
HAL Id: hal-03021362
https://hal.science/hal-03021362v2

Submitted on 10 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DeepLTRS: A deep latent recommender system based
on user ratings and reviews

Dingge Liang, Marco Corneli, Charles Bouveyron, Pierre Latouche

To cite this version:
Dingge Liang, Marco Corneli, Charles Bouveyron, Pierre Latouche. DeepLTRS: A deep latent
recommender system based on user ratings and reviews. Pattern Recognition Letters, 2021,
�10.1016/j.patrec.2021.10.022�. �hal-03021362v2�

https://hal.science/hal-03021362v2
https://hal.archives-ouvertes.fr

DeepLTRS: A deep latent recommender system based on
user ratings and reviews

Dingge Lianga,∗, Marco Cornelia,b, Charles Bouveyrona, Pierre Latouchec

aUniversité Côte d’Azur, INRIA, CNRS, Laboratoire J.A.Dieudonné, Maasai team, Nice, France
bCenter of Modelling, Simulation and Interactions (MSI), Nice, France

cUniversité de Paris, CNRS, Laboratoire MAP5, UMR 8145, Paris, France

Abstract

We introduce a deep latent recommender system named deepLTRS in order to provide

users with high quality recommendations based on observed user ratings and texts of

product reviews. The underlying motivation is that, when a user scores only a few

products, the texts used in the reviews represent a significant source of information,

thereby enhancing the predictive ability of the model. Our approach adopts a variational

auto-encoder (VAE) architecture as a deep generative latent model for an ordinal ma-

trix encoding ratings and a document-term matrix encoding the reviews. Taking into

account both matrices as model inputs, deepLTRS uses a neural network to capture the

relationship between latent factors and latent topics. Moreover, a user-majoring encoder

and a product-majoring encoder are constructed to jointly capture user and product pref-

erences. Due to the specificity of the model structure, an original row-column alternated

mini-batch optimization algorithm is proposed to deal with user-product dependencies

and computational burden. Numerical experiments on simulated and real-world data

sets demonstrate that deepLTRS outperforms the state-of-the-art, in particular in context

of extreme data sparsity.

Keywords: Recommender Systems, Learning Preferences or Rankings, Collaborative

Filtering, Topic Modelling

∗Corresponding author
Email address: dingge.liang@inria.fr (Dingge Liang)

Preprint submitted to Pattern Recognition Letters November 10, 2021

1. Introduction and related works

1.1. Context and problem

In the current era of information explosion, recommendation systems have become

central tools in a wide range of applications ranging from e-commerce [1] to the global

positioning of IoT devices [2]. Examples of recommended objects include movies,5

songs, books, hotels, as well as restaurants to name just a few. At the core of the

research on recommendation systems, we point out a widely adopted collaborative

filtering (CF) approach [3], which relies on user historical preferences on a set of items.

Generally, by converting the list of users and products into a user-item rating matrix, a

CF-based recommender system can be considered as completing the rating matrix based10

on observed entries [4].

While most of users only ranked few products, the rating matrix is usually large

and extremely sparse due to massive amount of missing values. Considering that many

consumers also use texts to express various opinions along with the scores, reviews

can contain crucial information from different aspects about the products, compared15

to a single rating. Therefore, efforts have been put recently in developing algorithms

capable of dealing not only with ratings but also with other sources of information

like text reviews to address the matrix completion problem in the case of high data

sparseness [5].

1.2. Related works20

A long series of techniques have been proposed in the literature for recommendations.

On a general point of view, we list approaches depending on the source of information

used in the system and the characteristics of the model: rating-based, rating-with-text

based and deep structure methods. We briefly review them hereafter.

Rating-based. On the one hand, most algorithms have been proposed on the basis of25

the sole knowledge of ratings. For instance, HPF [6] assumes that the observed rating

matrix is drawn from a Poisson distribution by combining a sparsity model (absence

of a rating) with a single response model for rating values. To better capture the rela-

tionship between sparsity and response models, HCPF [7] allows to choose the most

2

appropriate response model from a family of additive exponential dispersion methods.30

More recently, CCPF [8] was introduced by coupling a hierarchical Poisson factoriza-

tion with an arbitrary data-generating model among three different methods: mixture

models, linear regression and matrix factorization. However, without introducing a

modelling framework specific to text reviews, their performances proved to be limited

in Section 4.3.35

Rating-with-text based. Since the product ratings are usually paired with text reviews,

another set of recommender systems exploit both ratings and texts to improve predictions.

In this line of methods, CTR [9] and obi-CTR [10] rely on the probabilistic matrix

factorization (PMF) [11] and assume that topics are drawn from a Dirichlet distribution.

Nonetheless, neither of them formulates the relationship between user latent factors40

and latent topics. HFT [12] combines latent rating factors with latent review topics

by maximizing a penalized log-likelihood where the first term accounts for rating

distribution and the second term accounts for the words distribution over latent topics.

However, it suffers from the limitation that the number of latent factors should be equal

to the number of latent topics. ALFM [13] breaks this limitation by associating latent45

factors with different aspects and each aspect is represented as a probability distribution

of latent topics. The overall rating is computed through a linear combination of all the

aspect ratings. Unfortunately, it turns out that its performance are affected by scattered

data distribution (see Appendix C).

