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, this new design offers an alternative somehow clearer way for the choice of the timevarying gains. Simulations illustrate the obtained results.

I. INTRODUCTION

Control design should successfully meet performances requested by end-users: reasonable energy consumption, quality of service, reliability. . . . Thus, in addition to stability & robustness, another important criteria is the time for trajectories to reach a desired invariant mode (usually an equilibrium). Most of stabilization and estimation algorithms for practical engineering problems provide asymptotic or exponential convergence. However, when transient process has to be achieved in a given time (multi-agent rendezvous, missile guidance, . . . ), then non-asymptotic convergence becomes a central issue and a necessity.

Non-asymptotic convergences can be classified as follow: finite-time if the equilibrium is reached in a finite time dependent on initial conditions [START_REF] Roxin | On finite stability in control systems[END_REF], [START_REF] Haimo | Finite time controllers[END_REF], [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF], [START_REF] Moulay | Finite time stability of nonlinear systems[END_REF]. If such a time is independent on initial deviations, then this type of convergence is called fixed-time [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF]. If, additionally, for all initial conditions the time of convergence is constant, then such a property is called prescribed-time convergence [START_REF] Song | Timevarying feedback for regulation of normal-form nonlinear systems in prescribed finite time[END_REF], [START_REF] Wang | Prescribed-time consensus and containment control of networked multiagent systems[END_REF], [START_REF] Song | Time-varying feedback for stabilization in prescribed finite time[END_REF], [START_REF] Steeves | Prescribed-time H 1stabilization of reaction-diffusion equations by means of output feedback[END_REF], [START_REF] Holloway | Prescribed-time output feedback for linear systems in controllable canonical form[END_REF].

Non-asymptotic (finite-time / fixed-time / prescribed-time) concepts have been extensively considered in the framework of linear and nonlinear ordinary differential equations (ODES) ( [START_REF] Roxin | On finite stability in control systems[END_REF], [START_REF] Haimo | Finite time controllers[END_REF], [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF], [START_REF] Moulay | Finite time stability of nonlinear systems[END_REF], [START_REF] Huang | Global finite-time stabilization of a class of uncertain nonlinear systems[END_REF], [START_REF] Moulay | Finite time stability and stabilization of a class of continuous systems[END_REF], [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF], [START_REF] Polyakov | Finite-time and Fixedtime Stabilization: Implicit Lyapunov Function Approach[END_REF], [START_REF] Efimov | Weighted homogeneity for time-delay systems: Finite-time and independent of delay stability[END_REF], [START_REF] Lopez-Ramirez | Finitetime and fixed-time observer design: Implicit Lyapunov function approach[END_REF], [START_REF] Jiménez-Rodríguez | A Lyapunov-like characterization of predefined-time stability[END_REF]).

Finite-time / Fixed time stabilization of time delay systems are receiving more and more attention (see for example [START_REF] Karafyllis | Finite-time global stabilization by means of time-varying distributed delay feedback[END_REF], [START_REF] Chen | New sufficient conditions for finite time stability of nonlinear time delay systems[END_REF]) since one of the pioneering papers, [START_REF] Moulay | Finitetime stability and stabilization of time-delay systems[END_REF], which pointed out some key obstructions for the design of static finite-time controllers (see also [START_REF] Efimov | Comments on finite-time stability of time-delay systems[END_REF]) and which came up with a controller based on Artstein's transformation to stabilize in finite-time with settling time depending on the initial conditions.

However, fixed-time & prescribed time stabilization for linear time-delays systems (in particular those with input delay) have not been extensively investigated in the literature.

