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A note on non asymptotic stabilization of linear time delay systems

Wilfrid Perruquetti Nicolás Espitia Michel Dambrine

Abstract— This paper deals with fixed-time and prescribed-
time stabilization of controllable linear-time delay systems using
Artstein’s transformation [1]. First, a delayed chain of inte-
grators is stabilized in fixed-time using the desingularization
technique originally introduced in [4]. Then, prescribed-time
stabilization of controllable linear systems with input delay is
obtained through Artstein’s transformation combined with a
new prescribed-time stabilizing control design (involving time-
varying gains) for LTI systems. Compared to the control design
methodology employed in e.g. [10], this new design offers an
alternative somehow clearer way for the choice of the time-
varying gains. Simulations illustrate the obtained results.

I. INTRODUCTION

Control design should successfully meet performances
requested by end-users: reasonable energy consumption,
quality of service, reliability. . . . Thus, in addition to stability
& robustness, another important criteria is the time for
trajectories to reach a desired invariant mode (usually an
equilibrium). Most of stabilization and estimation algorithms
for practical engineering problems provide asymptotic or
exponential convergence. However, when transient process
has to be achieved in a given time (multi-agent rendezvous,
missile guidance, . . . ), then non-asymptotic convergence
becomes a central issue and a necessity.

Non-asymptotic convergences can be classified as follow:
finite-time if the equilibrium is reached in a finite time
dependent on initial conditions [21], [9], [2], [17]. If such
a time is independent on initial deviations, then this type of
convergence is called fixed-time [19]. If, additionally, for all
initial conditions the time of convergence is constant, then
such a property is called prescribed-time convergence [22],
[25], [23], [24], [10].

Non-asymptotic (finite-time / fixed-time / prescribed-time)
concepts have been extensively considered in the frame-
work of linear and nonlinear ordinary differential equations
(ODES) ([21], [9], [2], [17], [11], [18], [19], [20], [7], [15],
[12]).

Finite-time / Fixed time stabilization of time delay systems
are receiving more and more attention (see for example [13],
[3]) since one of the pioneering papers, [16], which pointed
out some key obstructions for the design of static finite-time
controllers (see also [6]) and which came up with a controller
based on Artstein’s transformation to stabilize in finite-time
with settling time depending on the initial conditions.

However, fixed-time & prescribed time stabilization for
linear time-delays systems (in particular those with input
delay) have not been extensively investigated in the literature.
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This paper provides new results on fixed-time & prescribed
time stabilization of some linear time-delay systems. We
build on the Artstein’ transformation [1] which allows to
deal with a simpler system and from which we can perform
an easier analysis for the control design for fixed-time or
prescribed-time stabilization. For the fixed-time case, we
bring back the ideas of [4] which exploits a “desingular-
ization” technique, very helpful for the design of a control
stabilizing a delayed chain of integrators in fixed time.
Indeed, the proposed controller has terms with power less
than one which imply non differentiability at zero of these
terms, thus desingularization is used to circumvent this
problem. For the prescribed-time case, we build on [22] and
[10] where time-varying gains are used to achieve prescribed-
time, independent of initial condition. Our approach makes
uses of a Generalized polynomial-based Vandermonde matrix
and the Exponential Bell polynomials. The paper is organized
as follows: Section II provides the problem statement in
II-A and some background (Artstein’s transformation II-B,
non asymptotic stability II-C, II-D and II-E). Section III
is devoted to the new obtained results: III-A provides a
new fixed-time stabilizing controller for a delayed chain of
integrators whereas III-B provides a new prescribed-time
stabilizing controller for controllable linear systems with
input delay. These results are supported by some simulation
examples reported in section IV. Then conclusion follows
in V.