Deep structure methods. Deep neural network (DNN) based approaches have recently50

shown efficacy on feature representations learning and have been extensively explored

in the research of recommender systems [14]. Among state-of-the-art techniques,

DeepCoNN [15] uses CNNs to learn representations of users and products from reviews

and a regression layer is subsequently introduced for the prediction of ratings. It is

limited to the assumption that reviews are only available during the training phase. As55

an extension of DeepCoNN, TransNet was introduced in [16] with an additional layer

that allows the model to also generate approximate comments during test and improves

prediction performance. However, in these two models, latent factors are barely obtained

by learning reviews, neither of them consider observed ratings during the generative

3

phase. Although DNNs have achieved great success in representation learning, they60

require a significant amount of hyper-parameters for training, which result in high

computational costs [17]. Thus, in [18], DLFM was proposed following the principle

of deep forest [17]. Through sequentially connecting several layers, the output of the

precedent layer is taken as the input of the next layer without back propagation. Finally,

the best approximation is selected from outputs of all layers. It is worth mentioning that65

this work is mainly focused on reducing computations, which is beyond the scope of

our work.

1.3. Contributions of our work

In order to both improve the robustness to data sparsity and the interpretability of

recommendations, we introduce here the deepLTRS, which takes into account both70

observed ratings and the textual information collected in product reviews as the model

input. DeepLTRS extends the PMF [11] by relying on recent auto-encoding exten-

sions [19, 20]. Considering the review part, we use the ProdLDA model introduced

by [19] to obtain higher quality topics with respect to a standard LDA [21]. Our goal

here is to show that, regardless the parsimony of our model, we are still able to im-75

prove performance compared to the state-of-the-art techniques. Our approach has the

following key-features:

• a variational auto-encoder (VAE) architecture is used as a generative latent model

for both an ordinal matrix encoding ratings and a document-term matrix encoding

reviews;80

• since the connection between latent factors and the review data is difficult to

formulate, we adopt a neural network to capture the relationship between latent

representations and latent topics;

• one user-majoring encoder and another product-majoring encoder are constructed

to jointly capture user and product preferences. Then, two different decoders are85

designed for ratings and reviews separately;

• due to the specific model structure, an original strategy of alternating rows and

columns in mini-batch optimization is proposed to deal with user-product depen-

4

dencies and to reduce the computational costs. We further provide a theoretical

proof of the unbiasedness of our empirical loss estimator.90

2. A rating-and-review based recommender system

2.1. Framework and notations

In this work, we consider data sets involvingM users who are scoring and reviewing

P products. Such data sets can be encoded by two matrices: an ordinal data matrix

Y accounting for the scores that users assign to products and a document-term matrix95

(DTM) W encoding the reviews that users write about products. Necessary symbols are

summarized in Table 1.

Ordinal data. The ordinal data matrix Y in NM×P is such that Yij corresponds to the

score that the i-th user assigns to the j-th product. This matrix is usually extremely

sparse in practice (most of its entries are missing) corresponding to users not scoring100

nor reviewing some products. Conversely, when a score is assigned, it takes values in

{1, . . . ,H} with H > 1. Henceforth, we assume that an ordinal scale is consistently

defined. For instance, when customers evaluate products, 1 always means “very poor”

and H is always associated with “excellent” reviews. The number of ordered levels H is

assumed to be the same for all (not missing) Yij . If it is not the case, a scale conversion105

pre-processing algorithm [22] can be employed to normalize the number of levels.

Text data. By considering all the available reviews, it is possible to store all the different

vocables employed by the users into a dictionary of size V . Thenceforth, we denote by

W (i,j) a row vector of size V encoding the review by the i-th user to the j-th product.

The v-th entry of W (i,j), denoted by W (i,j)
v , is the number of times (possibly zero) that110

the word v of the dictionary appears into the corresponding review. The document-term

matrix W is obtained by concatenation of all the row vectors W (i,j). For the sake of

clarity, we assume that the review W (i,j) exists if and only if Yij is observed. Note that,

since each row in W corresponds to one (and only one) not missing entry in Y , the

number of rows in the DTM is the same as the number of observed non-missing values115

in Y .

5

Table 1: List of all the model parameters

Parameter Description

M,P number of users and products

i, j user and product indexes

D dimension of latent factors

V number of words in the dictionary consid-

ered

Y an ordinal matrix in NM×P encoding rat-

ings

W a document-term matrix encoding reviews

bu, bp user and product biases

ε a residual term

K number of latent topics

θij topic proportions for the pair (i, j)

fγ a function parametrized by γ to capture the

relationship between latent factors and la-

tent topics

Lij number of words in review W (i,j)

β a matrix in [0, 1]V×K whose entry βvk is

the probability that vocable v occurs in

topic k

6

2.2. Generative model of deepLTRS

It is now assumed that each user i and product j have the latent representations Ri

and Cj in a low-dimensional space RD, with D � min{M,P}.

