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Abstract

We introduce a deep latent recommender system named deepLTRS in order to provide

users with high quality recommendations based on observed user ratings and texts of

product reviews. The underlying motivation is that, when a user scores only a few

products, the texts used in the reviews represent a significant source of information.

Using this information can alleviate data sparsity, thereby enhancing the predictive

ability of the model. Our approach adopts a variational auto-encoder (VAE) architecture

as a generative deep latent variable model for both the ordinal matrix, encoding users

scores about products, and the document-term matrix, encoding the reviews. More-

over, different from unique user-based or item-based models, deepLTRS assumes latent

representations for both users and products. An alternated user/product mini-batching

optimization structure is proposed to jointly capture user and product preferences. Nu-

merical experiments on simulated and real-world data sets demonstrate that deepLTRS

outperforms the state-of-the-art, in particular in context of extreme data sparsity.
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1. Introduction and related work

1.1. Context and problem

In the current era of information explosion, recommendation systems have become

central tools in a wide range of applications ranging from e-commerce [1] to the global

positioning of Internet-of-Things devices [2]. They aim at predicting the ratings or5

preferences of users for items. Examples of recommended objects include movies,

songs, news, books, hotels, as well as restaurants to name just a few. At the core of

the research in recommendation systems, we point out the collaborative filtering [3],

content-based filtering [4] and hybrid methods [5] which have been widely used for

completing a matrix of user ratings about products, based on the observed entries.10

While matrix completion is a central machine learning problem which has been

intensively studied, a lot of effort has been put recently in developing algorithms capable

of dealing not only with ratings but also with other sources of information. In this

paper, we consider the problem of completing large and extremely sparse user/product

matrices, when text reviews are available.15

1.2. Related work

A long series of techniques have been proposed in the literature to address the matrix

completion problem. On a general point of view, we can list four main approaches

that are conducted for recommendation in the literature, depending on the source of

information used in the system and the characteristics of the model: rating-based,20

text-based, rating-with-text based and deep learning methods. We briefly review them

hereafter.

Rating-based. On the one hand, most algorithms have been proposed for matrix com-

pletion on the basis of the sole knowledge of ratings. Thus, [6] introduced recently

the hierarchical Poisson factorization (HPF) model which assumes that the observed25

rating matrix is drawn from a Poisson distribution with latent user preferences and

latent item attributes as parameters. As the roots of Poisson factorization come from

non-negative matrix factorization [7], HPF constraints latent factors by considering only

positive samples. Compared to HPF, which only combines a sparsity model (absence of
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a rating) with a single response model (rating values), hierarchical compound Poisson30

factorization [8, HCPF] allows to choose the most appropriate response model from a

family of additive exponential dispersion models. Moreover, HCPF better captures the

relationship between sparsity and response models. It is also capable of modeling binary,

non-negative discrete, non-negative continuous and zero-inflated continuous data. More

recently, coupled compound Poisson factorization [9, CCPF] was introduced by cou-35

pling a hierarchical Poisson factorization with an arbitrary data-generating model. As a

more general framework, CCPF has the ability of selecting an arbitrary data-generating

model among three different methods: mixture models, linear regression and matrix

factorization.

Text-based. Although some of the aforementioned models can account for side infor-40

mation additionally to the user ratings, they do not introduce a modelling framework

specific to the text reviews associated with products. Since many consumers prefer to

use texts to express opinions, reviews can contain a lot of crucial information. Among

text-based machine learning methods, the latent Dirichlet allocation [10, LDA] is a

central probabilistic generative model where each document is represented as a mixture45

over different latent topics and each topic is characterized by a distribution over words.

Due to the use of the Dirichlet distribution to model the variability between topic propor-

tions, a limitation of LDA is its inability to take into account possible topic correlations.

To overcome this limitation, the correlated topic model (CTM) was developed by [11].

In addition, a recommendation system using online consumers opinions on products was50

presented in [12]. Text mining techniques are employed to extract useful information

from review comments. The products are ranked according to consumer reviews for

each feature, then, each feature is assigned to either "Good" or "Bad" and encoded as 1

or −1, respectively. Finally, a set of measures is defined to select the relevant reviews

and to provide the best recommendation in response to a user request.55

Rating-with-text based. Since the product ratings are usually paired with text reviews,

another set of recommender systems exploit both ratings and texts to improve predictions.

In this line of methods, [13] proposed the hidden factors and hidden topics (HFT)

model. HFT combines latent rating factors with latent review topics by maximizing
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a penalized log-likelihood where the first term accounts for rating distribution and60

the second term (the penalty) accounts for the words distribution over latent topics.