Notations: R+ denotes the set of nonnegative real num-
bers. Γ denotes the Gamma function. We define the signed
power a of a real number x by {x}a = sign(x)|x|a. Clearly,
for a ≥ 1, we have d{x}a

dx = a|x|a−1 and d|x|a
dx =

a {x}a−1. For non zero integers m and n, let 0m×n be
the (m,n)-matrix with zero entries, Im be the identity
matrix of dimension m, Jn = ((0(n−1)×1, In−1)T , 0n×1)T

(Jordan matrix) and, for p ∈ Rn, Ln(p) = (0(n)×(n−1), p)
T .

L1
loc(X) is the set of functions f that are locally Lebesgue

integrable over X . Ck(X,Y ) is the set of functions f : X →
Y which are k times continuously differentiable (noted as Ck
when the sets X,Y are obvious from the context). If f ∈ Ck
then f (k) denotes its k−th derivative. CL(X,Y ) is the set
of continuous (including at 0) functions f : X → Y which
are locally Lipschitz everywhere except at 0. A continuous
function α : [0, a[⊂ R+ → R+, r 7→ α(r), is said to be a
class-K function if it is strictly increasing with α(0) = 0.
α is a class-K∞ function if it is a class-K function with
a = ∞ and α(r) → ∞ as r → ∞. A continuous function
β : [0,+∞[⊂ R+ × R → R+, (r, t) 7→ β(r, t), belongs to
class-KL if for each fixed t, the mapping r 7→ β(r, t) belongs



to class K∞ with respect to r. And, for each fixed r ∈ R+,
the mapping t 7→ β(r, t) is decreasing with respect to t and
limt→+∞ β(r, t) = 0.

II. PROBLEM STATEMENT, CONCEPTS AND
PRELIMINARIES

A. Problem statement

Let us consider the following time-delay system:

ẋ = Ax+

k∑
i=1

Biu(t− hi), x ∈ Rn, u ∈ R, k ∈ N, (1)

where the delays hi are ordered (0 ≤ h1 ≤ . . . ≤ hk).
The matrices A,Bi are of appropriate dimensions and such
that the pair (A,B =

∑
ehiBi) satisfies the Kalman rank

controllability condition for LTI systems. Thus (A,B) can
be assumed to be in the form A = Jn + Ln(p) and
B = (0, . . . , 0, 1)T without any loss of generality. We are
interested in some non asymptotic stabilities of the origin for
system (1): (uniform) "finite-time / fixed-time / prescribed-
time stability " (respectively denoted by UFTS / UFxTS /
UPrTS) and defined in subsection II-D.

For that, we will first transform the original TDS (1) into a
non delayed one using some transformations (see subsection
II-B). The target closed-loop system will be of the form:

ż = Az(t) +Bu(t) = f(t, z), z ∈ Rn, u ∈ R. (2)

Solutions of (2) with z0 = z(t0) are denoted by Φt(t0, z0).

B. Transformations

One of the first reduction methods for time-delay systems
has been proposed by Kwon and Pearson in [14] for a system
of form (1) with a single input delay (i.e. k = 2 with h1 = 0).
A generalization of this work has been proposed by Artstein
in [1] for linear system with general input delay described
by

ẋ(t) = A(t)x(t) +

∫ hk

0

dβ(θ)u(t− θ), (3)

where β is a matrix-valued measure. This result applies to
system (1): let

z(t) = x(t) +

k∑
i=1

∫ t

t−hi
e(t−s−hi)ABiu(s)ds, (4)

then z(t) is a solution of the LTI system

ż(t) = Az(t) +

(
k∑
i=1

e−hiABi

)
u(t). (5)

Theorem 7 from [16] explains under which conditions a
stabilizing (resp. finite-time stabilizing) controller for (5)
of the form u(t, z) = k(t)l(z), makes the origin of (6)
also asymptotically stable / finite-time stable with the same
feedback with z(t) replaced using (4). The conditions were
k(t) bounded and l continuous such that |l(z)| ≤ α(‖z‖) for
some α a class K−function. Thus, conclusion remains valid
for fixed-time stability property (and will be used later on in
section III), but not for UPrTS (see proof of Theorem 5).

