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Symmetry classes in piezoelectricity from second-order symmetries

Introduction

Originally initiated in the field of crystallography, the study of the links between spatial invariances of physical phenomena and the invariances of the underlying matter have now spread all over engineering sciences. The tools initially introduced by Curie [START_REF] Curie | Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique[END_REF] are central to contemporary materials science where materials are designed for specific applications [1,[START_REF] Bai | Exploiting group symmetry in truss topology optimization[END_REF][START_REF] Podestá | Symmetry considerations for topology design in the elastic inverse homogenization problem[END_REF][START_REF] Yvonnet | Apparent flexoelectricity due to heterogeneous piezoelectricity[END_REF]. These materials that can be termed composites, architectured or meta have in common the fact that their internal geometry is specifically designed to produce, or inhibit, physical couplings within the matter. Among the characteristics of an architectured material that can be tailored is the anisotropy of the different physical properties. The anisotropy of a physical property is the angular variation of this property with respect to material directions. It is important for applications to understand how the physical anisotropy relates to the symmetries of the material. This understanding helps to select the right material for a specific technical application or to design it if it appears that no bulk material with the required properties is available [START_REF] Silva | Optimal design of piezoelectric microstructures[END_REF][START_REF] Yvonnet | Apparent flexoelectricity due to heterogeneous piezoelectricity[END_REF]. In continuum physics, physical properties are described by the means of constitutive law which describe how the matter reacts to physical fields [START_REF] Zheng | The description, classification, and reality of material and physical symmetries[END_REF]. In linear physics, constitutive laws are modelled using tensors and the questions related to their anisotropy can be formulated in the language of the group representation theory [START_REF] Fulton | Representation theory: a first course[END_REF][START_REF] Sternberg | Group theory and physics[END_REF].

The classical approach to study the anisotropy of a constitutive tensor law is inherited from crystal physics [START_REF] Nye | Physical properties of crystals: their representation by tensors and matrices[END_REF]. It consists in studying and classifying the consequences of the invariances imposed by the 32 crystallographic point groups (i.e. subgroups of the orthogonal group that can preserve a lattice, see [51, Appendix A] for instance) on the matrix representation of a constitutive tensor. This approach has been automated and there are on-line applications that produce the desired results for any tensor once its order and index symmetries have been specified [START_REF] Gallego | Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the bilbao crystallographic server[END_REF]. However, the crystallographic approach to the classification of tensorial anisotropies suffers from two important flaws:

(1) some subgroups of O(3) are not crystallographic, the associated physical anisotropies are absent from the classification 1 ;

(2) different crystallographic groups can lead to apparently different operators which are, in fact, identical modulo an isometric transformation. As a result it appears that, for a given tensor, the crystallographic approach can, in the same time, omit some type of anisotropy and give different names to tensors that, in fact, have the same type of anisotropy. Despite the limitations just mentioned, this approach is very classical and is detailed in many reference monographs [START_REF] Schouten | Tensor analysis for physicists[END_REF][START_REF] Nye | Physical properties of crystals: their representation by tensors and matrices[END_REF]. The consequences are confusions which still populate recent and important publications such as [START_REF] Jong | A database to enable discovery and design of piezoelectric materials[END_REF] in which results for a spurious class are provided, while another (crystallographic) class is missing. All this illustrates the fact that the crystallographic approach is not the right framework for formulating the problem.

An appropriate formalism for dealing with the anisotropy of tensor spaces was set up by Forte-Vianello [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] in an article devoted to the elasticity tensor. In this reference, the notion of a tensor symmetry class is defined for the first time in mechanics. Using a geometric approach, the authors demonstrated that the 10 anisotropic systems classically considered by crystallographers [START_REF] Schouten | Tensor analysis for physicists[END_REF][START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF] reduces to only 8 distinct symmetry classes, 2 crystallographic systems being fictitious. This approach was a true change of paradigm since, for the first time, the classification problem is formulated with respect to the vector space of constitutive tensors and without referring to any crystallographic system. Since then the Forte-Vianello method has been successfully applied to other constitutive tensor spaces [START_REF] Forte | Symmetry classes and harmonic decomposition for photoelasticity tensors[END_REF]23,[START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF][START_REF] Quang | The number and types of all possible rotational symmetries for flexoelectric tensors[END_REF]. For instance, in the case of the third-order piezoelectricity tensor, the 17 anisotropic systems obtained by the crystallographic approach [START_REF] Schouten | Tensor analysis for physicists[END_REF][START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF] reduce to 16 symmetry classes [START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF].

In its original setting, the Forte-Vianello approach requires rather fine calculations and reasoning to establish the classification. This complexity make difficult its application to more involved situations, such as constitutive tensors of order greater than 4 or coupled constitutive laws involving a family of constitutive tensors. The piezoelectricity which describes how mechanical and electrical fields interact within the matter is the archetype of such a coupled law. In its linear formulation, this behaviour involves three constitutive tensors of increasing order: the second-order permittivity tensor S, the third-order piezoelectricity tensor P and the fourth-order elasticity tensor C [START_REF] Landau | 8 Electrodynamics of Continuous Media[END_REF][START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF].

The symmetry classes of the piezoelectricity tensor P has already been obtained [23,[START_REF] Zou | Symmetry types of the piezoelectric tensor and their identification[END_REF] with strategies that are difficult to generalize. We propose here an original and general approach using the clips operations, as introduced in [START_REF] Olive | Effective computation of SO(3)-and O(3)-linear representation symmetry classes[END_REF], in order to directly obtain the 16 classes of symmetry sought. In contrast to the Forte-Vianello approach, this method extends directly to more complicated situations. Aside to this classification we also provide:

(1) two different explicit harmonic decompositions [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF][START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] of the piezoelectricity tensor;

(2) the normal forms of the piezoelectricity tensor for each of the 16 symmetry classes, given in a Kelvin representation. Not wanting to limit ourselves to these already known results, we also propose a classification of the piezoelectricity symmetry classes using orthogonal transformations of order 2, following what has been done in the case of elasticity [START_REF] Francois | Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements[END_REF]11]. In these references which concern the elasticity tensor (even-order), only symmetry planes were considered. In the present contribution, in order to treat odd-order tensors, the method is extended to both plane symmetries and axial symmetries (i.e rotations of order two). In contrast to the elasticity tensor, for which all symmetry classes can be identified from symmetry planes, 11 of the 16 symmetry classes of the piezoelectric tensor can be directly identified by this approach, and an additional step to distinguish the remaining classes is then proposed.

Organization of the paper. In section 1, the mathematical formulation of the physical coupling between electricity and elasticity is recalled. In this section, the definitions of tensor symmetry groups and classes are introduced and detailed in the context of the piezoelectricity coupling. In section 2, the harmonic decomposition of the piezoelectricity tensors is introduced. This decomposition, which is the generalization of the decomposition of second order symmetric tensors into spherical and deviatoric parts, is important to understand the physics described by the model. Two particular explicit harmonic decompositions of the space of piezoelectricity tensors are proposed. In the following section (section 3), the existence of the 16 symmetry classes for the piezoelectric tensor is established using clips operations. In section 4, two-order symmetries are used to obtain a direct characterization of 11 out of 16 piezoelectricity symmetry classes. A method to distinguish the remaining classes is proposed. The article is supplemented by three annexes. In Appendix A, the main definitions of the closed O(3)-subgroups are recalled so to have a better idea of the physical content of our results. Then Appendix B is devoted to the explicit matrix expression of normal form in each symmetry class. The Appendix C provides some useful formulae about dimension of spaces associated to normal forms.

Piezoelectricity

In this section, the behaviour of a linear piezoelectric solid is detailed. Readers interested in a more complete introduction can refer to [START_REF] Schouten | Tensor analysis for physicists[END_REF][START_REF] Landau | 8 Electrodynamics of Continuous Media[END_REF][START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF][START_REF] Meitzler | IEEE standard on piezoelectricity[END_REF].

1.1. Linear piezoelectricity from electro-mechanical coupling. In the context of the infinitesimal strain theory, the mechanical state of a material is characterized by two fields of symmetric second-order tensors: the Cauchy stress tensor field 𝜎 and the infinitesimal strain tensor field 𝜀. These two fields are linked by a constitutive law, which describes the mechanical behaviour of a specific material over a limited range of external parameters. For linear elasticity, which is a particular constitutive model, the relation which is pointwise and linear can be written 𝜎 = C : 𝜀, 𝜎 𝑖𝑗 = 𝐶 𝑖𝑗𝑙𝑚 𝜀 𝑙𝑚 , in which C is a fourth-order tensor, known as the elasticity tensor [START_REF] Gurtin | The linear theory of elasticity[END_REF][START_REF] Marsden | Mathematical foundations of elasticity[END_REF].

