pearson correlation maps between the time-course of the task and the recovered signals obtained
using PFFMRI and TA. For each subject we computed the mean and standard deviation of the correlation
inside the ROIs.
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Results

Figure 1 illustrates, for one subject, the correlation maps computed with PFFMRI and the values of the
regression coefficients obtained using the GLM. Regions with a high PFFMRI correlation overlap with regions
with large GLM regression coefficients. Figure 2 illustrates the mean correlations values estimated for each
ROI using PFFMRI and TA. Figure 2 also illustrates the convergence to a stable solution with respect to the
number of iterations: the mean correlations values estimated for each ROI across the data sample increase
while increasing the number of iterations, until it converges after 25 iterations. Figure 3 illustrates for one
subject the recovered signals using PFFMRI and TA averaged in the gray-matter masked ROIs, overlapped to
the averaged fMRI data and the experimental paradigm.

Discussion

When comparing the regions recovered using the GLM and PFFMRI, we noted overall very good agreement
between the methods. It should be emphasized that, while the GLM requires knowledge of the task, PFFMRI
does not. These results highlight that PFFMRI can be used to recover brain activity in absence of an experimen-
tal paradigm, such as rs-fMRI. When comparing correlation maps obtained for PFFMRI and TA, correlation
values obtained with PFFMRI were significantly higher than those obtained with TA suggesting an improved
recovery of brain activity.

Conclusion

In this paper we validated our approach to recover brain activity from fMRI signals without prior knowledge.
Our findings shows that PFFMRI enabled us to solve a unique problem, coupling the space and time dimension
and to recover brain activation overlapping the ones obtained with the GLM. Our results also shows higher
correlations of the recovered time-courses with the ground truth compared to TA. This opens a new channel
for the analyses of rs-fMRI and the recovery of paradigm-free neural activity.
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Figure 1: On the left column, in blue-lightblue, the β-regressors map obtained using the GLM implemented in the
FSL superimposed to the MNI brain. On the right column, in red-yellow, the whole brain voxel-wise Pearson correlation
maps between the recovered time courses using the PFFMRI (35 iterations and λ = 0.9999) and the task, superimposed
to the MNI brain. The values r of the correlations are indicated by the color-bars. The top row corresponds to the right
hand and the bottom to the left hand. A: anterior; P: posterior; S:superior; I: inferior; R: right; L: left.
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Figure 2: Barplots of the mean (µr) ±standarddeviations(σr) of the correlation values computed between the recovered
time-courses with the ground truth computed among the sample data (51 subjects) inside two ROIs related to the tasks
of the left and right hand. For each task, the bars in red represents the results using the Paradigm-Free fMRI (PFFMRI)
for the iteration (it)1 to 40 and λ = 0.9999. The yellow bars represents the results obtained using the Total Activation
(TA) toolbox. (lHAND: left hand; rHAND: right hand).
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Figure 3: Reconstructed signals obtained with the Paradigm-Free fMRI (PFFMRI, red) after 30 iterations and λ =
0.9999 and the Total Activation (TA, yellow) toolbox, superimposed on the acquired motor-task fMRI signals (green).
The plot on the top is related to the region of interest (ROI) involved in the movement of the left hand, the plot at
the bottom is associated to the right hand movement. All the signals were averaged among the voxels belonging to the
gray-matter masked ROIs. The blue areas represent the occurrence and the duration of the motor tasks.
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