In the different context of Bayesian hierarchical modeling, the collaborative topic

regression model [14, CTR] combines a generative topic model for reviews with a latent

variable model for rating sampling, based on latent representations of both users and

products. Nonetheless, when the auxiliary information in the comments is very sparse,65

the performance of the CTR proved to be limited in [15]. Unfortunately, both HFT and

CTR suffer from the limitation that the number of latent factors (i.e. the dimension of

the latent representations for users/products) should be equal to the number of latent

topics. The aspect-aware latent factor model [16, ALFM] breaks this limitation by

associating latent factors with different aspects. In particular, each aspect is represented70

as a probability distribution of latent topics. Thus, the latent topic or factor can be

regarded as a sub-aspect of an item. Then, the overall rating is computed through a

linear combination of all the aspect ratings to achieve good performance.

Deep learning methods. Apart from the types of models mentioned above, several

deep-learning based recommender systems have been proposed recently. For instance,75

DeepCoNN [17] uses CNNs to learn representations of users and products from reviews

and a regression layer is subsequently introduced for the prediction of ratings. However,

DeepCoNN assumes that reviews are available only in the training phase. As an

extension of DeepCoNN, the deep model TransNet was introduced in [18] with an

additional layer that allows the model to also generate approximate comments during80

testing and helps the model improve its prediction performance. This recommender

system can also predict top words that users are most likely to use in comments.

Nevertheless, when a large amount of user ratings is missing, the performance of

the predictions turns out to be limited. Another class of neural network models rely on

user-based (respectively item-based) auto-encoders to generate lower-dimensional user85

(item) embeddings, based on recurrent [19] or convolutional [20, 21] architectures. The

last two approaches are special cases of graph auto-encoder architecture [22], recently

employed for matrix completion [23].
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1.3. Contributions of this work

In order to both improve the robustness to data sparsity and the interpretability of90

recommendations, we introduce here the deep latent recommender system (deepLTRS)

for the completion of a rating matrix. DeepLTRS aims at accounting for both the

observed ratings and the textual information collected in the product reviews. DeepLTRS

extends the probabilistic matrix factorization [24, PMF] by relying on recent auto-

encoding extensions [25, 26] of LDA. Therefore, our approach has the following key-95

features:

• a variational auto-encoder architecture is used as a generative deep latent variable

model for both the ordinal matrix encoding the user/product scores and the

document-term matrix encoding the reviews;

• the modeling of the text information alleviates data sparsity when few ratings are100

actually available;

• the numbers of latent factors and latent topics in deepLTRS can be different;

• unlike user-based or item-based models, that uniquely rely on the observed reviews

reorganized by user or product respectively, deepLTRS is fitted on the observed

ratings and the observed reviews for each pair of user-product.105

1.4. Organization of the paper

This paper is organized as follows. In Section 2, the generative model of deepLTRS

for both ratings and reviews is described. Section 3 details the auto-encoding variational

inference procedure along with an original row-column alternated mini-batch strategy

allowing us to reduce the computational burden. Our approach is then applied in Sec-110

tion 4 on simulated data sets to highlight its main features. DeepLTRS is also compared

in this section with other state-of-the-art approaches in the contexts of extreme data

sparsity. Section 5 presents a benchmark of deepLTRS and most efficient alternatives

on real-world data sets from e-commerce systems. Finally, some conclusive remarks

and possible further works are proposed in Section 6.115
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2. A rating-and-review based recommender system

2.1. Framework and notations

In this work, we consider data sets involvingM users who are scoring and reviewing

P products. Such data sets can be encoded by two matrices: an ordinal data matrix

Y accounting for the scores that users assign to products and a document-term matrix120

(DTM) W encoding the reviews that users write about products.

Ordinal data. The ordinal data matrix Y in NM×P is such that Yij corresponds to the

score that the i-th user assigns to the j-th product. This matrix is usually extremely

sparse in practice (most of its entries are missing) corresponding to users not scoring

nor reviewing some products. Conversely, when a score is assigned, it takes values in125

{1, . . . ,H} with H > 1. Henceforth, we assume that an ordinal scale is consistently

defined. For instance, when customers evaluate products, 1 always means “very poor”

and H is always associated with “excellent” reviews. The number of ordered levels H is

assumed to be the same for all (not missing) Yij . If it is not the case, a scale conversion

pre-processing algorithm [27] can be employed to normalize the number of levels.130

Text data. By considering all the available reviews, it is possible to store all the different

vocables employed by the users into a dictionary of size V . Thenceforth, we denote by

W (i,j) a row vector of size V encoding the review by the i-th user to the j-th product.

The v-th entry of W (i,j), denoted by W (i,j)
v , is the number of times (possibly zero) that

the word v of the dictionary appears into the corresponding review. The document-term135

matrix W is obtained by concatenation of all the row vectors W (i,j).