In the same way, the electrical state is described by two vector fields: the electric displacement d and the electric field e. As in the mechanical situation, these fields are connected by a constitutive law that describes the behaviour of each different material. For linear conductivity, this relation which is pointwise and linear can be written

d = S • e, 𝑑 𝑖 = 𝑆 𝑖𝑚 𝑒 𝑚 ,
in which S is a second-order tensor, known as the permittivity tensor [START_REF] Landau | 8 Electrodynamics of Continuous Media[END_REF]. For non-centro symmetric materials these two phenomena are not independent but coupled [START_REF] Curie | Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique[END_REF][START_REF] Landau | 8 Electrodynamics of Continuous Media[END_REF]. In this situation the constitutive law reads [START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF][START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF] (1.1)

{︃ 𝜎 = C : 𝜀 -e • P d = P : 𝜀 + S • e
in which a third-order tensor P, known as the piezoelectricity tensor, responsible for the coupling appears 2 . With respect to an orthonormal basis of R 3 the coupled constitutive law can be expressed as follows

(1.2) {︃ 𝜎 𝑖𝑗 = 𝐶 𝑖𝑗𝑙𝑚 𝜀 𝑙𝑚 -𝑃 𝑚𝑖𝑗 𝑒 𝑚 𝑑 𝑖 = 𝑃 𝑖𝑙𝑚 𝜀 𝑙𝑚 + 𝑆 𝑖𝑚 𝑒 𝑚 .
At any material point, the linear electromechanical behaviour is defined by a triplet 𝒫 of constitutive tensors 𝒫 := (C, P, S) ∈ Ela ⊕ Piez ⊕ S 2 in which:

(1) Ela is the 21 dimensional vector space of elasticity tensors:

Ela := {︀ C ∈ ⊗ 4 (R 3 ), 𝐶 𝑖𝑗𝑘𝑙 = 𝐶 𝑗𝑖𝑘𝑙 = 𝐶 𝑖𝑗𝑙𝑘 = 𝐶 𝑘𝑙𝑖𝑗 }︀ .
2 Depending on the considered set of primary variables, four different conventions can be used to express the law of piezoelectricity [START_REF] Meitzler | IEEE standard on piezoelectricity[END_REF][START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF]. The one chosen here is regarded as the most general according to the IEEE Standard on Piezoelectricity [START_REF] Meitzler | IEEE standard on piezoelectricity[END_REF]. In any case, the results of the present article are essentially independent of the chosen convention (except for the explicit harmonic decompositions).

(2) Piez is the 18 dimensional vector space of piezoelectricity tensors:

Piez := {︀ P ∈ ⊗ 3 (R 3 ), 𝑃 𝑖𝑗𝑘 = 𝑃 𝑖𝑘𝑗 }︀ .
(3) S 2 is the 6 dimensional vector space of permittivity tensors:

S 2 := {︀ S ∈ ⊗ 2 (R 3 ), 𝑆 𝑖𝑗 = 𝑆 𝑗𝑖 }︀ .
The space of piezoelectricity law will simply be denoted by 𝒫iez in the following, with 𝒫iez being defined as 𝒫iez = Ela ⊕ Piez ⊕ S 2 .

1.2. Symmetry groups and symmetry classes. Consider a homogeneous piezoelectric material oriented in some way with respect to a given and fixed reference, for instance a testing device. With respect to this reference, its electromechanical behaviour is characterized by a triplet 𝒫 of tensors 𝒫 := (C, P, S) ∈ 𝒫iez. Consider an orthogonal transformation 𝑔 ∈ O(3) acting on the material. The electromechanical behaviour of the material in its new configuration is characterized by another triplet 𝒫 := (C, P, S) defined in coordinates by:

𝐶 𝑖𝑗𝑘𝑙 := 𝑔 𝑖𝑝 𝑔 𝑗𝑞 𝑔 𝑘𝑟 𝑔 𝑙𝑠 𝐶 𝑝𝑞𝑟𝑠 , 𝑃 𝑖𝑗𝑘 := 𝑔 𝑖𝑝 𝑔 𝑗𝑞 𝑔 𝑘𝑟 𝑃 𝑝𝑞𝑟 , 𝑆 𝑖𝑗 := 𝑔 𝑖𝑝 𝑔 𝑗𝑞 𝑆 𝑝𝑞 . (1.3)
Obviously, the physical nature of the piezoelectric material is not affected by this transformation, only its constitutive tensors are transformed. Each of these transformations corresponds to a specific case of a linear representation of the group O(3) [START_REF] Ihrig | Pattern selection with O(3)-symmetry[END_REF][START_REF] Sternberg | Group theory and physics[END_REF], so that the equations (1.3) can be recast as: where such tensor T is said to be a pseudo-tensor. Note that such a twisted representation is used in the following section (section 2).

The possible anisotropies of a constitutive law are modelled on the symmetry classes of the associated representation. First of all, for a given constitutive tensor T, its symmetry group is defined as the set of orthogonal transformations letting T invariant:

𝐺 T := {𝑔 ∈ O(3), 𝑔 ⋆ T = T} .
For any constitutive tensor T = 𝑔 ⋆ T following a new orientation given by 𝑔 ∈ O(3), the symmetry group 𝐺 T of T is related to 𝐺 T by

𝐺 T = 𝑔𝐺 T 𝑔 -1 .
Thus, the type of anisotropy of a tensor is not described by its symmetry group, which refers to a specific orientation, but rather by its symmetry class

[𝐺 T ] := {︀ 𝑔𝐺 T 𝑔 -1 , 𝑔 ∈ O(3) }︀
which is the conjugacy class of its symmetry group (the set of all subgroups conjugate to 𝐺 T ).

In the following, attention will be restricted from the complete constitutive law to only its coupling component encoded by P ∈ Piez. Equivalent studies and results for Ela and S 2 can be found in other references (see [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF][START_REF] Auffray | On Anisotropic Polynomial Relations for the Elasticity Tensor[END_REF] for instance). From many points of view, knowing the number and the type of symmetry classes of given tensor space is an important questions [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF][START_REF] Forte | Symmetry classes and harmonic decomposition for photoelasticity tensors[END_REF][START_REF] Quang | The number and types of all possible rotational symmetries for flexoelectric tensors[END_REF][START_REF] Olive | Symmetry classes for odd-order tensors[END_REF][START_REF] Olive | Isotropic invariants of a completely symmetric third-order tensor[END_REF].

In the next two sections, the basic tools needed to decide these issues for Piez will be introduced and applied: the first tool is the harmonic decomposition and the second one are the clips operations.

Harmonic decomposition of the space of piezoelectricity tensors

As a very classical result, any second-order symmetric tensor can be decomposed into a deviatoric part (which is symmetric and traceless) and a spherical part. The generalization of this decomposition to tensor spaces of any order is known as the harmonic decomposition [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF][START_REF] Forte | Symmetry classes for elasticity tensors[END_REF], where we need to introduce the spaces of higher-order deviators, that are the spaces H 𝑛 of 𝑛thorder harmonic tensors (definition 2.1). To define these spaces, let us first introduce the space S 𝑛 of 𝑛th-order totally symmetric tensors on R3 . Take now tr(S) to be the totally symmetric tensor of order 𝑛 -2 in which the contraction on the first two indices of S has been achieved 3 . Definition 2.1. An 𝑛th-order totally symmetric and traceless tensor will be called a harmonic tensor and the subspace of S 𝑛 of harmonic tensors will be denoted by H 𝑛 . On R 3 , it is a 2𝑛 + 1 dimensional vector space.