This paper provides new results on fixed-time & prescribed time stabilization of some linear time-delay systems. We build on the Artstein' transformation [START_REF] Artstein | Linear systems with delayed controls: A reduction[END_REF] which allows to deal with a simpler system and from which we can perform an easier analysis for the control design for fixed-time or prescribed-time stabilization. For the fixed-time case, we bring back the ideas of [START_REF] Coron | Adding an integrator for the stabilization problem[END_REF] which exploits a "desingularization" technique, very helpful for the design of a control stabilizing a delayed chain of integrators in fixed time. Indeed, the proposed controller has terms with power less than one which imply non differentiability at zero of these terms, thus desingularization is used to circumvent this problem. For the prescribed-time case, we build on [START_REF] Song | Timevarying feedback for regulation of normal-form nonlinear systems in prescribed finite time[END_REF] and [START_REF] Holloway | Prescribed-time output feedback for linear systems in controllable canonical form[END_REF] where time-varying gains are used to achieve prescribedtime, independent of initial condition. Our approach makes uses of a Generalized polynomial-based Vandermonde matrix and the Exponential Bell polynomials. The paper is organized as follows: Section II provides the problem statement in II-A and some background (Artstein's transformation II-B, non asymptotic stability II-C, II-D and II-E). Section III is devoted to the new obtained results: III-A provides a new fixed-time stabilizing controller for a delayed chain of integrators whereas III-B provides a new prescribed-time stabilizing controller for controllable linear systems with input delay. These results are supported by some simulation examples reported in section IV. Then conclusion follows in V.

Notations: R + denotes the set of nonnegative real numbers. Γ denotes the Gamma function. We define the signed power a of a real number x by {x} a = sign(x)|x| a . Clearly, for a ≥ 1, we have d{x} a dx = a|x| a-1 and d|x| a dx = a {x} a-1 . For non zero integers m and n, let 0 m×n be the (m, n)-matrix with zero entries, I m be the identity matrix of dimension m, J n = ((0 (n-1)×1 , I n-1 ) T , 0 n×1 ) T (Jordan matrix) and, for

p ∈ R n , L n (p) = (0 (n)×(n-1) , p) T . L 1 loc (X)
is the set of functions f that are locally Lebesgue integrable over X. C k (X, Y ) is the set of functions f : X → Y which are k times continuously differentiable (noted as C k when the sets X, Y are obvious from the context). If f ∈ C k then f (k) denotes its k-th derivative. CL(X, Y ) is the set of continuous (including at 0) functions f : X → Y which are locally Lipschitz everywhere except at 0. A continuous function

α : [0, a[⊂ R + → R + , r → α(r), is said to be a class-K function if it is strictly increasing with α(0) = 0. α is a class-K ∞ function if it is a class-K function with a = ∞ and α(r) → ∞ as r → ∞. A continuous function β : [0, +∞[⊂ R + × R → R + , (
r, t) → β(r, t), belongs to class-KL if for each fixed t, the mapping r → β(r, t) belongs to class K ∞ with respect to r. And, for each fixed r ∈ R + , the mapping t → β(r, t) is decreasing with respect to t and lim t→+∞ β(r, t) = 0.

II. PROBLEM STATEMENT, CONCEPTS AND PRELIMINARIES

A. Problem statement

Let us consider the following time-delay system:

ẋ = Ax + k i=1 B i u(t -h i ), x ∈ R n , u ∈ R, k ∈ N, (1)
where the delays h i are ordered (0 ≤ h 1 ≤ . . . ≤ h k ). The matrices A, B i are of appropriate dimensions and such that the pair (A, B = e hi B i ) satisfies the Kalman rank controllability condition for LTI systems. Thus (A, B) can be assumed to be in the form A = J n + L n (p) and B = (0, . . . , 0, 1) T without any loss of generality. We are interested in some non asymptotic stabilities of the origin for system (1): (uniform) "finite-time / fixed-time / prescribedtime stability " (respectively denoted by UFTS / UFxTS / UPrTS) and defined in subsection II-D.

For that, we will first transform the original TDS (1) into a non delayed one using some transformations (see subsection II-B). The target closed-loop system will be of the form:

ż = Az(t) + Bu(t) = f (t, z), z ∈ R n , u ∈ R. (2)
Solutions of (2) with z 0 = z(t 0 ) are denoted by Φ t (t 0 , z 0 ).