For the sake of clarity, we assume that the review W (i,j) exists if and only if Yij is

observed. Note that, since each row in W corresponds to one (and only one) not missing

entry in Y , the number of rows in the DTM is the same as the number of observed

non-missing values in Y .140

2.2. Generative model of deepLTRS

It is now assumed that both users and products have latent representations in a

low-dimensional space RD, with D � min{M,P}. In the following, Ri denotes the
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latent representation of the i-th user. Similarly, Cj is the latent representation of the j-th

product.145

Ratings. The following generative model is now considered for the ratings:

Yij = 〈Ri, Cj〉+ bui + bpj + εij , ∀i = 1, ...,M,∀j = 1, ..., P, (1)

where 〈·, ·〉 is the standard scalar product and bui , bpj are two unknown real parameters

accounting for biases specific to users and products respectively. Finally, the residuals

εij are assumed to be i.i.d. normally distributed random variables, with zero mean and

unknown variance η2:

εij ∼ N (0, η2).

In the following, Ri and Cj are seen as random vectors, such that

Ri
i.i.d∼ N (0, ID), ∀i

Cj
i.i.d∼ N (0, ID), ∀j

(2)

with Ri and Cj assumed independent. The unbiased version of this model (i.e. with

bui = bpj = 0) is the well known probabilistic matrix factorization [24, PMF]. Note that,

due to rotational invariance of PMF, the choice of isotropic prior distributions for Ri

and Cj is in no way restrictive (see Appendix A).

Reviews. We now extend the generative model outlined in the previous section to

account for the document-term matrix W . Following the LDA model in [10], each

document W (i,j) is drawn from a mixture distribution over a set of K latent topics. The

topic proportions in the document W (i,j) are denoted by θij , a vector lying in the K − 1

simplex. In deepLTRS, we assume that the topic proportions θij ∈ [0, 1]K , such that∑K
k=1 θij = 1. Moreover, they follow

θij = σ(fγ (Ri, Cj)), (3)

where fγ : R2D → RK is a continuous function approximated by a neural network

parametrized by γ and σ : RK → RK denotes the softmax function defined by

(σ(z))k =
exp(zk)∑K
j=1 exp(zj)

, k ∈ 1, . . . ,K
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where (σ(z))k is the k-th entry of vector σ(z) ∈ [0, 1]K and z denotes here a generic

vector in RK . As in LDA, each document W (i,j) is seen as a vector in NV (we recall

that V is the dictionary size) obtained as

p(W (i,j)|θij) ∼ Multinomial(Lij , βθij), (4)

where Lij is the number of words in the review W (i,j) and β ∈ [0, 1]V×K is the150

matrix whose entry βvk is the probability that vocable v occurs in topic k. By construc-

tion,
∑V
v=1 βvk = 1,∀k. In addition, conditionally to the vectors θij , all the reviews

{W (i,j)}i,j are independent random vectors.

Finally, we emphasize that Yij and W (i,j) are not assumed to be independent. In-

stead, we described the above framework in which the dependence between them is155

completely captured by the latent embedding vectors Ri and Cj . A graphical represen-

tation of the generative model described so far can be seen in Figure 1.

Yij

θij

Ri Cj

η2, bui , b
p
j

γ

W (i,j)β

M P

MP

Figure 1: Graphical representation of the generative model for deepLTRS (variational parameters are not

included).
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3. Variational auto-encoding inference

This section now details the auto-encoding variational inference procedure and pro-

poses an original row-columns alternate mini-batch strategy to reduce the computational160

burden.

3.1. Variational lower bound (ELBO)

Let us denote by Θ = {η2, γ, β, bu, bp} the set of the model parameters introduced

so far. A natural inference procedure associated with the proposed generative model

would consist in looking for Θ̂ML maximizing the (integrated) log-likelihood of the

observed data (Y,W ). Unfortunately, this quantity is not directly tractable and we rely

on a variational lower bound to approximate it. Let us consider a joint distribution q(·)

over the pair (R,C) of all (Ri)i and (Cj)j . Thanks to the Jensen inequality, it holds

that

log p(Y,W |Θ) ≥Eq(R,C)

[
log

p(Y,W,R,C|Θ)

q(R,C)

]
=Eq(R,C)

[
log p(W,Y |R,C,Θ) + log

p(R,C)

q(R,C)

]
=Eq(R,C) [log p(W |R,C, β)] + Eq(R,C)

[
log p(Y |R,C, γ, η2, bu, bp)

]
−DKL(q(R,C)||p(R,C)),

(5)

where DKL denotes the Kullback-Leibler divergence between the variational posterior

distribution of the latent row vectors (Ri)i, (Cj)j and their prior distribution. The above

inequality holds for every joint distribution q(·) over the pair (R,C). In order to deal

with a tractable family of distributions, the following mean-field assumption is made

q(R,C) = q(R)q(C) =

M∏
i=1

P∏
j=1

q(Ri)q(Cj). (6)