Each space of harmonic tensors inherits the standard and the twisted O(3)-representations, respectively given by (1.5) and (1.6). To make a clear distinction between these two representations, the notation H 𝑛 refers to space of 𝑛th-order harmonic tensors endowed with the standard representation, while H ♯𝑛 refers to the same space endowed with the twisted representation. Each of these representations are irreducible, meaning that there is no non-trivial stable subspace [START_REF] Ihrig | Pattern selection with O(3)-symmetry[END_REF]. The harmonic structure of Piez can easily be revealed by noting that

Piez ≃ H 1 ⊗ (H 2 ⊕ H 0 )
and using Clebsch-Gordan product for decomposing tensorial product of irreducible spaces into a sum of irreducible ones [START_REF] Jerphagnon | The description of the physical properties of condensed matter using irreducible tensors[END_REF]. It results that

Piez ≃ H 3 ⊕ H ♯2 ⊕ H 1 ⊕ H 1 .
Let consider now explicit harmonic decompositions of Piez, meaning explicit isomorphisms from Piez to H 3 ⊕ H ♯2 ⊕ H 1 ⊕ H 1 . Such explicit isomorphisms are not unique and different decomposition can be found in the literature [START_REF] Spencer | A note on the decomposition of tensors into traceless symmetric tensors[END_REF][START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF][START_REF] Zou | Orthogonal irreducible decompositions of tensors of high orders[END_REF][START_REF] Zou | Symmetry types of the piezoelectric tensor and their identification[END_REF]. Here two explicit decompositions will be provided (1) The Clebsch-Gordan harmonic decomposition [START_REF] Auffray | Explicit harmonic structure of bidimensional strain-gradient elasticity[END_REF], which consists in decomposing the piezoelectricity tensor in two parts: one generating an electric displacement from a deviatoric strain, the other one generating an electric displacement from a hydrostatic strain. These blocks are then decomposed into irreducible harmonic tensors. The specific expressions are given here by (2.1) and (2.2). This decomposition which possesses a clear physical content is interesting for physical applications and corresponds, up to some scaling factors, to the one proposed in [START_REF] Zou | Symmetry types of the piezoelectric tensor and their identification[END_REF].

(2) The Schur-Weyl harmonic decomposition, consists in first decomposing the piezoelectricity tensor according to its index symmetries before proceeding to the harmonic decomposition of each part. This decomposition follow the lines of the method used by Backus in the case of the elasticity tensor [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF]. This decomposition will find interesting application in section 4 for symmetry classes identification.

Remark 2.2. Since the third-order piezoelectricity tensor has a similar structure to the thirdorder strain-gradient elasticity tensor that appears in Mindlin Strain Gradient Elasticity model [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], numerous results concerning its harmonic decomposition can be found in this literature, for instance [START_REF] Hutchinson | Strain gradient plasticity[END_REF][START_REF] Lam | Experiments and theory in strain gradient elasticity[END_REF]3,[START_REF] Lazar | Irreducible decomposition of strain gradient tensor in isotropic strain gradient elasticity[END_REF]. It has to be noted that in this literature the Schur-Weyl decomposition, which corresponds to the Mindlin type III formulation of Strain Gradient Elasticity, is the most natural. 

𝐻 𝑖𝑗𝑘 := 𝑃 𝑖𝑗𝑘 - 1 3 (𝜖 𝑖𝑗𝑝 𝑎 𝑝𝑘 + 𝜖 𝑖𝑘𝑝 𝑎 𝑝𝑗 ) - 3 10 
(︂ 𝑢 𝑗 𝛿 𝑖𝑘 + 𝑢 𝑘 𝛿 𝑖𝑗 - 2 3 𝑢 𝑖 𝛿 𝑗𝑘 )︂ - 1 3 𝑣 𝑖 𝛿 𝑗𝑘 .
From this, the piezoelectricity tensor P can be decomposed into (2.3) P = P (1,2) + P (1,0) with

𝑃 (1,2) 𝑖𝑗𝑘 := 𝐻 𝑖𝑗𝑘 + 1 3 (𝜖 𝑖𝑗𝑝 𝑎 𝑝𝑘 + 𝜖 𝑖𝑘𝑝 𝑎 𝑝𝑗 ) + 3 10 
(︂ 𝑢 𝑗 𝛿 𝑖𝑘 + 𝑢 𝑘 𝛿 𝑖𝑗 - 2 3 𝑢 𝑖 𝛿 𝑗𝑘 )︂ , 𝑃 (1,0) 𝑖𝑗𝑘 := 1 3 𝑣 𝑖 𝛿 𝑗𝑘 ,
where the notation P (𝑝,𝑞) indicates a linear map from H 𝑞 to H 𝑝 . Finally, we claim that the map (2.4)

𝜑 : P ∈ Piez ↦ → (H, a, u, v) ∈ H 3 ⊕ H ♯2 ⊕ H 1 ⊕ H 1
is an equivariant isomorphism, where equivariance means that

∀𝑔 ∈ O(3), 𝜑(𝑔 ⋆ P) = 𝑔 ⋆ (H, a, u, v) = (𝑔 ⋆ H, 𝑔 ⋆ a, 𝑔 ⋆ u, 𝑔 ⋆ v).
Note that an explicit inverse linear map of 𝜑 is given by

(H, a, u, v) ∈ H 3 ⊕ H ♯2 ⊕ H 1 ⊕ H 1 ↦ → P ∈ Piez, 𝑃 𝑖𝑗𝑘 := 𝐻 𝑖𝑗𝑘 + 1 3 (𝜖 𝑖𝑗𝑝 𝑎 𝑝𝑘 + 𝜖 𝑖𝑘𝑝 𝑎 𝑝𝑗 ) + 3 10 
(︂ 𝑢 𝑗 𝛿 𝑖𝑘 + 𝑢 𝑗 𝛿 𝑖𝑘 - 2 3 𝑢 𝑖 𝛿 𝑗𝑘 )︂ + 1 3 𝑣 𝑖 𝛿 𝑗𝑘 .
The decomposition (2.3) has a clear physical content. Indeed, the tensor P (1,2) is the part of P which generates an electric displacement from a deviatoric strain 𝜀 𝑑 , while P (1,0) is the electric displacement generated from a hydrostatic strain 𝜀 ℎ with (2.5)

𝜀 ℎ = 1 3 (𝜀 : I) I ; 𝜀 𝑑 = 𝜀 -𝜀 ℎ ,
and I is the second order identity tensor. This way to decompose the piezoelectricity tensor is interesting for optimal design applications [START_REF] Nanthakumar | Topology optimization of piezoelectric nanostructures[END_REF]. For instance, an effective material for which P (1,2) = 0, is a material for which the electromechanical coupling only show off in case of hydrostatic strain.

2.2. Schur-Weyl decomposition of piezoelectricity tensors. Let us take back here piezoelectricity tensor P ∈ Piez and define a ∈ H ♯2 using the same formula (2.1). We then consider

(2.6) 𝑢 ′ 𝑖 := 1 3 (𝑃 𝑖𝑝𝑝 + 2𝑃 𝑝𝑝𝑖 ) , 𝑣 ′ 𝑖 := 1 3 (𝑃 𝑝𝑝𝑖 -𝑃 𝑖𝑝𝑝 )
and

𝐻 𝑖𝑗𝑘 := 1 3 (𝑃 𝑖𝑗𝑘 + 𝑃 𝑘𝑖𝑗 + 𝑃 𝑗𝑖𝑘 ) - 1 5 
(︀ 𝛿 𝑖𝑗 𝑢 ′ 𝑘 + 𝛿 𝑖𝑘 𝑢 ′ 𝑗 + 𝛿 𝑗𝑘 𝑢 ′ 𝑖 )︀
where such third order harmonic tensor is exactly the same as the one defined by (2.2). From this, piezoelectricity tensor P can decomposes into (2.7)

P = P 𝑠 + P 𝑟 with 𝑃 𝑠 𝑖𝑗𝑘 := 𝐻 𝑖𝑗𝑘 + 1 5 (︀ 𝛿 𝑖𝑗 𝑢 ′ 𝑘 + 𝛿 𝑖𝑘 𝑢 ′ 𝑗 + 𝛿 𝑗𝑘 𝑢 ′ 𝑖 )︀ , 𝑃 𝑟 𝑖𝑗𝑘 := 1 3 (𝜖 𝑖𝑗𝑝 𝑎 𝑝𝑘 + 𝜖 𝑖𝑘𝑝 𝑎 𝑝𝑗 ) - 1 2 
(︀ 2𝛿 𝑗𝑘 𝑣 ′ 𝑖 -𝛿 𝑖𝑗 𝑣 ′ 𝑘 -𝛿 𝑖𝑘 𝑣 ′ 𝑗 )︀ .
where P 𝑠 is a completely symmetric tensor and P 𝑟 is a remainder. Now the linear map