B. Transformations

One of the first reduction methods for time-delay systems has been proposed by Kwon and Pearson in [START_REF] Kwon | Feedback stabilization of linear systems with delayed control[END_REF] for a system of form (1) with a single input delay (i.e. k = 2 with h 1 = 0). A generalization of this work has been proposed by Artstein in [START_REF] Artstein | Linear systems with delayed controls: A reduction[END_REF] for linear system with general input delay described by

ẋ(t) = A(t)x(t) + h k 0 dβ(θ)u(t -θ), (3) 
where β is a matrix-valued measure. This result applies to system (1): let

z(t) = x(t) + k i=1 t t-hi e (t-s-hi)A B i u(s)ds, (4) 
then z(t) is a solution of the LTI system

ż(t) = Az(t) + k i=1 e -hiA B i u(t). (5) 
Theorem 7 from [START_REF] Moulay | Finitetime stability and stabilization of time-delay systems[END_REF] explains under which conditions a stabilizing (resp. finite-time stabilizing) controller for (5) of the form u(t, z) = k(t)l(z), makes the origin of ( 6) also asymptotically stable / finite-time stable with the same feedback with z(t) replaced using (4). The conditions were k(t) bounded and l continuous such that |l(z)| ≤ α( z ) for some α a class K-function. Thus, conclusion remains valid for fixed-time stability property (and will be used later on in section III), but not for UPrTS (see proof of Theorem 5).

C. Non asymptotic stabilities of TDS

Finite-time stabilization of TDS is very challenging. Indeed in [START_REF] Moulay | Finitetime stability and stabilization of time-delay systems[END_REF], it has been shown that a TDS in the form

ẋ(t) = f (x(t), x(t -h 1 ), . . . , x(t -h k )), x ∈ R (6) cannot be finite-time stable (FTS) if f (x 0 , . . . , x k ) = 0 ⇔ x 0 = . . . = x k (f is a nonzero continuous function).
This is the reason why control with distributed delay were investigated for FTS using Artstein's transformation for

x (n) = u(t -h), x ∈ R, u ∈ R or ẋ = ax(t) + k i=0 b i u(t -h i ), x ∈ R, u ∈ R (7) 
in the same paper. For example, ( 7) is UFTS with control

u(t) = - (az(t) + {z} α (t)) k i=0 b i e -ahi , α ∈]0, 1[ (8) 
where z is given by Artstein's transformation (4) which here reduce to:

z(t) = x(t) + k i=0 b i 0
-hi e a(-hi-s) u(t + s)ds. To best of our knowledge, except [START_REF] Zuo | Fixed-time stabilization of general linear systems with input delay[END_REF], no results exist concerning the other non asymptotic stability properties (Fixed-time stability & prescribed-time stability). [START_REF] Zuo | Fixed-time stabilization of general linear systems with input delay[END_REF] is dealing with Fixed-time stabilization of controllable linear systems with delayed input. The obtained results are based on Artstein's transformation and on control for LTI system borrowed from [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF], [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF]. The here proposed controller is new, do not have strong restriction on the signed power terms, with only three parameters to tune.

D. Non asymptotic concepts

Stability properties of the non retarded system (2) are given in terms of KL-functions as follows:

Definition 1: The equilibrium z = 0 of system ( 2) is said to be • Uniformly finite-time stable (in short UFTS) if there exist a class KL function β and a constant c > 0, independent of t 0 , such that ∀t ≥ t 0 , ∀z 0 : z 0 < c,

Φ t (t 0 , z 0 ) ≤ β( z 0 , t -t 0 ), with β( z 0 , t) = 0, ∀t ≥ T (z 0 ), • Uniformly fixed-time stable (in short UFxTS) if it is finite-time stable with sup z0 <c T (z 0 ) < +∞. • Uniformly stable in prescribed-time T (in short UPrTS)
if there exist a class KL function β and a positive constant c, independent of t 0 , such that ∀t > t 0 , ∀z 0 : z 0 < c,

Φ t (t 0 , z 0 ) ≤ β( z 0 , µ T (t -t 0 )), where µ T : R → R, µ T (t) = T T -t for t ∈ [t 0 , t 0 + T [ and µ T (t) = +∞, ∀t ∈ [t 0 + T, ∞[. Note that lim t→t0+T µ T (t -t 0 ) = +∞.
When c = ∞ in the previous relation then the corresponding notions are global. Of course these definitions can be easily adapted for TDS (see for example [START_REF] Moulay | Finitetime stability and stabilization of time-delay systems[END_REF], [START_REF] Efimov | Comments on finite-time stability of time-delay systems[END_REF]).