Moreover, since Ri and Cj follow Gaussian prior distributions (Eq. (2)), q(·) is

assumed to be as follows:

q(Ri) = g(Ri;µ
R
i := h1,φ(Yi,W

(i,·)), SRi := h2,φ(Yi,W
(i,·))), (7)
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and

q(Cj) = g(Cj ;µ
C
j := l1,ι(Y

j ,W (·,j)), SCj := l2,ι(Y
j ,W (·,j))), (8)

where g(·;µ, S) is the pdf of a Gaussian multivariate distribution with mean µ and

variance S. The two matrices SRi and SCj are assumed to be diagonal matrices with

D elements. Moreover, Yi (respectively Y j) denotes the i-th row (column) of Y ,165

W (i,·) :=
∑
jW

(i,j) corresponds to a document concatenating all the reviews written

by user i and W (·,j) :=
∑
iW

(i,j) corresponds to all the reviews about the j-th product.

The functions h1,φ and h2,φ encode elements of RP+V to elements of RD. Similarly,

l1,ι and l2,ι encode elements of RM+V to elements of RD. These functions are known

as the network encoders parametrized by φ and ι, respectively.170

Thanks to Eqs. (1)-(4)-(6)-(7)-(8) and by computing the KL divergence in Eq. (5),

the evidence lower bound (ELBO) on the right hand side of Eq. (5) can be further

developed as follows:

ELBO(Θ) =
∑
i,j

(
Eq(Ri,Cj)

[
−1

2

(
(Yij − (RTi Cj + biu + bjp))

2

η2
+ log η2

)])

+
∑
i,j

(
Eq(Ri,Cj)

[(
W (i,j)

)T
log (βσ(fγ(Ri, Cj)))

])

−
∑
i

[
−1

2

(
tr(SRi ) + (µRi )TµRi −D − log |SRi |

)]
−
∑
j

[
−1

2

(
tr(SCj ) + (µCj )TµCj −D − log |SCj |

)]
+ ξ

(9)

where now Θ := {η2, γ, β, φ, ι, bu, bp} denotes the set of the model and variational

parameters and ξ is a constant term that includes all the elements not depending on Θ.

We point out that, in the deep learning literature, the term encoder denotes a neural

network that maps the observed data into a lower dimension space. This is precisely

what the functions h1,φ, h2,φ and l1,ι, l2,ι do, by mapping the observed data from RP+V
175

and RM+V , respectively, to the variational parameters in RD. Symmetrically, the term

decoder denotes a neural network that maps the “compressed” data from the lower

dimension space to the original dimension. In deepLTRS, this role is played by
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• RCT , the matrix product of R and C, that maps the lower dimension representa-

tions to the “reconstructed” ordinal data matrix Y ;180

• β, which maps the topic proportions from RK into vectors in RV (the “recon-

structed” rows of W ).

The deep view of deepLTRS is shown in Figure 2.

Figure 2: A deep-learning-like model view of DeepLTRS.

Unconstrained β. From a practical point of view, when optimizing the ELBO with

respect to Θ, we remove the constraint on the columns of β, that have no longer to lie185

on the V − 1 simplex. This assumption corresponds to the ProdLDA model introduced

by [25] and which allows to obtain higher quality topics with respect to a standard LDA.

In order to obtain consistent parameters for the multinomial distribution followed by

W (i,j), a softmax function σ(·) is applied to the product βθij instead of θij only.

3.2. Monte Carlo EM algorithm and mini-batching190

The maximization of ELBO(Θ) in Eq. (9) can be performed by means of a Monte

Carlo EM algorithm that alternates a sampling step, to numerically approximate the

expectations, with a maximization step to update the value of the parameters Θ. This

algorithm was adopted previously for standard variational auto-encoders (VAEs) in
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[28, 29]. As in those papers (and in contrast with what happens in simpler latent variable195

models), there is no close formula for the maximization step and gradient descent

algorithms are employed to maximize the (Monte Carlo) lower bound with respect

to Θ1. Performing mini-batch optimization paired with stochastic gradient descent

algorithms [30] is necessary to reduce the computational burden when working with

large data sets. However, there is a substantial difference between the model we adopt200

and standard VAEs in [28, 29]. Whereas in a standard VAE the ELBO can be written as

the sum of as many terms as the number of observations, ELBO(Θ) in Eq. (9) does

not factorize over the number of observations. In more detail, the model sees the pair

(Yij ,W
(i,j)) as one observation. Assuming for simplicity that there is no missing data,

the total number of observations is MP . The ELBO in Eq. (9) is unfortunately not the205

sum of MP terms due to the graphical structure of the generative model in Figure 1.

Nevertheless, stochastic gradient descent can still be performed in our case thanks to

what follows.