P ∈ Piez ↦ → (H, a, u ′ , v ′ ) ∈ H 3 ⊕ H ♯2 ⊕ H 1 ⊕ H 1
is an equivariant isomorphism, with inverse map given by

(2.8) (H, a, u ′ , v ′ ) ∈ H 3 ⊕ H ♯2 ⊕ H 1 ⊕ H 1 ↦ → P ∈ Piez, 𝑃 𝑖𝑗𝑘 = 𝐻 𝑖𝑗𝑘 + 1 3 (𝜖 𝑖𝑗𝑝 𝑎 𝑝𝑘 + 𝜖 𝑖𝑘𝑝 𝑎 𝑝𝑗 ) + 1 5 
(︀ 𝛿 𝑖𝑗 𝑢 ′ 𝑘 + 𝛿 𝑖𝑘 𝑢 ′ 𝑗 + 𝛿 𝑗𝑘 𝑢 ′ 𝑖 )︀ - 1 2 
(︀ 2𝛿 𝑗𝑘 𝑣 ′ 𝑖 -𝛿 𝑖𝑗 𝑣 ′ 𝑘 -𝛿 𝑖𝑘 𝑣 ′ 𝑗 )︀ .
This decomposition will find interesting application in section 4 for symmetry class identification.

Remark 2.3. We gave here two explicit isomorphisms

Piez ≃ H 3 ⊕ H ♯2 ⊕ H 1 ⊕ H 1
and we know that any linear isomorphism

(u, v) ∈ H 1 ⊕ H 1 ↦ → (ũ, ṽ) ∈ H 1 ⊕ H 1
can lead to another harmonic decomposition (H, a, ũ, ṽ). Other examples of such harmonic decomposition can be found in [START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF][START_REF] Auffray | Géométrie des espaces de tenseurs, application à l'élasticité anisotrope classique et généralisée[END_REF].

Symmetry classes of piezoelectricity tensor space

The geometric definition of a symmetry class was first given by Forte-Vianello [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] in the particular case of the elasticity tensor. The authors have introduced an original approach to obtain the 8 symmetry classes of Ela. Since then the method has been applied to other constitutive tensors: piezoelectricity [23,[START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF], photoelasticity [START_REF] Forte | Symmetry classes and harmonic decomposition for photoelasticity tensors[END_REF] and flexoelectricity [START_REF] Quang | The number and types of all possible rotational symmetries for flexoelectric tensors[END_REF]. Since the original method was a bit tedious to apply, a general algorithm was proposed by the present authors in [START_REF] Olive | Symmetry classes for even-order tensors[END_REF][START_REF] Olive | Géométrie des espaces de tenseurs, une approche effective appliquée à la mécanique des milieux continus[END_REF][START_REF] Olive | Symmetry classes for odd-order tensors[END_REF][START_REF] Olive | Effective computation of SO(3)-and O(3)-linear representation symmetry classes[END_REF] to simplify the determination of symmetry classes. This method is based on the definition of clips operations on conjugacy classes, a strategy which was initiated in the 90' by Chossat et al. [START_REF] Chossat | Steady-state bifurcation with O(3)-symmetry[END_REF][START_REF] Chossat | A classification of 2-modes interactions with SO(3)-symmetry and applications[END_REF][START_REF] Chossat | Heteroclinic cycles in bifurcation problems with O(3)-symmetry and the spherical Bénard problem[END_REF]. We propose to get back to the determination of the symmetry classes of the piezoelectricity tensor using this approach. As will be seen, by this means, the 16 symmetry classes of Piez are directly obtained. For clarity of presentation, the notations and definitions of O(3)-subgroups have been moved to Appendix A. The classification theorem is given by: Theorem 3.1. A conjugacy class of a closed subgroup of O(3) is a symmetry class of a tensor P ∈ Piez if and only if it belongs to the 16 elements set of symmetry classes:

{[1], [Z 2 ], [Z 3 ], [D 𝑣 2 ], [D 𝑣 3 ], [Z - 2 ], [Z - 4 ], [D 2 ], [D 3 ], [D ℎ 4 ], [D ℎ 6 ], [SO(2)], [O(2)], [O(2) -], [O -], [O (3) 
]}. The normal forms associated to the non-trivial symmetry classes are provided in Appendix B. Remark 3.2. It can be observed that the following two classes are absent from the set of symmetry classes of Piez:

• The class [SO(3)] is missing. This is due to the fact that there is no any pseudo-scalar in the harmonic structure of Piez, i.e. element of H ♯0 . The lacking of this class is somehow exceptional since for a generic odd order tensor space this class is present [START_REF] Olive | Symmetry classes for odd-order tensors[END_REF].

• The class [Z -

6 ] is missing. Note that a Z - 6 -invariant piezoelectric tensor P can be constructed. But some 𝑔 ∈ O(3) can then be found such that the symmetry class of 𝑔 ⋆ P is exactly [D ℎ 6 ] (see Remark B.1). The absence of the class [Z - 2𝑚 ] with 𝑚 = 2𝑝 + 1 for a 𝑚th-order tensor is generic [START_REF] Olive | Symmetry classes for odd-order tensors[END_REF]. This result can be compared with the piezoelectricity anisotropic systems detailed for crystallographic groups, for instance in Schouten [START_REF] Schouten | Tensor analysis for physicists[END_REF]. In these tables 17 different "matrix forms" are proposed, the extra matrix is associated to a material having Z - 6 for point group. The set of conjugacy classes of a compact group is a partially ordered set (poset) [START_REF] Bredon | Introduction to compact transformation groups[END_REF]. For two given conjugacy classes [𝐻 1 ] and [𝐻 2 ], we write

[𝐻 1 ] ⪯ [𝐻 2 ] iff 𝐻 1 ⊂ 𝑔𝐻 2 𝑔 -1 for some 𝑔 ∈ O(3).
As a result, relations between the symmetry classes of piezoelectricity tensors can be graphically organized as a lattice, shown in Figure 1, in which an arrow between two classes To obtain the symmetry classes of Piez, which is a O(3)-representation, clips operations will be used [START_REF] Olive | Symmetry classes for even-order tensors[END_REF][START_REF] Olive | Symmetry classes for odd-order tensors[END_REF][START_REF] Olive | Effective computation of SO(3)-and O(3)-linear representation symmetry classes[END_REF]. All details can be found in [START_REF] Olive | Symmetry classes for even-order tensors[END_REF][START_REF] Olive | Symmetry classes for odd-order tensors[END_REF][START_REF] Olive | Géométrie des espaces de tenseurs, une approche effective appliquée à la mécanique des milieux continus[END_REF] but we summarize here the main ideas. Clips operations on conjugacy classes [𝐻 𝑖 ] of closed O(3)-subgroups are defined as follows:

[𝐻 1 ] → [𝐻 2 ] indicates that [𝐻 1 ] ⪯ [𝐻 2 ].
[𝐻 1 ] [𝐻 2 ] := ⋃︁ 𝑔∈O(3) 𝐻 1 ∩ (︀ 𝑔𝐻 2 𝑔 -1 )︀ .
For two given O(3)-representations 𝑉 1 and 𝑉 2 with sets of symmetry classes I(𝑉 1 ) and I(𝑉 2 ), the set of symmetry classes I(𝑉 1 ⊕ 𝑉 2 ) is given by

I(𝑉 1 ⊕ 𝑉 2 ) = I(𝑉 1 ) I(𝑉 2 ) := ⋃︁ [𝐻 𝑖 ]∈I(𝑉 𝑖 ) ([𝐻 1 ] [𝐻 2 ]) .
Proof of Theorem 3.1. We first recall the harmonic decomposition

Piez ≃ H 3 ⊕ H ♯2 ⊕ H 1 ⊕ H 1
and results from [START_REF] Ihrig | Pattern selection with O(3)-symmetry[END_REF] to obtain symmetry classes of each irreducible representation that appear in Piez

I(H 1 ) = {︀ [O(2) -], [O(3)] }︀ , I(H ♯2 ) = {︁ [D 2 ], [D ℎ 4 ], [O(2)], [O(3)] }︁ , I(H 3 ) = {︁ [1], [Z - 2 ], [D 𝑣 2 ], [D 𝑣 3 ], [D ℎ 6 ], [O -], [O(2) -], [O(3)]
}︁ .