E. Preliminary results

Scalar case: In this subsection we review and complete some results about non-asymptotic stability for scalar systems of the form

ż(t) = f (t, z(t)), z ∈ R, (9) 
where the function f is assumed to be measurable and L 1 loc (R × R) w.r.t t and of CL-class w.r.t z. The solution of (9) with z(t 0 ) = z 0 is also denoted by Φ t (t 0 , z 0 ).

Finite-time stability: Let us consider [START_REF] Haimo | Finite time controllers[END_REF] with f (t, z) = -r(z). The origin is assumed to be the unique equilibrium point, that is r(z) = 0 ⇔ z = 0. Solutions reach zero in a finite time T = |z0| 0 dx r(x) < ∞ which leads to the following lemma ( [START_REF] Haimo | Finite time controllers[END_REF], [START_REF] Moulay | Finite time stability and stabilization of a class of continuous systems[END_REF]):

Lemma 1: From which one can deduce the following result:

(9)is globally UFTS iff zr(z) > 0, ∀z ∈ R \ {0} and |z0| 0 dx r(x) < ∞, ∀z 0 ∈ R.
Theorem 1: For 0 ≤ α < 1 and k > 0, b > 0, system ż = -k{z} α exp(b|z|), z ∈ R is globally UFxTS with settling time bounded as follows T (z 0 ) ≤ T max = Γ (1-α) kb (1-α) . Moreover, any positive scalar function V (t) satisfying the following differential inequality V ≤ -kV α exp(b|V |), decreases to zero in a fixed time less than T max . Prescribed-time stability: The next Lemma gives sufficient conditions for UPrTS of the following scalar system:

ż(t) = -c(t)z(t). ( 10 
)
Lemma 3: Let c ∈ L 1 (R) with c(t) > 0 (a.e on R), then (10) is UPrTS with prescribed-time T > 0 if lim t→t0+T c(t) = +∞, where c(t) := t t0 c(τ ) dτ . There exist many functions meeting the sufficient condition for UPrTS in Lemma 3. Similar to [START_REF] Song | Timevarying feedback for regulation of normal-form nonlinear systems in prescribed finite time[END_REF], [START_REF] Holloway | Prescribed-time output feedback for linear systems in controllable canonical form[END_REF], we will consider "blow-up" functions having the form, for all t ∈ [t 0 , T + t 0 ):

c(t) = (c 0 T ) (T + t 0 -t) , > 1, c(t 0 ) = c 0 , (11) 
so that ( 10) is UPrTS with prescribed-time T + t 0 .

Time-varying linear systems in companion canonical form: Let us consider the case f (t, z) = C(t)z with a companion matrix C(t) = J n + L n (-p(t)) and p(t) to be characterized later on. The following theorem will be instrumental for the analysis of the UPrTS in the n-dimensional case and as we will apply in Subsection III-B.

Theorem 2: Let us consider the nonlinear operators δ j defined recursively by: (δ 0 ρ) = ρ and (δ j+1 ρ) = (ρ+ d dt )(δ j ρ). Given n distinct positive real numbers r i and a function c(t) of the form [START_REF] Huang | Global finite-time stabilization of a class of uncertain nonlinear systems[END_REF], define the Generalized Vandermonde matrix

V (t) =       1 • • • 1 ρ 1 (t) • • • ρ n (t) (δρ 1 )(t) • • • (δρ n )(t) • • • • • • • • • (δ n-2 ρ 1 )(t) • • • (δ n-2 ρ 1 )(t)       (12)
and the companion matrix C(t) = J n + L n (-p(t)), with

p(t) = V -(t)    -(δ n-1 ρ 1 )(t)
. . .