Let us define

zi :=−DKL(q(Ri) ‖ p(Ri))

+ Eq(Ri,C)

[
log p(Yi|Ri, C,Θ) + log p(W (i,.)|Ri, C,Θ)

]
,

(10)

for all i ∈ {1, . . . ,M}, with Yi, Ri and W (i,.) previously defined. We now introduce a

new random variable Z such that

π := P {Z = zi} =
1

M
, (11)

for all i. A sample of Z corresponds to a uniformly at random extraction of one row

in Y .210

The proposition below states that the gradient ofMZ with respect to all parameters

but ι (the column autoencoder’s parameters) is an unbiased estimator of the ELBO’s

gradient with respect to the same parameters.

1We point out that maximizing ELBO(Θ) with respect to Θ is the same as minimizing −ELBO(Θ)

and this is why we mention gradient descent algorithms.
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Proposition 1. For the random variable Z, whose probability mass function is defined

in Eq. (11), it holds that

Eπ
[
∇(η2,γ,β,φ,bu,bp) (MZ)

]
= ∇(η2,γ,β,φ,bu,bp)

(
ELBO(Θ)

)
, (12)

where ∇x(f) denotes the gradient of a function f(·) with respect to the variable(s) x.

Proof. First, let us notice that, due to the definition of zi and the assumption in Eq. (6),215

it holds that:

∇(η2,γ,β,φ,bu,bp)zi = ∇(η2,γ,β,φ,bu,bp)

[
−DKL(q(Ri) ‖ p(Ri))

+

P∑
j=1

(Eq(Ri,Cj)[log p(Yij |Ri, Cj ,Θ)])

+

P∑
j=1

(Eq(Ri,Cj)[log p(W (i,j))|Ri, Cj ,Θ)])
]
.

(13)

Then, Eq. (11) leads to

Eπ
(
∇(η2,γ,β,φ,bu,bp)MZ

)
=

M∑
i=1

∇(η2,γ,β,φ,bu,bp)zi,

and replacing Eq. (13) into the above equation we obtain Eq. (12), recalling that

∇(η2,γ,β,φ,bu,bp)(·) does not include the partial derivative with respect to ι. Thus

∇(η2,γ,β,φ,bu,bp) (−DKL(q(Cj) ‖ p(Cj)) = 0.

Remark. Similarly, the quantity

wj :=−DKL(q(Cj) ‖ p(Cj))

+ Eq(R,Cj)

[
log p(Y j |R,Cj ,Θ) + log p(W (.,j)|R,Cj ,Θ)

]
,

(14)

can be used to introduce an unbiased estimator of∇(η2,γ,β,ι,bu,bp)(ELBO(Θ)), where

the partial derivative of the lower bound with respect to φ is now not taken into account.
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Algorithm 1 Mini-batch estimation of deepLTRS

1: procedure ESTIM( Y,W )

2: (R,C)← INIT(N (0, 1)) . Initialize with Gaussian distribution

3: Initialization parameters Θ

4: while log p
(
Y,W |R,C,Θ

)
increases do

5: for all i: . Row-majoring mini-batch

6: Ri ∼ N (h1,φ, h2,φ) . Sampling users

7: Θ−ι = OPTIM
(
log p(Y,W |Ri, C, η2, γ, β, φ, bu, bp)

)
8: for all j: . Column-majoring mini-batch

9: Cj ∼ N (h1,ι, h2,ι) . Sampling products

10: Θ−φ = OPTIM
(
log p(Y,W |R,Cj , η2, γ, β, ι, bu, bp)

)
return (R,C,Θ )

The above proposition justifies a maximization of the ELBO which alternates220

rows and columns mini-batching. First, rows of Y are extracted uniformly at ran-

dom, with re-injection, in such a way that we obtain a collection of random variables

Z1, Z2, . . . , Zn, . . . , being i.i.d. copies of Z. Hence, each Zn is used to update all the

model parameters but ι. Moreover, when performing row mini-batching, the current

value of the matrix C is used as well as all columns in Y and all the reviews by product.225

Conversely, when performing column mini-batching, the whole matrix R is used as

well as all rows of Y and all the reviews by user. In this case, the optimization is per-

formed with respect to all the model parameters but φ. The pseudo code in Algorithm 1

summarizes the procedure of estimation detailed so far for deepLTRS.

4. Numerical experiments on simulated data230

Before to go further, let us firstly describe the architecture of deepLTRS and the

simulation setup that will be used later in this section.

4.1. Architecture and simulation setup

Architecture of deepLTRS. We detail here the deepLTRS architecture as following. Our

architecture involves three neural networks: two encoders, and an internal neural net235
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working in the low dimensional space. The first encoder (user encoder) models hφ

in Eq. (7). It has two hidden layers, with 50 neurons each, equipped with a softplus

activation function and followed by a dropout with a ratio of 0.2 and batch normalization.