C. Non asymptotic stabilities of TDS

Finite-time stabilization of TDS is very challenging. In-
deed in [16], it has been shown that a TDS in the form

ẋ(t) = f(x(t), x(t− h1), . . . , x(t− hk)), x ∈ R (6)

cannot be finite-time stable (FTS) if f(x0, . . . , xk) = 0 ⇔
x0 = . . . = xk (f is a nonzero continuous function).
This is the reason why control with distributed delay were
investigated for FTS using Artstein’s transformation for
x(n) = u(t− h), x ∈ R, u ∈ R or

ẋ = ax(t) +

k∑
i=0

biu(t− hi), x ∈ R, u ∈ R (7)

in the same paper. For example, (7) is UFTS with control

u(t) = − (az(t) + {z}α (t))∑k
i=0 bie

−ahi
, α ∈]0, 1[ (8)

where z is given by Artstein’s transformation (4) which here
reduce to: z(t) = x(t) +

∑k
i=0 bi

∫ 0

−hi e
a(−hi−s)u(t+ s)ds.

To best of our knowledge, except [26], no results exist
concerning the other non asymptotic stability properties
(Fixed-time stability & prescribed-time stability). [26] is
dealing with Fixed-time stabilization of controllable linear
systems with delayed input. The obtained results are based
on Artstein’s transformation and on control for LTI system
borrowed from [2], [19]. The here proposed controller is new,
do not have strong restriction on the signed power terms, with
only three parameters to tune.

D. Non asymptotic concepts

Stability properties of the non retarded system (2) are
given in terms of KL−functions as follows:

Definition 1: The equilibrium z = 0 of system (2) is said
to be
• Uniformly finite-time stable (in short UFTS) if there

exist a class KL function β and a constant c > 0,
independent of t0, such that ∀t ≥ t0, ∀z0 : ‖z0‖ < c,

‖Φt(t0, z0)‖ ≤ β(‖z0‖, t− t0),

with β(‖z0‖, t) = 0,∀t ≥ T (z0),
• Uniformly fixed-time stable (in short UFxTS) if it is

finite-time stable with sup‖z0‖<c T (z0) < +∞.
• Uniformly stable in prescribed-time T (in short UPrTS)

if there exist a class KL function β and a positive
constant c, independent of t0, such that ∀t > t0,
∀z0 : ‖z0‖ < c,

‖Φt(t0, z0)‖ ≤ β(‖z0‖, µT (t− t0)),

where µT : R → R̄, µT (t) = T
T−t for t ∈ [t0, t0 +

T [ and µT (t) = +∞,∀t ∈ [t0 + T,∞[. Note that
limt→t0+T µT (t− t0) = +∞.

When c =∞ in the previous relation then the corresponding
notions are global.
Of course these definitions can be easily adapted for TDS
(see for example [16], [6]).



E. Preliminary results

Scalar case: In this subsection we review and complete
some results about non-asymptotic stability for scalar sys-
tems of the form

ż(t) = f(t, z(t)), z ∈ R, (9)

where the function f is assumed to be measurable and
L1

loc(R × R) w.r.t t and of CL−class w.r.t z. The solution
of (9) with z(t0) = z0 is also denoted by Φt(t0, z0).

Finite-time stability: Let us consider (9) with f(t, z) =
−r(z). The origin is assumed to be the unique equilibrium
point, that is r(z) = 0 ⇔ z = 0. Solutions reach zero in a
finite time T =

∫ |z0|
0

dx
r(x) <∞ which leads to the following

lemma ([9], [18]):
Lemma 1: (9)is globally UFTS iff zr(z) > 0, ∀z ∈ R \

{0} and
∫ |z0|

0
dx
r(x) <∞, ∀z0 ∈ R.

Fixed-time stability: Combining Lemma 1 with the second
item of Definition 1 leads to:

Lemma 2: (9) is globally UFxTS iff zr(z) > 0,∀z ∈
R \ {0} and supz0∈R+

∫ z0
0

dx
r(x) <∞.