-(δ n-1 ρ n )(t)    , (13) 
If ρ i (t) = -r i c(t), i = 1, . . . , n, yielding

(δ j ρi(t)) = j k=0 j k ρ (j-k) i (t)B k (ρi(t), ρi(t), ..., ρ (k-1) i (t)), = Bj+1(ρi(t), ρi(t), ..., ρ (j) 
i (t)). (14) 
j = 0, .., n -2, where B k (•) denotes the complete Bell polynomials. Then, solutions of (2) with f (t, z) = C(t)z satisfy:

z(t) ≤ P ( c(t)) exp(-r min c(t)) z 0 , (15) 
where r min = min i r i > 0, P is a polynomial of degree at most n -1 and c(t) = t t0 c(s) ds . Moreover ( 2) is UPrTS with T > 0.

Proof: The proof is given in [START_REF] Espitia | Predictor-feedback prescribed-time stabilization of LTI systems with input delay[END_REF], where the domination of the polynomial by the "exp" function is used.

III. MAIN RESULTS

A. Fixed-time stabilization of a delayed chain of integrators

Let us consider the following delayed chain of integrators:

ẋ1 = x 2 (t -h 1 ), . . . , ẋn = v(t -h n ), (16) 
where the state 1 is

x t ∈ C 0 (R n × R n ), the control is v ∈ L 1 (R)
and h i , i = 1, . . . , n are known constant delays. Setting hi = i-1 j=0 h j , h 0 = 0, the change of variable xi (t) = x i (t -hi ), for i = 1, . . . , n, leads to

dx(t) dt = J n x(t) + Bv(t -hn+1 ), (17) 
where B = (0, . . . , 0, 1) . Thus, Artstein's transformation (4) applied to system ( 17) is given by:

z(t) = exp( hn+1Jn)x(t) + 0 -hn+1
exp(-sJn)Bv(t + s)ds, which, using coordinates x = (x 1 , . . . , x n ), reads as:

z1(t) = n k=1 hk-1 n+1 (k -1)! x k (t -hk ) + 0 -hn+1 (-s) n-1 (n -1)! v(t + s)ds, zi(t) = n k=i hk-i n+1 (k -i)! x k (t -hk ) + 0 -hn+1 (-s) n-i (n -i)! v(t + s)ds, zn(t) = xn(t -hn+1) + 0 -hn+1 v(t + s)ds. ( 18 
) 1 xt is defined by xt(s) = x(t + s) with s ∈ [-max i h i , 0].
Now, using this transformation, system (16) becomes ż(t) = J n z(t) + Bv(t) or equivalently

ż1 (t) = z 2 (t), . . . , żn (t) = v(t). (19) 
For any vector z ∈ R n we use the following notation: zi = (z 1 , . . . , z i ). Following [START_REF] Huang | Global finite-time stabilization of a class of uncertain nonlinear systems[END_REF] and [START_REF] Brigitte D'andréa | Small-time stabilization of nonholonomic or underactuated mechanical systems: the unicycle and the slider examples[END_REF], let us set z 1 = 0, ζ 1 = z 1 and then define recursively for i = 1, . . . , n -1:

z i+1 = -{ζi} α i γi(zi), (20) 
ζi+1 = {zi+1} 1 α i -{z i+1 } 1 α i , (21) 
where α i are defined by α 0 = 1 and for i ≥ 1:

α i = α i-1 + 2(α -1). ( 22 
)
We have

α i = 1 -2i(1 -α), ∀i = 0, . . . , n. Let us select α such that 1 -1 2n < α < 1, so that 1 -i/n < α i < 1 and 0 < α n < . . . < α 1 < 1. For i = 1, . . . , n, let us define: γi(zi) = 2 α + (n -i) + kn α-1 2 α e 2nbζ 2 i + ηi(zi-1), ( 23 
)
ηi(zi-1) = (i -1) (2α -1) 2α-1 α 2α (di(zi-1)) 2α , ( 24 
)
Qi(zi) = z i z i {s} 1 α i-1 -{z i } 1 α i-1 2-α i-1 ds, ( 25 
)
Vi(zi) = Vi-1(zi-1) + Qi(zi) = i j=1 Qj(zj), (26) 
Wi(zi) = kn α-1 (2ζ 2 i ) α e 2nbζ 2 i , (27) 
where V 0 (z 0 ) = 0 and d i (z i-1 ) ∈ C 1 is given in Lemma 9 (see Appendix). Thus from [START_REF] Steeves | Prescribed-time H 1stabilization of reaction-diffusion equations by means of output feedback[END_REF], we have η i (z i-1 ) ∈ C 1 which imply that γ i (z i ) and {z i } 1 α i-1 are also C 1 . Proposition 1: For i = 1, . . . , n the following hold:

(L1) 0 ≤ Vi(zi) ≤ 2 i j=1 ζ 2 j , (L2) Vi(zi) ≤ -i j=1 Wj(zj) -(n -i) i j=1 |ζj| 2α + α i α |ζi+1| 2α . Note that V i (z i ) ≥ 0 means that V i (z i ) is positive definite with respect to zi . Proof: The proof is done by induction. Step i = 1: We have V 1 (z 1 ) = Q 1 (z 1 ) = z1 0 s ds = 1 2 z 2 1 ≤ 2z 2
1 . Thus (L1) holds at step i = 1. Its time-derivative satisfies:

V1 = z1z 2 + z1(z2 -z 2 ) ≤ z1z 2 + 2|z1||ζ2| α 1 ≤ z1z 2 + 1 α |z1| 2α + α1 α |ζ2| 2α
The first inequality comes from (41), the second from (44) using α 1 + 1 = 2α. From ( 20) and ( 23), as η 1 = 0, we get

z 1 z 2 = -W 1 (z 1 ) -|z 1 | 2α 2 α + (n -1) .
Replacing in the previous inequality, we obtain

V1 (z 1 ) ≤ -W 1 (z 1 ) -(n -1)|z 1 | 2α + α 1 α |ζ 2 | 2α ,
which means that (L2) holds at step i = 1.

Step i: Assume that (L1), (L2) hold at step i -1. Since

γ i-1 ∈ C 1 we deduce that z i ∈ C 1 (R i \{0}) but {z i } 1 α i-1 ∈ C 1 . Thus Q i (z i ) given by (25) is clearly C 1 because (2 - α i-1 ) > 1. As z → {z} µ is an increasing function for µ ≥ 0, then Q i (z i ) ≥ 0, and Q i (z i ) = 0 ⇔ z i = z i . This involves at its turn that V i is a positive definite function. Using (42) (see Appendix) we get V i (z i ) ≤ V i-1 (z i-1 ) + 2ζ 2 i ≤ 2 i j=1 ζ 2 j . Thus (L1) holds also at step i. Since Q i is differentiable, then we have Qi = i-1 j=1 ∂Qi ∂zj z j+1 + {ζ i } 2-αi-1 z i+1
, where we have used the fact that ∂Qi ∂zi = {ζ i } 2-αi-1 . Now, ∀j : 1 ≤ j < i we have:

∂Qi ∂zj = ∂Qi ∂z i ∂z i ∂zj , ∂Qi ∂zj = -Gi,j(zi-1) z i z i |{s} 1 α i-1 -{z i } 1 α i-1 | 1-α i-1 ds, Gi,j(zi-1) = 2 -αi-1 αi-1 |z i | 1-α i-1 α i-1 ∂z i ∂zj , ∂Qi ∂zj ≤ 2Gi,j(zi-1) |ζi| .
The last inequality is obtained using (42). Using (44) we get:

2 |ζj| 2α-1 |ζi| di-1(zi-1) ≤ |ζj| 2α + (2α -1) 2α-1 α 2α (|ζi| di-1(zi-1)) 2α , (28) 
which combined with (50) (Lemma 9 Appendix) gives:

2 i-1 j=1 Gi,j(zi-1)|zj+1||ζi-1| 1-α i-1 |ζi| ≤ i-1 j=1 |ζj| 2α + (i -1) (2α -1) 2α-1 α 2α (|ζi| di(zi-1)) 2α . (29) 
Thus, from (L2) at step i -1 and (29), we have