The second encoder (product encoder) models lι in Eq. (8). It also has two hidden layers,

the number of neurons and subsequent operations are the same as the user encoder.240

The internal neural net models fγ in Eq. (3). It has one hidden layer equipped with

80 neurons and a softmax activation function. In deepLTRS, the decoding phase is

managed in a simpler way: i) ratings: a scalar product between R and C, followed

by the intercepts summation decodes the ratings; ii) reviews: a linear map, involving

the decoding matrix β, is followed by a softmax function in order to produce the245

probabilities of word occurrences. We stress that the decoding of reviews, from θ to the

reconstructed matrix W , can be seen as a simple neural net with no hidden layers.

Simulation setup. An ordinal data matrix Y with M = 750 rows and P = 600 columns

is simulated according to a latent continuous cluster model. The rows and columns of Y

are randomly assigned to two latent groups, in equal proportions. Then, for each pair

(i, j) corresponding to an entry of Y , the sampling of a Gaussian random variable Zij is

detailed in Table 1. In addition, the following thresholds

t0 = −∞, t1 = 1.5, t2 = 2.5, t3 = 3.5, t4 = +∞

are used to sample the note Yij ∈ {1, ..., 4} as

Yij =

4∑
k=1

k1(Zij)]tk−1,tk[. (15)

Next, regarding the simulation of text reviews, four different texts from the BBC news

are used to build a message for each note Yij according to the scheme summarized in

Table 2. One text is about the birth of Princess Charlotte, the second one is about black250

holes in astrophysics, the third one focus on British politics and the last one is about

cancer diseases in medicine (denoted by A, B, C, D respectively).

Thus, when the user i in cluster X(R)
i = 2 rates the product j in cluster X(C)

j = 1,

a random variable Zij ∼ N (3, 1) is sampled, Yij is obtained via Eq. (15) and the

review W (i,j) is built by random extraction of words from message C. All the sampled255
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cluster 1 cluster 2

cluster 1 ∼ N (2, 1) ∼ N (3, 1)

cluster 2 ∼ N (3, 1) ∼ N (2, 1)

Table 1: Score assignments for simulated data.

cluster 1 cluster 2

cluster 1 A B

cluster 2 C D

Table 2: Topic assignments for simulated data.

messages have an average length of 100 words. Finally, in order to introduce some

noise, only 80% of words are extracted from the main topics, while the remaining 20%

are extracted from the other topics uniformly at random.

4.2. DeepLTRS with and without text data

A first experiment highlights the interest of using the reviews to make more accurate260

rating predictions. To do so, 10 data sets are simulated according to the above simulation

setup, with sparsity rates of Y (i.e. proportion of missing data over MP entries) varying

in the interval [0.5, 0.99]. The ratios of training set, validation set and test set are

80%, 10% and 10% of the observed (i.e. not missing) simulated data. Two versions

of deepLTRS are fitted to the simulated data, the first one accounting for both ordinal265

and text data (corresponding to the generative model described in Section 2) and the

second one not using text, based on the PMF in Eq. (1). For the sake of simplicity, in

both versions, as well as in all the experiments shown in this paper, bu and bp are fixed

(and not estimated) to the average rating by users and products, respectively.

Figure 3 shows the evolution of the test RMSE of deepLTRS (D = K = 50), with270

and without using text data for rating forecasts, versus the data sparsity level. We can

observe that, even though both models suffer from the high data sparsity (increasing

RMSE), the use of the text greatly helps deepLTRS to maintain a high prediction

accuracy for data sets with many missing values. Furthermore, the use of text reviews

tends to reduce the variance of the deepLTRS predictions.275

Interpretability. This part aims at binging out the role of the latent embeddings of users

and products in our model. Figure 4 and 5 show the t-SNE [31] representations of Ri

and Cj for deepLTRS with and without text data, respectively, with data sparsity of 0.99.
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Figure 3: Comparison of deepLTRS with and without text information.
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Figure 4: Visualization of user and product embeddings of deepLTRS with text data (sparsity of 0.99).
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Figure 5: Visualization of user and product embeddings of deepLTRS without text data (sparsity of 0.99).

We note that the two (row and column) clusters are well separated despite the large280

degree of sparsity in Figure 4, which is well representative of the simulation setup.

However, without text data, the model does not capture well the structure of simulated

data, as shown in Figure 5. The visualization effects demonstrate that the addition of

text information is important and useful for deepLTRS.

4.3. Benchmark and effect of data sparsity285

In this part, we benchmark deepLTRS by comparing with some state-of-the-art

methods, in condition of high data sparsity. The same experimental setup was used to

benchmark deepLTRS (from now on, always accounting for text data). Our model is

here compared to HFT, HPF, CCPF and ALFM (see Section 1 for a description of each

model). Since for CCPF, many combinations of sparsity and response models exist, we290

select the pair of models having the best performance as described in [9].