To obtain I(H 3 ⊕ H ♯2 ) we use the clips table 1 (taken from [START_REF] Olive | Effective computation of SO(3)-and O(3)-linear representation symmetry classes[END_REF]).

Thus we have

I(H 3 ⊕ H ♯2 ) = {︁ [1], [Z 2 ], [Z - 2 ], [D 2 ], [D 𝑣 2 ], [Z 3 ], [D 3 ], [D 𝑣 3 ], [Z - 4 ], [D ℎ 4 ], [D ℎ 6 ], [O -], [SO(2)], [O(2)], [O(2) -], [O(3)] }︀ . Table 1. Clips table I(H 3 ) I(H ♯2 ) As [O(2) -] [O(2) -] = {︀ [Z - 2 ], [O(2) -] }︀ we obtain I(H 1 ⊕ H 1 ) = {︀ [Z - 2 ], [O(2) -], [O(3)] }︀ .
Finally, using tables from [START_REF] Olive | Effective computation of SO(3)-and O(3)-linear representation symmetry classes[END_REF] it can be checked by direct inspection that

I(Piez) = I(H 3 ⊕ H ♯2 ) I(H 1 ⊕ H 1 ) = I(H 3 ⊕ H ♯2 )
which leads to the conclusion.

Symmetry classes characterisation using order two symmetries

Following the characterization of the elasticity symmetry classes using plane symmetries as introduced in [11], the purpose of this section is to characterize as many piezoelectric symmetry classes as possible using only order two symmetries, which are elements 𝑔 ∈ O(3) satisfying 𝑔 2 = Id and 𝑔 ̸ = Id, where Id is the identity element of O(3). Such an element is either:

• a plane symmetry s(𝑛 𝑛 𝑛) := I -2𝑛 𝑛 𝑛 ⊗ 𝑛 𝑛 𝑛, with 𝑛 𝑛 𝑛 being a unit vector in R 3 and I the unit second order tensor; • an axial symmetry r(𝑛 𝑛 𝑛, 𝜋) = -s(𝑛 𝑛 𝑛). As illustrated by Figure 2 and Figure 3, it is possible to characterize unambiguously 11 over the 16 piezoelectricity symmetry classes using only order two symmetries. The remaining classes, which are divided in two sets, can be distinguished by studying invariance with respect to higher-order rotations.

Before detailing the classification obtained, let us explain how two order symmetries are explicitly tested. Using results from [START_REF] Olive | Reduced algebraic conditions for plane or axial tensorial symmetries[END_REF][START_REF] Olive | On the determination of plane and axial symmetries in linear elasticity and piezo-electricity[END_REF], we provide in Theorems 4.1-4.3 the explicit equations to determine axes and/or directions related to such order two symmetries. 4.1. Explicit equations for order two symmetries. For any given piezoelectricity tensor P ∈ Piez, an order two symmetry is define to be some 𝑔 = r(𝑛 𝑛 𝑛, 𝜋) or 𝑔 = s(𝑛 𝑛 𝑛) such that (4.1)

𝑔 ⋆ P = P.

Thus a direct way to obtain all order two symmetries of some piezoelectricity tensor P ∈ Piez is to try to solve 𝑔 ⋆ P -P = 0, 𝑔 = s(𝑛 𝑛 𝑛) or 𝑔 = r(𝑛 𝑛 𝑛, 𝜋) = -s(𝑛 𝑛 𝑛),

with 𝑛 𝑛 𝑛 = (𝑛 1 , 𝑛 2 , 𝑛 3 ) a unit vector in R 3 as unknown, leading to 18 algebraic equations of homogeneous degree 6 in (𝑛 1 , 𝑛 2 , 𝑛 3 ). In fact, following [START_REF] Olive | Reduced algebraic conditions for plane or axial tensorial symmetries[END_REF][START_REF] Olive | On the determination of plane and axial symmetries in linear elasticity and piezo-electricity[END_REF], it is possible to obtain reduced algebraic equations of degree 3. To formulate such reduced equations we need to introduce the totally symmetric part P 𝑠 of P, given by (P 𝑠 ) 𝑖𝑗𝑘 := 1 3 (𝑃 𝑖𝑗𝑘 + 𝑃 𝑗𝑖𝑘 + 𝑃 𝑘𝑖𝑗 ) .

The algebraic equations characterizing invariance of P with respect to a plane symmetry are then obtained [44, Theoreom 6.1 (1)]:

Theorem 4.1. Let P ∈ Piez be a piezoelectricity tensor, P 𝑠 its totally symmetric part, v ′ ∈ R 3 and a ∈ S 2 respectively defined by (2.6) and (2.1). For any unit vector 𝑛 𝑛 𝑛 = (𝑛 1 , 𝑛 2 , 𝑛 3 ) ∈ R 3 , s(𝑛 𝑛 𝑛) is a plane symmetry of P if and only if

(4.2) ⎧ ⎪ ⎨ ⎪ ⎩ P 𝑠 • 𝑛 𝑛 𝑛 -[𝑛 𝑛 𝑛 ⊗ (𝑛 𝑛 𝑛 • P 𝑠 • 𝑛 𝑛 𝑛) + (𝑛 𝑛 𝑛 • P 𝑠 • 𝑛 𝑛 𝑛) ⊗ 𝑛 𝑛 𝑛] = 0, a -[𝑛 𝑛 𝑛 ⊗ (a • 𝑛 𝑛 𝑛) + (a • 𝑛 𝑛 𝑛) ⊗ 𝑛 𝑛 𝑛] = 0 v ′ • 𝑛 𝑛 𝑛 = 0
where • is the standard contraction operation.

Remark 4.2. In any orthonormal basis of R 3 equations (4.2) reads

⎧ ⎪ ⎨ ⎪ ⎩ (𝑃 𝑠 ) 𝑖𝑗𝑝 𝑛 𝑝 -(𝑃 𝑠 ) 𝑝𝑖𝑞 𝑛 𝑗 𝑛 𝑝 𝑛 𝑞 -(𝑃 𝑠 ) 𝑝𝑗𝑞 𝑛 𝑖 𝑛 𝑝 𝑛 𝑞 = 0 𝑎 𝑖𝑗 -𝑎 𝑖𝑝 𝑛 𝑗 𝑛 𝑝 -𝑎 𝑗𝑝 𝑛 𝑖 𝑛 𝑝 = 0 𝑣 ′ 𝑖 𝑛 𝑖 = 0
The algebraic equations related to axis symmetry are then obtained using the generalized cross product (see [START_REF] Desmorat | Generic separating sets for three-dimensional elasticity tensors[END_REF]). In the specific case of a totally symmetric tensor S ∈ S 3 and a first-order tensor u ∈ R 3 , this generalized cross product writes:

(4.3) (S × u) 𝑖𝑗𝑘 := - 1 3 (𝑆 𝑖𝑗𝑝 𝜖 𝑝𝑘𝑞 𝑢 𝑞 + 𝑆 𝑖𝑘𝑝 𝜖 𝑝𝑗𝑞 𝑢 𝑞 + 𝑆 𝑘𝑗𝑝 𝜖 𝑝𝑖𝑞 𝑢 𝑞 )
while for two first-order tensors u 1 and u 2 , u 1 × u 2 is the standard cross product. We also need to introduce the totally symmetric tensor product between a first order tensor u and a second order symmetric tensor a Finally, from [44, Theoreom 6.1 (2)], the algebraic equations characterizing the invariance of P with respect to axis symmetry are Theorem 4.3. Let P ∈ Piez be a piezoelectricity tensor, P 𝑠 its totally symmetric part, v ′ ∈ R 3 and a ∈ S 2 respectively defined by (2.6) and (2.1). For any unit vector 𝑛 𝑛 𝑛 = (𝑛 1 , 𝑛 2 , 𝑛 3 ) ∈ R 3 , r(𝑛 𝑛 𝑛, 𝜋) is an axis symmetry of P if and only if

(4.5) ⎧ ⎪ ⎨ ⎪ ⎩ [P 𝑠 -3𝑛 𝑛 𝑛 ⊙ (P 𝑠 • 𝑛 𝑛 𝑛)] × 𝑛 𝑛 𝑛 = 0 (a • 𝑛 𝑛 𝑛) × 𝑛 𝑛 𝑛 = 0 v ′ × 𝑛 𝑛 𝑛 = 0 . Remark 4.4.
For clarity sake, the tensor [P 𝑠 -3𝑛 𝑛 𝑛 ⊙ (P 𝑠 • 𝑛 𝑛 𝑛)] can be expressed as follows in any orthonormal basis of R 3

[P 𝑠 -3𝑛 𝑛 𝑛 ⊙ (P 𝑠 • 𝑛 𝑛 𝑛)] 𝑖𝑗𝑘 = 𝑃 𝑠 𝑖𝑗𝑘 - (︀ 𝑛 𝑖 𝑃 𝑠 𝑗𝑘𝑝 𝑛 𝑝 + 𝑛 𝑗 𝑃 𝑠 𝑖𝑘𝑝 𝑛 𝑝 + 𝑛 𝑘 𝑃 𝑠 𝑖𝑗𝑝 𝑛 𝑝 )︀ .