Vi ≤ - i-1 j=1 Wj(zj) -(n -(i -1)) i-1 j=1 |ζj| 2α + αi-1 α |ζi| 2α + i-1 j=1 |ζj| 2α + (i -1) (2α -1) 2α-1 α 2α (|ζi| di(zi-1)) 2α + {ζi} 2-α i-1 (z i+1 + (zi+1 -z i+1 )). (30) 
Using (41) we have

| {ζ i } 2-αi-1 (z i+1 -z i+1 )| ≤ 2|ζ i | 2-αi-1 |ζ i+1 | αi ,
which combined with (44) leads to

| {ζ i } 2-αi-1 (z i+1 -z i+1 )| ≤ 2 -α i-1 α |ζ i | 2α + α i α |ζ i+1 | 2α .
Replacing z i+1 by -{ζ i } αi γ i (x i ) in light of (20) (where γ i is given by ( 23)) and using 2 + α iα i-1 = 2α, we get:

Vi ≤ - i-1 j=1 Wj(zj) -Wi(zi) -(n -i) i-1 j=1 |ζj| 2α -(n -i)|ζi| 2α + αi α |ζi+1| 2α (31) 
which is (L2) at step i. This concludes the proof. Now, we are ready to state our main result about FxTS of a delayed chain of integrators:

Theorem 3: System ( 16) is globally UFxTS under the following feedback control:

v(t) = -{ζ n (t)} 1+2n(α-1) γ n (t), (32) 
where ζ n (t), γ n (t) are respectively given by ( 21), ( 23) together with z i , z i , α i , δ i respectively given by ( 18), ( 20), ( 22), [START_REF] Steeves | Prescribed-time H 1stabilization of reaction-diffusion equations by means of output feedback[END_REF] and with parameters:

• 1 -1 2n < α < 1,
• k and b are positive free parameters to be tuned for selecting the settling-time bound T max = Γ(1-α) kb (1-α) + n j=1 h j . Proof: It follows by Proposition 1 combined with (46) and Theorem 7 from [START_REF] Moulay | Finitetime stability and stabilization of time-delay systems[END_REF].

B. Prescribed-time stabilization

In this subsection, we apply Theorem 2 with c defined by [START_REF] Huang | Global finite-time stabilization of a class of uncertain nonlinear systems[END_REF], to get UPrTS of a chain of integrators.

Theorem 4: The system dz dt

(t) = Az(t) + Bu(t), z ∈ R n , u ∈ R, (33) 
with A = J n , B = (0, . . . , 0, 1) , is UPrTS under the control

u(t) = - n i=1 p i (t)z i (t), (34) 
with p(t) = (p 1 (t), . . . , p n (t)) given by ( 13) with V (t) given by [START_REF] Jiménez-Rodríguez | A Lyapunov-like characterization of predefined-time stability[END_REF] in which the operator (δ n ρ(t)) is defined recursively by: (δ 0 ρ) = ρ, (δ i+1 ρ) = (ρ + d dt )(δ i ρ) (characterized by ( 14)), the function c is defined by [START_REF] Huang | Global finite-time stabilization of a class of uncertain nonlinear systems[END_REF] and the coefficients r i , i = 1, . . . , n are different positive real numbers (r i > 0, r i = r j for i = j in the range 1, . . . n). If we apply Artstein's transformation (4) to the linear timedelay system (1), then we obtain the LTI system (5) which is in the form ż = Az(t) + Bu(t) with B = e hi B i . Assuming that (A, B = e hi B i ) is controllable, there exists a linear transformation T such that setting z = T -1 z the obtained differential equation reads as (33) for which Theorem 4 applies. Let us recall that the matrix T is given by:

T = (A n-1 , . . . , In)B, B = e h i Bi. (35) 
Thus, we have the following result:

Theorem 5: Let us assume that (A, B = e hi B i ) is controllable and let T be given by (35). Let us define the control u(t) by (34) where z = T -1 z and z is given by (4), p(t) = (p 1 (t), . . . , p n (t)) given by [START_REF] Karafyllis | Finite-time global stabilization by means of time-varying distributed delay feedback[END_REF] in which the operator δ n ρ(t) is defined recursively by: δ 0 ρ = ρ, δ i+1 ρ = (ρ + d dt )δ i ρ, the function c is defined by [START_REF] Huang | Global finite-time stabilization of a class of uncertain nonlinear systems[END_REF] and the coefficients r i , i = 1, . . . , n are different positive real numbers (r i > 0, r i = r j for i = j in the range 1, . . . n). Then, the linear time-delay system (1) with feedback (34) is globally UPrTS with prescribed-time T + max i h i > 0.