Figure 6 shows the evolution of the test RMSE for deepLTRS (D = K = 50) and

its competitors. We first remark that, although HFT accounts for the text reviews, it does

not perform very well in our simulated scenario and turns out to be very sensitive to the

data sparsity. Second, HPF also appears to be quite sensitive to the data sparsity and it295

always performs worse than CCPF, ALFM and deepLTRS. Finally, although CCPF and

ALFM present less sensitivity to the data sparsity, as the changes in the RMSE are small

along with the sparsity level, generally HFT performs better than them when the sparsity
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Figure 6: Test RMSE of models with different sparsity level on simulated data.

is less than a certain threshold. In addition, even if the sparsity reaches 0.99, deepLTRS

still outperforms all other models. Let us recall that the simulation setup does not follow300

the deepLTRS generative model and therefore does not favor any method here.

4.4. Analysis of the predictions

Here we analyze the differences between the prediction of ALFM and deepLTRS

with the real ratings on the simulated data with the sparsity of 0.9. It is worth men-

tioning that, here we only compared ALFM with deepLTRS since ALFM has achieved305

significant performance on the experimental data sets presented in [16].

Table 3: Statistics of the predictions

Data set Models Min. Max. Mean

Simulated data_0.9
ALFM 1.8843 3.1557 2.5075

deepLTRS 0.6013 4.3340 2.5638

Table 3 demonstrates the statistics of the predictions. Different from ALFM that

all predicted ratings are concentrated in the range of [2, 3], the scores predicted by
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Figure 7: Comparisons of the predictions of ALFM and actual ratings.
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Figure 8: Comparisons of the predictions of deepLTRS and actual ratings.
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deepLTRS are well distributed in the interval [1, 4], which is consistent with our initial

setup. Moreover, Figure 7 and 8 illustrate that the method used to calculate the predicted310

ratings in ALFM makes all predictions concentrated near the average. Thus, when the

distribution of scores is very scattered (as in the simulated data), the test RMSE will

become very large (as in Figure 6).

5. Application on real-world data

We now consider applying deepLTRS to real-world data sets consisting of different315

product reviews from Amazon. The data sets can be downloaded freely on the dedicated

websites23. In this section, deepLTRS is compared with previously mentioned models:

HFT, HPF, CCPF, ALFM and TransNet.

Data and pre-processing. All records in these data sets include product and user infor-

mation, ratings, time of the review and a plain-text review. In the data pre-processing320

step, for Amazon Fine Food data we only considered users with more than 20 reviews

and products reviewed by more than 50 users to obtain more meaningful information;

for other three categories of Amazon product data, we used the reduced 5-core version

where each of the remaining users and items have at least 5 reviews. Retained data were

processed by removing all punctuations, numbers and stop words, then we deleted the325

words that appeared less than 3 times in the entire vocabulary for all data sets. The

statistics of the processed data sets are given in Table 4.

Table 4: Statistics of evaluation data sets.

Dataset #users #items #reviews #total_words #rest_words sparsity

Fine Foods 1643 1733 32811 5743 3047 98.85%

Musical Instruments 1429 900 10254 15050 5846 99.20%

Patio 1686 962 13258 22441 8746 99.18%

Automotive 2928 1835 20467 20113 7737 99.62%

2Amazon Fine Food reviews https://snap.stanford.edu/data/web-FineFoods.html
3Amazon Product data https://jmcauley.ucsd.edu/data/amazon/
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Settings. Five independent runs of the algorithm were performed. For each run, we

randomly selected 80% of the data as the training set, 10% samples for validation and

the remaining 10% data as the test set. We trained our model for 100 epochs. As a330

method for stochastic optimization, we adopted an Adam optimizer, with a learning

rate of 2e−3. The RMSE is calculated on both the validation and test set. Reported

test RMSE is obtained when the RMSE on the validation set was the lowest, as for all

methods. Detailed architecture of our network is described previously in Section 4.1.

Table 5: Test RMSE on Amazon data sets.