From which one can deduce the following result:
Theorem 1: For 0 ≤ α < 1 and k > 0, b > 0, system

ż = −k{z}α exp(b|z|), z ∈ R is globally UFxTS with
settling time bounded as follows T (z0) ≤ Tmax = Γ(1−α)

kb(1−α) .
Moreover, any positive scalar function V (t) satisfying the
following differential inequality V̇ ≤ −kV α exp(b|V |),
decreases to zero in a fixed time less than Tmax.
Prescribed-time stability: The next Lemma gives sufficient
conditions for UPrTS of the following scalar system:

ż(t) = −c(t)z(t). (10)

Lemma 3: Let c ∈ L1(R) with c(t) > 0 (a.e on
R), then (10) is UPrTS with prescribed-time T > 0 if
limt→t0+T c̄(t) = +∞, where c̄(t) :=

∫ t
t0
c(τ) dτ .

There exist many functions meeting the sufficient con-
dition for UPrTS in Lemma 3. Similar to [22], [10], we
will consider “blow-up" functions having the form, for all
t ∈ [t0, T + t0):

c(t) =
(c0T )ε

(T + t0 − t)ε
, ε > 1, c(t0) = cε0, (11)

so that (10) is UPrTS with prescribed-time T + t0.

Time-varying linear systems in companion canonical form:
Let us consider the case f(t, z) = C(t)z with a companion
matrix C(t) = Jn +Ln(−p(t)) and p(t) to be characterized
later on. The following theorem will be instrumental for the
analysis of the UPrTS in the n-dimensional case and as we
will apply in Subsection III-B.

Theorem 2: Let us consider the nonlinear operators δj de-
fined recursively by: (δ0ρ) = ρ and (δj+1ρ) = (ρ+ d

dt )(δ
jρ).

Given n distinct positive real numbers ri and a function c(t)
of the form (11), define the Generalized Vandermonde matrix

V (t) =


1 · · · 1

ρ1(t) · · · ρn(t)
(δρ1)(t) · · · (δρn)(t)
· · · · · · · · ·

(δn−2ρ1)(t) · · · (δn−2ρ1)(t)

 (12)

and the companion matrix C(t) = Jn + Ln(−p(t)), with

p(t) = V −>(t)

−(δn−1ρ1)(t)
...

−(δn−1ρn)(t)

 , (13)

If ρi(t) = −ric(t), i = 1, . . . , n, yielding

(δjρi(t)) =

j∑
k=0

(
j

k

)
ρ
(j−k)
i (t)Bk(ρi(t), ρ̇i(t), ..., ρ

(k−1)
i (t)),

= Bj+1(ρi(t), ρ̇i(t), ..., ρ
(j)
i (t)). (14)

j = 0, .., n − 2, where Bk(·) denotes the complete Bell
polynomials.
Then, solutions of (2) with f(t, z) = C(t)z satisfy:

‖z(t)‖ ≤ P (
√
c(t)) exp(−rminc̄(t))‖z0‖, (15)

where rmin = mini ri > 0, P is a polynomial of degree at
most n− 1 and c̄(t) =

∫ t
t0
c(s) ds . Moreover (2) is UPrTS

with T > 0.
Proof: The proof is given in [8], where the domination

of the polynomial by the "exp" function is used.