Order two symmetries and symmetry classes.

To begin, we propose in Table 2 to make explicit all order two symmetries contained in a subgroup 𝐻 taken from one of the 16 piezoelectricity symmetry classes [𝐻] (see Theorem 3.1).

From this table, we deduce, for a non null piezoelectricity tensor, two distinct situations: (a) there exists at least one symmetry plane or at least two axial symmetries (cases (3) to ( 12) of Table 2). In these 10 cases, the symmetry class is directly characterized by order two symmetries and can be determined using the algorithm depicted in Figure 2.

(1) 1, Z 3 :

• no any order two symmetries.

(2) Z 2 , Z - 4 , SO(2): • 1 axial symmetry r(e 3 , 𝜋).

(3) Z - 2 : • 1 plane symmetry s(e 1 ). 

m 1 = r (︀ e 3 , 𝜋 6 
)︀ e 1 , m 2 = r (︀ e 3 , 5𝜋 6 
)︀ e 1

(10) O -:

• 3 axial symmetries r(e 𝑖 , 𝜋), 𝑖 = 1, 2, 3;

• 6 plane symmetries s(e 𝑗 ± e 𝑖 ), 𝑖 < 𝑗 (11) O( 2): ∞ axial symmetries (axis inside a common plane). ( 12) O(2) -: ∞ plane symmetries (all plane with a common axis). ( 13) O(3) (degenerate case) : ∞ plane and axial symmetries (P = 0). Table 2. Order two symmetries for symmetry classes of the piezoelectricity tensor. (b) there is no plane symmetry in which case, either there is no any order two symmetry, or there exists a unique axial symmetry (cases (1) and (2) of Table 2). In these 2 cases, further operations are needed to identify the symmetry class of the tensor. If we are in the situation (1) of Table 2, the symmetry class is identified by the following extra test:

P = 0 symmetry class [O(2)] [O(2) -] [Z - 2 ] [D 2 ] [D 3 ] [D v 2 ] [D v 3 ] [D h 4 ] [D h 6 ] [O -] 1 plane ∞ axial ∞ plane
Lemma 4.5. Let suppose that P ∈ Piez has no any order two symmetry and let us consider the equation

(4.6) r (︂ 𝑛 𝑛 𝑛, 2𝜋 3 
)︂ ⋆ P = P with unknown unit vector 𝑛 𝑛 𝑛 = (𝑛 1 , 𝑛 2 , 𝑛 3 ) in R 3 . If such equation (4.6) has a solution, then the symmetry class of P is

[Z 3 ], otherwise it is [1].
While, for the situation (2) of Table 2, the symmetry class is identified by the following extra test: Lemma 4.6. Let suppose that P ∈ Piez has only one axial symmetry r(𝑛 𝑛 𝑛, 𝜋) (given by Theorem 4.3):

• if r (︁ 𝑛 𝑛 𝑛, 𝜋 2 
)︁ ⋆ P = P then P symmetry class is [SO(2)]; • if r (︁ 𝑛 𝑛 𝑛, 𝜋 2 
)︁ ⋆ P = -P then P symmetry class is [Z - 4 ]; • otherwise P symmetry class is [Z 2 ].
Proof. From Table 2, we know that the only possible symmetry classes of P are [Z 2 ], [Z - 4 ] or [SO (2)]. Now, we can always suppose that 𝑛 𝑛 𝑛 = e 3 , so that we can consider the rotation

𝑔 = r (︁ e 3 , 𝜋 2 
)︁ ∈ SO(2)
and observe that -𝑔 ∈ Z - 4 (cf. Appendix A). Using 𝑔 ⋆ P or (-𝑔) ⋆ P = -(𝑔 ⋆ P), we thus can decide whether the symmetry group of P is Z 2 , Z - 4 or SO(2). Results of Lemmas 4.5 and 4.6 are summarized in Figure 3.

P = 0 symmetry class Only 1 axial r(n n n, π) [Z - 4 ] [SO(2)] [Z 2 ]
Eq. r n n n, 2π 3

P = P Unknown unit vector n n n = (n 1 , n 2 , n 3 ) [Z 3 ] [1]
r n n n, π 3)-closed subgroups is quite classical [START_REF] Ihrig | Pattern selection with O(3)-symmetry[END_REF][START_REF] Sternberg | Group theory and physics[END_REF]. Following Golubitsky and al. [START_REF] Golubitsky | Singularities and Groups in Bifurcation Theory[END_REF], O(3)-closed subgroups can be described using three types of subgroups. These subgroups are defined as follows, where Id is the neutral element in O(3):

Type I (Chiral): A subgroup Γ is of type I if it is a subgroup of SO (3). Type I subgroups are also said to be chiral subgroups; Type II (Centrosymmetric):

A subgroup Γ is of type II if -Id ∈ Γ. In that case, Γ = 𝐾 × Z 𝑐 2
where 𝐾 is some SO(3) closed subgroup and Z 𝑐 2 := {Id, -Id}. Type II subgroups are also said to be centrosymmetric;

Type III: A subgroup Γ is of type III if -Id / ∈ Γ and Γ is not a subgroup of SO(3).
From a physical point of view, it can be relevant to define subgroups with a privileged axis: The following different tables (Table 3,-4,-5) detail the physical characteristics of the 32 crystallographic point groups of type I, II and III. In these tables, the correspondence between the Golubtisky's notations and the crystallographers' ones such as the Hermann-Maugin or the Schonflies systems are provided. Note also that the column System refers to the Bravais lattice, and Space Groups indicates the reference of the space groups having this group as its point group (see [START_REF] Sternberg | Group theory and physics[END_REF] for instance). To have a geometrical picture of these groups some illustrations are provided. In Figure 5, Figure 6 and Figure 7, figures that are invariant with respect to groups of type I, II and II are provided. On these figures:

Definition A.1 (Polar subgroups). A subgroup Γ is said to be polar if there exists v ∈ R 3 such that ℎ ⋆ v = v for all ℎ ∈ 𝐻.
• the rotational order of the invariance is indicated on the rotation axis (depicted with an arrow); • symmetry planes are indicated in solid lines and without arrow;

• arrows drawn on the figures indicate the spin of the object. The presence of spin is due to chirality. 

Appendix B. Normal forms of piezoelectricity tensors

For any piezoelectricity tensor P ∈ Piez with symmetry class [𝐻], there exists some 𝑔 ∈ O(3) such that the symmetry group of P 0 = 𝑔 ⋆ P is exactly 𝐻. The piezoelectricity tensor P 0 is said to be a normal form of P, which will be given in a matrix normal form. To define a matrix representation, let us first observe that any piezoelectric tensor is associated with a linear application from S 2 to R 3 , so we can consider its matrix representation [P] once the bases of these spaces are given. Let ℬ := (e 1 , e 2 , e 3 ) be some orthonormal basis of R 

⎞ ⎠

A matrix normal form [P 0 ] of a given symmetry class [𝐻] is now obtained from some P 0 such that ℎ ⋆ P 0 = P 0 for all ℎ ∈ 𝐻, so that P 0 belong to the fixed-point set Fix(𝐻) := {P ∈ Piez, ℎ ⋆ P = P, ∀ℎ ∈ 𝐻} which is a vector space of dimension given in Table 7. In this Table, the dimensions are obtained using the trace formulas detailed in Appendix C.