Data sets HFT HPF CCPF-PMF

Fine Food 1.4477 (±0.0465) 2.9528 (±0.0144) 1.2913 (±0.0105)

Musical Instruments 1.3505 (±0.0061) 4.0926 (±0.0164) 1.1151 (±0.0242)

Patio 1.2183 (±0.0096) 3.8782 (±0.0051) 1.1353 (±0.0174)

Automotive 1.0844 (±0.0084) 4.3252 (±0.0041) 1.0105 (±0.0186)

Average 1.2752 (±0.3729) 3.8122 (±0.5220) 1.1381 (±0.1020)

Data sets ALFM TransNet deepLTRS

Fine Food 1.0705 (±0.0014) 1.3783 (±0.0012) 0.9788 (±0.0215)

Musical Instruments 0.8929 (±0.0013) 1.0912 (±0.0057) 0.9702 (±0.0143)

Patio 1.0219 (±0.0027) 1.0589 (±0.0009) 0.9855 (±0.0319)

Automotive 0.8797 (±0.0016) 1.0649 (±0.0012) 0.9299(±0.0511)

Average 0.9663 (±0.0819) 1.1483(±0.1334) 0.9661 (±0.0392)

Rating prediction. Table 5 presents the test RMSE for deepLTRS and its competitors335

on the predicted ratings for Amazon data sets. Since HFT is restricted by the fact that

the numbers of latent factors and topics should be equal, we set D = K = 50, even

if a larger value for K can enable us to obtain better results. First of all, both HPF

and CCPF models only considered the user rating information. By replacing the single

Poison distribution in HPF with a mixture model, CCPF has made great improvements340
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in RMSE. Next, the remaining four methods all consider ratings and reviews. Among

them, TransNet and deepLTRS are deep-learning based models. It can be seen that, in

general, ALFM and deepLTRS always have better performance than HFT and TransNet.

It is worth mentioning that deepLTRS outperforms ALFM on two data sets, Fine

food and Patio, while ALFM has better performance on the other two data sets since345

when the data has many positive ratings, ALFM setup benefits from this configuration.

Indeed, in the score generation phase, ALFM introduces the average of all ratings to the

formula, which leads the predictions to a higher ranking level. When most of the scores

of the experimental data are very positive, for example, a lot of scores are equal to 4,

ALFM can achieve very good results thanks to this average bias parameter. Nevertheless,350

it is confirmed from the previous section 4.4 that when the score distribution of the data

is more scattered, ALFM cannot perform well.
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Figure 9: Projection with t-SNE of user and product latent representations for the Amazon Fine Food data set.

Interpretability. Figure 9 presents a visualization with t-SNE of the high-dimensional

latent representations (D = K = 50) of the users and products for the Amazon Fine

food data. The overlapping regions of user and product representations correspond to355

users that are likely to comment on the corresponding products. In order to deeper

understand the latent representations meaning, we provide in Figure 10 and 11 the

visualization of user latent positions on two specific latent variables (variable 3 and 11)
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that can be easily interpreted according to average ratings and numbers of reviews the

users give to products. Indeed, it clearly appears that variable 11 captures the rating360

scale of Fine food users whereas variable 3 seems to encode the user activity (number

of reviews). A similar analysis is performed on the latent representation of products

(see Appendix B).
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Figure 10: Latent representation of users on variable 3 according to average ratings.
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Figure 11: Latent representation of users on variable 11 according to numbers of reviews they give to products.
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6. Conclusion

We introduced the deepLTRS model for rating recommendation using both the ordi-365

nal and text data available. Our approach adopted a variational auto-encoder architecture

as the generative deep latent variable model for both an ordinal matrix encoding the

user/product ratings, and a document-term matrix encoding the reviews. DeepLTRS

presents the advantage to jointly learn representations of users and products through the

alternate mini-batch optimization. Numerical experiments on simulated and real-world370

data sets show that our model outperforms other competitors in the context of high data

sparsity.

Moreover, through the proposed network, we obtained two output matrices, one is

the completed rank matrix for recommendation, and the other is a probability matrix

representing the occurrences of words. In this work, we focused on the score matrix,375

however, by investigating the word occurrences matrix, the further ability of deepLTRS

to predict the top words used by reviewers to comment products can be inspected in

future works.
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Appendix A. Rotational invariance in PMF

From Eqs.(1)-(2), it easily follows that

Yij ∼ N (bui + bpj , D + η2). (A.1)

Now, instead of assuming isotropic prior distributions for Ri and Cj , we set

Ri
i.i.d∼ N (0,ΣR), ∀i

Cj
i.i.d∼ N (0,ΣC), ∀j

with ΣR and ΣC being symmetric positive definite matrices. Then

ΣR = QRΛRQ
T
R,

with ΛR being the diagonal matrix with the eigenvalues of ΣR on the main diagonal

and QR the orthogonal matrix of the corresponding eigenvectors. Similarly

ΣC = QCΛCQ
T
C .

Then, the two random vectorsRi := Λ
− 1

2

R QTRRi andCj := Λ
− 1

2

C QTCCj are independent

and follow an isotropic Gaussian distribution each. Thus, if we set

Yij = 〈Ri, Cj〉+ bui + bpj + εij ,

we recover the marginal distribution in Eq. (A.1).

Appendix B. Additional figures for Amazon data465
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Figure B.12: Latent representation of products on variable 11 and 46, according to average rating and number

of reviews that they receive from users.
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