III. MAIN RESULTS

A. Fixed-time stabilization of a delayed chain of integrators

Let us consider the following delayed chain of integrators:

ẋ1 = x2(t− h1), . . . , ẋn = v(t− hn), (16)

where the state1 is xt ∈ C0(Rn × Rn), the control is
v ∈ L1(R) and hi, i = 1, . . . , n are known constant delays.
Setting h̃i =

∑i−1
j=0 hj , h0 = 0, the change of variable

x̃i(t) = xi(t− h̃i), for i = 1, . . . , n, leads to

dx̃(t)

dt
= Jnx̃(t) +Bv(t− h̃n+1), (17)

where B = (0, . . . , 0, 1)>. Thus, Artstein’s transforma-
tion (4) applied to system (17) is given by:

z(t) = exp(h̃n+1Jn)x̃(t) +

∫ 0

−h̃n+1

exp(−sJn)Bv(t+ s)ds,

which, using coordinates x = (x1, . . . , xn), reads as:

z1(t) =

n∑
k=1

h̃k−1
n+1

(k − 1)!
xk(t− h̃k) +

∫ 0

−h̃n+1

(−s)n−1

(n− 1)!
v(t+ s)ds,

zi(t) =

n∑
k=i

h̃k−in+1

(k − i)!xk(t− h̃k) +

∫ 0

−h̃n+1

(−s)n−i

(n− i)! v(t+ s)ds,

zn(t) = xn(t− h̃n+1) +

∫ 0

−h̃n+1

v(t+ s)ds. (18)

1xt is defined by xt(s) = x(t+ s) with s ∈ [−maxi hi, 0].



Now, using this transformation, system (16) becomes ż(t) =
Jnz(t) +Bv(t) or equivalently

ż1(t) = z2(t), . . . , żn(t) = v(t). (19)

For any vector z ∈ Rn we use the following notation: z̄i =
(z1, . . . , zi). Following [11] and [5], let us set z?1 = 0, ζ1 =
z1 and then define recursively for i = 1, . . . , n− 1:

z?i+1 = −{ζi}αi γi(z̄i), (20)

ζi+1 = {zi+1}
1
αi − {z?i+1}

1
αi , (21)

where αi are defined by α0 = 1 and for i ≥ 1:

αi = αi−1 + 2(α− 1). (22)

We have αi = 1− 2i(1− α),∀i = 0, . . . , n. Let us select α
such that 1 − 1

2n < α < 1, so that 1 − i/n < αi < 1 and
0 < αn < . . . < α1 < 1. For i = 1, . . . , n, let us define:

γi(z̄i) =
2

α
+ (n− i) + knα−12αe2nbζ

2
i + ηi(z̄i−1), (23)

ηi(z̄i−1) = (i− 1)
(2α− 1)2α−1

α2α
(di(z̄i−1))2α , (24)

Qi(z̄i) =

∫ zi

z?i

{
{s}

1
αi−1 − {z?i }

1
αi−1

}2−αi−1

ds, (25)

Vi(z̄i) = Vi−1(z̄i−1) +Qi(z̄i) =

i∑
j=1

Qj(z̄j), (26)

Wi(z̄i) = knα−1(2ζ2i )αe2nbζ
2
i , (27)

where V0(z̄0) = 0 and di(z̄i−1) ∈ C1 is given in Lemma 9
(see Appendix). Thus from (24), we have ηi(z̄i−1) ∈ C1

which imply that γi(z̄i) and {z?i }
1

αi−1 are also C1.
Proposition 1: For i = 1, . . . , n the following hold:

(L1) 0 ≤ Vi(z̄i) ≤ 2
∑i
j=1 ζ

2
j ,

(L2) V̇i(z̄i) ≤ −
∑i
j=1Wj(z̄j) − (n − i)

∑i
j=1 |ζj |

2α +
αi
α
|ζi+1|2α.

Note that Vi(z̄i) ≥ 0 means that Vi(z̄i) is positive definite
with respect to z̄i.

Proof: The proof is done by induction.
Step i = 1: We have V1(z1) = Q1(z1) =

∫ z1
0
s ds = 1

2z
2
1 ≤

2z2
1 . Thus (L1) holds at step i = 1. Its time-derivative

satisfies:
V̇1 = z1z

?
2 + z1(z2 − z?2)

≤ z1z?2 + 2|z1||ζ2|α1

≤ z1z?2 +
1

α
|z1|2α +

α1

α
|ζ2|2α

The first inequality comes from (41), the second from (44)
using α1 + 1 = 2α. From (20) and (23), as η1 = 0, we get

z1z
?
2 = −W1(z1)− |z1|2α

(
2

α
+ (n− 1)

)
.