[𝐺 P ] [1] [Z 2 ] [Z 3 ] [SO(2)] dim(Fix(𝐺 P )) 18 8 6 4 [𝐺 P ] [D 𝑣 2 ] [D 𝑣 3 ] [O(2) -] dim(Fix(𝐺 P )) 5 4 3 [𝐺 P ] [Z - 2 ] [Z - 4 ] dim(Fix(𝐺 P )) 10 4 [𝐺 P ] [D ℎ 4 ] [D ℎ 6 ] dim(Fix(𝐺 P )) 2 1 [𝐺 P ] [D 2 ] [D 3 ] [O(2)] dim(Fix(𝐺 P )) 3 2 1 [𝐺 P ] [O -] [O(3)] dim(Fix(𝐺 P )) 1 0
Table 7. Dimension of the fixed-point sets for each symmetry class of Piez.

A basis of each fixed-point set is computed using generators of the subgroup 𝐻 from Table 6: if 𝐻 is generated by some elements ℎ 𝑖 , then Fix(𝐻) is defined by the linear system ℎ 𝑖 ⋆ P = P, ∀𝑖.

In the case of infinite compact subgroup 𝐻, as a consequence of Herman's theorem [START_REF] Herman | Some theorems of the theory of anisotropic media[END_REF]2], generators will be substituted by a rotation of order larger than the tensor's one. Finally, any basis of Fix(𝐻) produces a matrix normal form of the associated symmetry class [𝐻]. In the following, we write P 𝐻 for an element of Fix(𝐻) and [P] 𝐻 for its matrix representation. Note also that the choice of the generators indicated in Table 6 has been made in order to have the following relation, which is obtained by direct computation:

Piez = Fix(D 2 ) ⊕ Fix(D 𝑣 2 ) ⊕ Fix(Z - 2 
). This relation means that any triclinic tensors P is the sum of three tensors P with higher symmetry classes. The consequences of this decomposition are used to provide matrix representations in a condensed form. Similar relations are obtained for some symmetry classes in order to simplify computations of normal forms.

Symmetry classes

[Z 2 ], [D 2 ], [D 𝑣 2 ]. As discussed in Appendix A, classes [D 𝑛 ] are chiral, classes [D 𝑣
𝑛 ] are polar while classes [Z 𝑛 ] have these two features. Using generators from Table 6 we have:

Fix(Z 𝑛 ) = Fix(D 𝑛 ) ⊕ Fix(D 𝑣 𝑛 ) So only the matrices of [P] D𝑛 and [P] D 𝑣 𝑛 will be detailed, the remaining one being deduced from the above relation. 

(1. 4 )Remark 1 . 1 .

 411 C = 𝑔 ⋆ C, P = 𝑔 ⋆ P, S = 𝑔 ⋆ S, in which the standard linear representation of O(3) on the space ⊗ 𝑛 (R 3 ) of 𝑛th-order tensors is given in any orthonormal basis by (1.5) (𝑔 ⋆ T) 𝑖 1 ...𝑖𝑛 := 𝑔 𝑖 1 𝑗 1 . . . 𝑔 𝑖𝑛𝑗𝑛 𝑇 𝑗 1 ...𝑗𝑛 , 𝑔 ∈ O(3), T ∈ ⊗ 𝑛 (R 3 ). There is another linear representation of O(3) on the space of 𝑛th order tensors, called the twisted representation (1.6) 𝑔 ⋆ T := det(𝑔)(𝑔 ⋆ T)

Figure 1 .

 1 Figure 1. Lattice of symmetry classes of Piez.

  The notation r(𝑛 𝑛 𝑛, 𝜃), with 𝜃 ∈ [0; 2𝜋[ denotes a rotation of angle 𝜃 and axis generated by 𝑛 𝑛 𝑛, with the convention that r(e 3 , 𝜃) has the following matrix representation in the canonical basis (e 1 , e 2 , e 3 ) of R 3 r(e 3 , 𝜃) = ⎛ ⎝ cos(𝜃)sin(𝜃) 0 sin(𝜃) cos(𝜃)

  𝑎 𝑗𝑘 + 𝑢 𝑘 𝑎 𝑖𝑗 + 𝑢 𝑗 𝑎 𝑘𝑖 ) .

( 4 ) 3 :

 43 D 2 : • 3 axial symmetries r(e 𝑖 , 𝜋), 𝑖 = 1, 2, 3. (5) D 𝑣 2 : • 1 axial symmetry r(e 3 , 𝜋); • 2 plane symmetries s(e 1 ), s(e 2 ). (6) D 3 : • 3 axial symmetries; r(e 1 , 𝜋), r(𝑛 𝑛 𝑛 𝑘 , 𝜋), 𝑛 𝑛 𝑛 𝑘 = r • 3 plane symmetries s(e 1 ), s(𝑛 𝑛 𝑛 𝑘 ) with 𝑛 𝑛 𝑛 𝑘 as in D 3 case. (8) D ℎ 4 : • 3 axial symmetries r(e 𝑖 , 𝜋), 𝑖 = 1, 2, 3; • 2 plane symmetries s(e 2 ± e 1 ) (9) D ℎ 6 : • 3 axial symmetries r(e 1 , 𝜋), r(𝑛 𝑛 𝑛 𝑘 , 𝜋), with 𝑛 𝑛 𝑛 𝑘 from D 3 case • 4 plane symmetries s(e 3 ), s(e 2 ) and s(m 𝑘 ) with

Figure 2 .

 2 Figure 2. Symmetry classes of a non null piezoelectricity tensor characterized by order two symmetries.

2 P = P r n n n, π 2 P

 22 

Figure 3 .

 3 Figure 3. Piezoelectricity symmetry classes from order two symmetries, cases.

Remark A. 2 .Figure 4 .

 24 Figure 4. Physical classification of O(3)-subgroups. 𝐼, 𝐶 and 𝑃 indicate, respectively, the Centro-symmetric, Chiral and Polar properties of a subgroup Γ. An overline indicates that the associated property is lacking.

Figure 5 .

 5 Figure 5. Type I invariant figures: (A) non regular oriented tetrahedron, Z 4invariant (Chiral and Polar), while (B) non cubic twisted rectangular parallelepiped, D 4 -invariant (Chiral).

Figure 6 .

 6 Figure 6. Different invariant figures of Type II: (A) is Z 4 × Z 𝑐 2 -invariant, while (B) is D 4 × Z 𝑐 2 -invariant. The central inversion is indicated by a dot.

Figure 7 .

 7 Figure 7. Type III invariant figures: (A) non regular tetrahedron, Z - 4 -invariant, while (B) is D 𝑣 4 -invariant (Polar). The diamond shape indicates an axis of rotoinversion.

2 21 𝑝 21 -Remark B. 1 . 11 = 21 =showing that there is always a rotation such that r (e 3 ; 6 ∈ 1 )

 2212111121361 Z2 = [P] D2 + [P] D 𝑣 Symmetry classes [Z 3 ], [D 3 ], [D 𝑣 3 ]. [P] D3 = ⎛ ⎝ 𝑝 11 -𝑝 11 0 𝑝 14 0 𝑝 21 0 𝑝 24 0 0 𝑝 31 𝑝 31 𝑝 33 0 0 0 ⎞ ⎠ , [P] Z3 = [P] D3 + [P]D 𝑣 Symmetry classes [SO(2)], [O(2)], [O(2) -It is worth noting that a Z - 6 -invariant piezoelectricity tensor can be determined: a normal form for [Z - 6] since this class is empty. Indeed, taking P ⋆ := r (e 3 ; 𝜃) ⋆ P gives the matrix:[P ⋆ ] Z - 𝑝 11 cos(3𝜃) -𝑝 21 sin(3𝜃) 𝑝 ⋆ 𝑝 21 cos(3𝜃) + 𝑝 11 sin(3𝜃) Hence 𝑝 ⋆ 21 = 0 for 𝜃 = -𝜃) ⋆ P Z - Fix(D ℎ 6 ).Appendix C. Fixed point set dimensions Consider (𝑉, 𝜌) a finite dimensional linear representation of O(3) which admits the following harmonic decomposition : 𝑉 ≃ 𝑛 ⨁︁ 𝑘=0 𝛼 𝑘 W 𝑘 with 𝛼 𝑘 W 𝑘 = {︃ ∅, if 𝛼 𝑘 = 0 ⨁︀ 𝛼 𝑘 𝑖=1 W 𝑘 , otherwise in which W 𝑘 is either H 𝑘 or H ♯𝑘 . Then for the Type I closed-subgroups we have the following formulas: dim (Fix(Z 𝑝 )) = 2 In these expressions ⌊•⌋ denotes the classical floor function. The dimensions for Fix(SO(2)) and Fix(O(2)) are respectively obtained from the dim (Fix(Z 𝑝 )) and dim (Fix(Z 𝑝 )) by considering 𝑝 > 𝑛, i.e.: dim (Fix(SO(2))) = 𝑛 ∑︁ 𝑘=0 𝛼 𝑘 ; dim (Fix(O(2))) = ⌊ 𝑛 2 ⌋ ∑︁ 𝑘=0 𝛼 2𝑘 . For the Type III closed-subgroups, the following formulas are dim (︀ Fix(Z - The dimension for Fix(O(2) -) is obtained from the dim (︀ Fix(D 𝑣 𝑝 ) )︀ by considering 𝑝 > 𝑛, i.e.: dim (︀ Fix(O(2) -)