IV. SIMULATIONS A. Unstable first-order system with input delay

Let us consider the equation

ẋ(t) = x(t) + u(t -h), x(t) ∈ R, (36) 
with h = 0.2s. Using Artstein's transformation z(t) = x(t) + 0 -h e (-h-s) u(t + s)ds, we get the reduced system Finite-time stabilization of system (36) for 3 different initial conditions; solid line: control law (39), dashed: control law (38), dotted: control law (37) ż(t) = z(t) + e -h u(t). Applying previous results, we get three control laws:

(F T S) u(t) = -e h (z(t) + k1{z(t)} 0.5 ),

(F xT S) u(t) = -e h (z(t) + k2{z(t)} 0.5 )e 0.1z(t) , (38)

(P rT S) u(t) = -e h (1 + c(t))z(t), (39) 
with

k 1 = √ 5, k 2 = √ 10π 2
and if t < 2, c(t) = (1 -t 2 ) -2 , else c(t) = 100. Fig. 1 shows the simulation results for three different initial conditions.

B. Delayed double integrator

We consider here the system ẋ1 = x 2 (th 1 ), ẋ2 = u(th 2 ),

with h 1 = 0.2 s and h 2 = 0.1 s. Using the transformation defined in [START_REF] Moulay | Finite time stability and stabilization of a class of continuous systems[END_REF], this system is reduced to a standard double integrator system. Applying the control (34) with p 1 (t) = r 1 r 2 c 2 (t) and p 2 (t) = (r 1 + r 2 )c(t) -2 √ c(t) c0T and = 2, T = 1, r 1 = 1, r 2 = 2, we get for an initial condition x 1 (0) = -2 and x 2 (θ) = 2, ∀θ ∈ [-h 1 , 0] the response plotted in red Fig. 2.

We also apply control (32) with α = 0.8, k = 10 -4 , and b = 10 -3 . The response of the closed-loop system is given in Fig. 2 in blue.

V. CONCLUSION

In this paper, we have addressed the problem of Fixedtime & Prescribed-time stabilization of some classes of timedelay systems. By relying on Arstein's transformation and studying a delayed chain of integrators, we have designed new controllers to achieve fixed-time / prescribed-time stability. Future work includes extension to more general class of linear TDS and robustness properties with respect to some class of perturbations; in particular by exploiting our obtained fixed-time stabilizer controller and by virtue of its Lyapunov-based construction. For that we will start with a perturbed chain of integrators. 

  Fixed-time stability: Combining Lemma 1 with the second item of Definition 1 leads to: Lemma 2: (9) is globally UFxTS iff zr(z) > 0, ∀z ∈ R \ {0} and sup z0∈R+ z0 0 dx r(x) < ∞.

  Fig. 1.Finite-time stabilization of system (36) for 3 different initial conditions; solid line: control law (39), dashed: control law (38), dotted: control law (37)

Fig. 2 .

 2 Fig.2. Finite-time stabilization of system (40) using control (34) with control laws (34) (in red) and (32) (in blue).

APPENDIX

Lemma 4: ∀(x, y) ∈ R 2 , ∀µ > 1, ∀ν > 0 the following inequalities hold:

Lemma 5: ∀(x, y) ∈ R 2 + and ∀(p, q) ∈ R 2 + , 1 p + 1 q = 1, the following Young's inequality holds:

Using (43), setting p = a+b a , q = a+b b and x → x a z ac a+b , y → z -ac a+b y b (→ means "is replaced by"), one has: Lemma 6: ∀(x, y) ∈ R 2 + , z > 0 and ∀(a, b, c) ∈ R 3 + , the following inequality holds:

Lemma 7: For a real convex function f , numbers x 1 , x 2 , ..., x n in its domain, Jensen's inequality can be stated as

Lemma 8: For any

Lemma 9: ∀i = 1, . . . , n and ∀j : 1 ≤ j < i, the following inequalities hold:

|Gi,j(zi-1)zj+1| ≤ i-1

where all functions a i,j , b j , c j , d i are C 1 functions.