Replacing in the previous inequality, we obtain

V̇1(z1) ≤ −W1(z1)− (n− 1)|z1|2α +
α1

α
|ζ2|2α,

which means that (L2) holds at step i = 1.
Step i: Assume that (L1), (L2) hold at step i − 1. Since

γi−1 ∈ C1 we deduce that z?i ∈ C1(Ri\{0}) but {z?i }
1

αi−1 ∈
C1. Thus Qi(z̄i) given by (25) is clearly C1 because (2 −
αi−1) > 1. As z → {z}µ is an increasing function for µ ≥

0, then Qi(z̄i) ≥ 0, and Qi(z̄i) = 0 ⇔ z?i = zi. This
involves at its turn that Vi is a positive definite function.
Using (42) (see Appendix) we get Vi(z̄i) ≤ Vi−1(z̄i−1) +
2ζ2
i ≤ 2

∑i
j=1 ζ

2
j . Thus (L1) holds also at step i.

Since Qi is differentiable, then we have Q̇i =∑i−1
j=1

∂Qi
∂zj

zj+1 + {ζi}2−αi−1 zi+1, where we have used the
fact that ∂Qi

∂zi
= {ζi}2−αi−1 . Now, ∀j : 1 ≤ j < i we have:

∂Qi
∂zj

=
∂Qi
∂z?i

∂z?i
∂zj

,

∂Qi
∂zj

= −Gi,j(z̄i−1)

∫ zi

z?i

|{s}
1

αi−1 − {z?i }
1

αi−1 |1−αi−1ds,

Gi,j(z̄i−1) =
2− αi−1

αi−1
|z?i |

1−αi−1
αi−1

∂z?i
∂zj

,∣∣∣∣∂Qi∂zj

∣∣∣∣ ≤ 2Gi,j(z̄i−1) |ζi| .

The last inequality is obtained using (42). Using (44) we get:

2 |ζj |2α−1 |ζi| di−1(z̄i−1)

≤ |ζj |2α +
(2α− 1)2α−1

α2α
(|ζi| di−1(z̄i−1))2α , (28)

which combined with (50) (Lemma 9 Appendix) gives:

2

i−1∑
j=1

Gi,j(z̄i−1)|zj+1||ζi−1|1−αi−1 |ζi| ≤

i−1∑
j=1

|ζj |2α + (i− 1)
(2α− 1)2α−1

α2α
(|ζi| di(z̄i−1))2α . (29)

Thus, from (L2) at step i− 1 and (29), we have

V̇i ≤ −
i−1∑
j=1

Wj(z̄j)− (n− (i− 1))

i−1∑
j=1

|ζj |2α +
αi−1

α
|ζi|2α

+

i−1∑
j=1

|ζj |2α + (i− 1)
(2α− 1)2α−1

α2α
(|ζi| di(z̄i−1))2α

+ {ζi}2−αi−1 (z?i+1 + (zi+1 − z?i+1)). (30)

Using (41) we have

| {ζi}2−αi−1 (zi+1 − z?i+1)| ≤ 2|ζi|2−αi−1 |ζi+1|αi ,
which combined with (44) leads to

| {ζi}2−αi−1 (zi+1 − z?i+1)| ≤ 2− αi−1

α
|ζi|2α +

αi
α
|ζi+1|2α.