  2.1. Clebsch-Gordan decomposition of piezoelectricity tensors. Let us consider some piezoelectricity tensor P ∈ Piez and let us first define (H, a, u, v) ∈ H 3 ⊕ H ♯2 ⊕ H 1 ⊕ H 1 by: 𝑖𝑝𝑞 𝑃 𝑝𝑞𝑗 + 𝜖 𝑗𝑝𝑞 𝑃 𝑝𝑞𝑖 ) , 𝑢 𝑖 := 𝑃 𝑝𝑝𝑖 -1 3 𝑃 𝑖𝑝𝑝 , 𝑣 𝑖 := 𝑃 𝑖𝑝𝑝

	(2.1) (𝜖 and 𝑎 𝑖𝑗 := 1 2
	(2.2)

Table 3 .

 3 Type I closed subgroups: designation and characteristics (𝐶 = Chiral, 𝑃 =Polar).

			Type I closed subgroups		
	System	Hermann-Maugin Schonflies Golubitsky Nature Space Groups
	Triclinic Monoclinic Orthotropic Trigonal Trigonal Tetragonal Tetragonal Hexagonal Hexagonal Cubic Cubic	1 2 222 3 32 4 422 6 622 ∞ ∞2 23 432 532	Z 1 Z 2 D 2 Z 3 D 3 Z 4 D 4 Z 6 D 6 Z ∞ D ∞ T O I	1 Z 2 D 2 Z 3 D 3 Z 4 D 4 Z 6 D 6 SO(2) O(2) T O I	𝐶𝑃 𝐶𝑃 𝐶 𝐶𝑃 𝐶 𝐶𝑃 𝐶 𝐶𝑃 𝐶 𝐶𝑃 𝐶 𝐶 𝐶 𝐶	1 3-5 16-24 143-146 149-155 75-80 89-98 168-173 177-182 195-199 207-214
		∞∞		SO(3)	𝐶	
		Type II closed subgroups		
	System	Hermann-Maugin Schonflies Golubitsky Nature Space Group
	Triclinic Monoclinic Orthotropic Trigonal Trigonal Tetragonal Tetragonal Hexagonal Hexagonal Cubic Cubic	1 2/𝑚 𝑚𝑚𝑚 3 3𝑚 4/𝑚 4/𝑚𝑚𝑚 6/𝑚 6/𝑚𝑚𝑚 ∞/𝑚 ∞/𝑚𝑚 𝑚 3 𝑚 3𝑚 53 𝑚 ∞/𝑚∞/𝑚	Z 𝑖 Z 2ℎ D 2ℎ S 6 , Z 3𝑖 D 3𝑑 Z 4ℎ D 4ℎ Z 6ℎ D 6ℎ Z ∞ℎ D ∞ℎ T ℎ O ℎ I ℎ	Z 𝑐 2 Z 2 × Z 𝑐 2 D 2 × Z 𝑐 2 Z 3 × Z 𝑐 2 D 3 × Z 𝑐 2 Z 4 × Z 𝑐 2 D 4 × Z 𝑐 2 Z 6 × Z 𝑐 2 D 6 × Z 𝑐 2 SO(2) × Z 𝑐 2 O(2) × Z 𝑐 2 T × Z 𝑐 2 O × Z 𝑐 2 2 I × Z 𝑐 O(3)	𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼	2 10-15 47-74 147-148 162-167 83-88 123-142 175-176 191-194 200-206 221-230

Table 4 .

 4 Type II closed subgroups: designation and characteristics (𝐼 = Centrosymetric).

			Type III closed subgroups		
	System	Hermann-Maugin Schonflies Golubitsky Nature Space Groups
	Monocinic Orthotropic Trigonal Tetragonal Tetragonal Tetragonal Hexagonal Hexagonal Hexagonal Cubic	𝑚 2𝑚𝑚 3𝑚 4 4𝑚𝑚 42𝑚 6 6𝑚𝑚 62𝑚 43𝑚 ∞𝑚	Z 𝑠 Z 2𝑣 Z 3𝑣 S 4 Z 4𝑣 D 2𝑑 Z 3ℎ Z 6𝑣 D 3ℎ T 𝑑 Z ∞𝑣	Z -2 D 𝑣 2 D 𝑣 3 Z -4 D 𝑣 4 D ℎ 4 Z -6 D 𝑣 6 D ℎ 6 O -O(2) -	𝑃 𝑃 𝑃 𝑃 𝑃 𝑃	6-9 25-46 156-161 81-82 99-110 111-122 174 183-186 187-190 215-220

Table 5 .

 5 Type III closed subgroups: designation and characteristics (𝑃 =Polar).In the following table a set of generators is detailed for each finite O(3)-closed subgroups. Those generators are used in Appendix B to obtain matrix normal forms for elements of Piez. 𝜋), r(e 1 ; 𝜋), r(e 1 + e 2 + e 3 ; 2𝜋 /3) 𝜋 /2), r(e 1 ; 𝜋), r(e 1 + e 2 + e 3 ; 2𝜋 /3)

	Group	Order	Generators
	Z -2	2	s(e 3 )
	Z 𝑛 , 𝑛 ≥ 2	𝑛	r (e 3 ; 2𝜋 /𝑛)
	D 𝑛 , 𝑛 ≥ 2	2𝑛	r (e 3 ; 2𝜋 /𝑛) , r(e 1 ; 𝜋)
	Z -2𝑛 , 𝑛 ≥ 2	2𝑛	-r (e 3 ; 𝜋 /𝑛)
	D ℎ 2𝑛 , 𝑛 ≥ 2	4𝑛	-r (e 3 ; 𝜋 /𝑛) , r(e 1 , 𝜋)
	D 𝑣 𝑛 , 𝑛 ≥ 2	2𝑛	r (e 3 ; 2𝜋 /𝑛) , s(e 1 )
	T r(e 3 ; O 12 24 r(e 3 ; O -24 I 60 r(e 3 ; 𝜋), r(e 1 + e 2 + e 3 ; 2𝜋 /3), r(e 1 + 𝜑e 3 ; 2𝜋 /5) 𝜑 := (1 + -r(e 3 ; 𝜋 /2), s(e 2 -e 3 )	√	5)/2

Table 6 .

 6 Generators of finite closed O(3)-subgroups

  𝑖 ⊗ e 𝑗 + e 𝑗 ⊗ e 𝑖 ) be the associated orthonormal basis of S 2 . With respect to bases (e 𝑖𝑗 ) and (e 𝑖 ), any piezoelectricity tensor P ∈ Piez can be represented by the matrix 𝑝 11 𝑝 12 𝑝 13 𝑝 14 𝑝 15 𝑝 16 𝑝 21 𝑝 22 𝑝 23 𝑝 24 𝑝 25 𝑝 26 𝑝 31 𝑝 32 𝑝 33 𝑝 34 𝑝 35 𝑝 36

			3 and
	e 𝑖𝑗 := (e [P] := (︂ 1 -𝛿 𝑖𝑗 √ 2 + )︂ 𝛿 𝑖𝑗 2 ⎛ ⎝ 𝑃 111 𝑃 122 𝑃 133 √ 2𝑃 123 √ 2𝑃 113 √ 2𝑃 112 𝑃 211 𝑃 222 𝑃 233 √ 2𝑃 223 √ 2𝑃 213 √ 2𝑃 212 𝑃 311 𝑃 322 𝑃 333 √ 2𝑃 323 √ 2𝑃 313 2𝑃 312 √	⎞ ⎠ =	⎛ ⎝

Since the contraction is on a fully symmetric tensor, it does not matter which indices are contracted. First indices are just considered here for simplicity.