Replacing z?i+1 by −{ζi}αi γi(x̄i) in light of (20) (where γi
is given by (23)) and using 2 + αi − αi−1 = 2α, we get:

V̇i ≤ −
i−1∑
j=1

Wj(z̄j)−Wi(z̄i)− (n− i)
i−1∑
j=1

|ζj |2α

−(n− i)|ζi|2α +
αi
α
|ζi+1|2α (31)

which is (L2) at step i. This concludes the proof.
Now, we are ready to state our main result about FxTS of

a delayed chain of integrators:
Theorem 3: System (16) is globally UFxTS under the

following feedback control:

v(t) = −{ζn(t)}1+2n(α−1)
γn(t), (32)



where ζn(t), γn(t) are respectively given by (21), (23) to-
gether with zi, z

?
i , αi, δi respectively given by (18), (20),

(22), (24) and with parameters:
• 1− 1

2n < α < 1,
• k and b are positive free parameters to be tuned for

selecting the settling-time bound Tmax = Γ(1−α)
kb(1−α) +∑n

j=1 hj .
Proof: It follows by Proposition 1 combined with (46)

and Theorem 7 from [16].

B. Prescribed-time stabilization

In this subsection, we apply Theorem 2 with c defined by
(11), to get UPrTS of a chain of integrators.

Theorem 4: The system

dz̄

dt
(t) = Az̄(t) +Bu(t), z̄ ∈ Rn, u ∈ R, (33)

with A = Jn, B = (0, . . . , 0, 1)>, is UPrTS under the
control

u(t) = −
n∑
i=1

pi(t)z̄i(t), (34)

with p(t) = (p1(t), . . . , pn(t))> given by (13) with V (t)
given by (12) in which the operator (δnρ(t)) is defined
recursively by: (δ0ρ) = ρ, (δi+1ρ) = (ρ + d

dt )(δ
iρ) (char-

acterized by (14)), the function c is defined by (11) and
the coefficients ri, i = 1, . . . , n are different positive real
numbers (ri > 0, ri 6= rj for i 6= j in the range 1, . . . n).
If we apply Artstein’s transformation (4) to the linear time-
delay system (1), then we obtain the LTI system (5) which
is in the form ż = Az(t) + Bu(t) with B =

∑
ehiBi.

Assuming that (A,B =
∑
ehiBi) is controllable, there

exists a linear transformation T such that setting z̄ = T−1z
the obtained differential equation reads as (33) for which
Theorem 4 applies. Let us recall that the matrix T is given
by:

T = (An−1, . . . , In)B, B =
∑

ehiBi. (35)

Thus, we have the following result:

Theorem 5: Let us assume that (A,B =
∑
ehiBi) is

controllable and let T be given by (35). Let us define the
control u(t) by (34) where z̄ = T−1z and z is given by
(4), p(t) = (p1(t), . . . , pn(t))> given by (13) in which the
operator δnρ(t) is defined recursively by: δ0ρ = ρ, δi+1ρ =
(ρ+ d

dt )δ
iρ, the function c is defined by (11) and the coef-

ficients ri, i = 1, . . . , n are different positive real numbers
(ri > 0, ri 6= rj for i 6= j in the range 1, . . . n). Then, the
linear time-delay system (1) with feedback (34) is globally
UPrTS with prescribed-time T + maxi hi > 0.

IV. SIMULATIONS

A. Unstable first-order system with input delay

Let us consider the equation

ẋ(t) = x(t) + u(t− h), x(t) ∈ R, (36)

with h = 0.2s. Using Artstein’s transformation z(t) =

x(t) +
∫ 0

−h e
(−h−s)u(t + s)ds, we get the reduced system
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x
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−20

−15
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−5
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t
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Fig. 1. Finite-time stabilization of system (36) for 3 different initial
conditions; solid line: control law (39), dashed: control law (38), dotted:
control law (37)

ż(t) = z(t) + e−hu(t). Applying previous results, we get
three control laws:

(FTS) u(t) = −eh(z(t) + k1{z(t)}0.5), (37)

(FxTS) u(t) = −eh(z(t) + k2{z(t)}0.5)e0.1z(t), (38)

(PrTS) u(t) = −eh(1 + c(t))z(t), (39)

with k1 =
√

5, k2 =
√

10π
2 and if t < 2, c(t) = (1 − t

2 )−2,
else c(t) = 100. Fig. 1 shows the simulation results for three
different initial conditions.

B. Delayed double integrator

We consider here the system

ẋ1 = x2(t− h1),

ẋ2 = u(t− h2), (40)

with h1 = 0.2 s and h2 = 0.1 s. Using the transformation
defined in (18), this system is reduced to a standard double
integrator system. Applying the control (34) with p1(t) =

r1r2c
2(t) and p2(t) = (r1 + r2)c(t) − 2

√
c(t)

c0T
and ε = 2,

T = 1, r1 = 1, r2 = 2, we get for an initial condition
x1(0) = −2 and x2(θ) = 2, ∀θ ∈ [−h1, 0] the response
plotted in red Fig. 2.

We also apply control (32) with α = 0.8, k = 10−4, and
b = 10−3. The response of the closed-loop system is given
in Fig. 2 in blue.

V. CONCLUSION

In this paper, we have addressed the problem of Fixed-
time & Prescribed-time stabilization of some classes of time-
delay systems. By relying on Arstein’s transformation and
studying a delayed chain of integrators, we have designed
new controllers to achieve fixed-time / prescribed-time sta-
bility. Future work includes extension to more general class
of linear TDS and robustness properties with respect to
some class of perturbations; in particular by exploiting our
obtained fixed-time stabilizer controller and by virtue of its
Lyapunov-based construction. For that we will start with a
perturbed chain of integrators.
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Fig. 2. Finite-time stabilization of system (40) using control (34) with
control laws (34) (in red) and (32) (in blue).

APPENDIX

Lemma 4: ∀(x, y) ∈ R2,∀µ > 1,∀ν > 0 the following
inequalities hold:

|x− y| ≤ 2 |{y}µ − {x}µ|1/µ , (41)

0 ≤
∫ y

x

{{s}µ − {x}µ}ν ds ≤ 2 |{y}µ − {x}µ|ν+ 1
µ . (42)

Lemma 5: ∀(x, y) ∈ R2
+ and ∀(p, q) ∈ R2

+, 1
p + 1

q = 1,
the following Young’s inequality holds:

xy ≤ xp

p
+
yq

q
. (43)

Using (43), setting p = a+b
a , q = a+b

b and x→ xaz
ac
a+b , y →

z−
ac
a+b yb (→ means "is replaced by"), one has:

Lemma 6: ∀(x, y) ∈ R2
+, z > 0 and ∀(a, b, c) ∈ R3

+, the
following inequality holds:

xayb ≤ a

a+ b
zcxa+b +

b

a+ b
z−

ac
b ya+b. (44)

Lemma 7: For a real convex function f , numbers
x1, x2, ..., xn in its domain, Jensen’s inequality can be stated
as

nf

(
1

n

n∑
i=1

xi

)
≤

n∑
i=1

f(xi). (45)

Lemma 8: For any Vi > 0, 0 < α < 1, b > 0 the
following inequality holds (V =

∑n
i=1 Vi):

−nα−1
n∑
i=1

V αi exp(2bVi) ≤ −V α exp (bV ) . (46)

Lemma 9: ∀i = 1, . . . , n and ∀j : 1 ≤ j < i, the
following inequalities hold:

|Gi,j(z̄i−1)| ≤
(∑i−1

`=1 |ζ`|
1−αj−1

)
ai,j(z̄i−1), (47)

|zj+1| ≤
(∑j+1

`=1 |ζ`|
αj
)
bj(z̄j), (48)

|Gi,j(z̄i−1)zj+1| ≤
(∑i−1

`=1 |ζ`|
2α−1

)
cj(z̄i−1), (49)

|
∑i−1
j=1Gi,j(z̄i−1)zj+1| ≤

(∑i−1
`=1 |ζ`|

2α−1
)
di(z̄i−1), (50)

where all functions ai,j , bj , cj , di are C1 functions.
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