Ratings. The following generative model is now considered for the ratings

Yij = 〈Ri, Cj〉+ bui + bpj + εij , ∀i = 1, . . . ,M,∀j = 1, . . . , P, (1)

where 〈·, ·〉 is the standard scalar product and bui , bpj are two unknown real parameters120

accounting for biases specific to users and products respectively. Finally, the residuals

εij are assumed to be i.i.d. normally distributed random variables: εij ∼ N (0, η2).

In the following, Ri and Cj are seen as random vectors with zero mean and the

identity matrix of dimension D as the variance, such that

Ri
i.i.d∼ N (0, ID), ∀i

Cj
i.i.d∼ N (0, ID), ∀j

(2)

with Ri and Cj assumed independent. The unbiased version of this model (i.e. with

bui = bpj = 0) is the well known PMF [11]. Note that, due to rotational invariance of

PMF, the choice of isotropic prior distributions for Ri and Cj is in no way restrictive125

(see Appendix A).

Reviews. We now extend the generative model outlined in the previous section to

account for the document-term matrix W . Following the LDA model, each document

W (i,j) is drawn from a mixture distribution over a set of K latent topics. In deepLTRS,

topic proportions in the document W (i,j) are denoted by θij , a vector lying in the K − 1

simplex, and we have θij ∈ [0, 1]K , such that
∑K
k=1 θij = 1. Moreover, we assume

that

θij = σ(fγ (Ri, Cj)), ∀i, j (3)

where fγ : R2D → RK is a continuous function approximated by a neural network

parametrized by γ to capture the relationship between latent factors and latent topics,

σ : RK → RK denotes the softmax function defined by (σ(z))k = exp(zk)∑K
l=1 exp(zl)

, k ∈

1, . . . ,K, where (σ(z))k is the k-th entry of vector σ(z) ∈ [0, 1]K and z denotes here a130

generic vector in RK .

7

Yij

θij

Ri Cj

η2, bui , b
p
j

γ

W (i,j)β

M P

MP

Figure 1: Graphical representation of the generative model for deepLTRS (variational parameters are not

included).

As in LDA, each document W (i,j) is seen as a vector in NV (we recall that V is the

dictionary size) obtained as

W (i,j)|θij ∼ Multinomial(Lij , βθij), ∀i, j (4)

where Lij is the number of words in the review W (i,j) and β ∈ [0, 1]V×K is a matrix

whose entry βvk is the probability that vocable v occurs in topic k. By construction,∑V
v=1 βvk = 1,∀k. In addition, conditionally to vectors θij , all the reviews {W (i,j)}i,j

are independent random vectors.135

A graphical representation of the generative model described so far can be seen in

Figure 1.

3. Variational auto-encoding inference

This section now details the auto-encoding variational inference procedure and pro-

poses an original row-column alternate mini-batch strategy to reduce the computational140

burden.

8

3.1. Variational lower bound (ELBO)

Let us denote by Θ = {η2, γ, β, bu, bp} the set of the model parameters introduced

so far. A natural inference procedure associated with the proposed generative model

would consist in looking for Θ̂ML maximizing the (integrated) log-likelihood of the145

observed data (Y,W). Unfortunately, this quantity is not directly tractable and we rely

on a variational lower bound to approximate it. Let us consider a joint distribution q(·)

over the pair (R,C) of all (Ri)i and (Cj)j . Thanks to the Jensen inequality, it holds

that

log p(Y,W |Θ) ≥Eq(R,C)

[
log

p(Y,W,R,C|Θ)

q(R,C)

]
=Eq(R,C)

[
log p(W,Y |R,C,Θ) + log

p(R,C)

q(R,C)

]
=Eq(R,C) [log p(W |R,C, β)]

+Eq(R,C)

[
log p(Y |R,C, γ, η2, bu, bp)

]
−DKL(q(R,C)||p(R,C)),

(5)

where DKL denotes the Kullback-Leibler divergence between the variational posterior150

distribution of the latent row vectors (Ri)i, (Cj)j and their prior distributions. The

above inequality holds for every joint distribution q(·) over the pair (R,C). In order

to deal with a tractable family of distributions, the following mean-field assumption is

made

q(R,C) = q(R)q(C) =

M∏
i=1

P∏
j=1

q(Ri)q(Cj). (6)

Moreover, since Ri and Cj follow Gaussian prior distributions (Eq. (2)), q(·) is155

assumed to be as follows

q(Ri) = g(Ri;µ
R
i := h1,φ(Yi,W

(i,·)), SRi := h2,φ(Yi,W
(i,·))), (7)

and

q(Cj) = g(Cj ;µ
C
j := l1,ι(Y

j ,W (·,j)), SCj := l2,ι(Y
j ,W (·,j))), (8)

9

where g(·;µ, S) is the pdf of a Gaussian multivariate distribution with mean µ and

variance S. The two matrices SRi and SCj are assumed to be diagonal matrices with

D elements. In addition, Yi (respectively Y j) denotes the i-th row (column) of Y ,

W (i,·) :=
∑
jW

(i,j) corresponds to a document concatenating all the reviews written160

by user i and W (·,j) :=
∑
iW

(i,j) corresponds to all the reviews about the j-th product.

The functions h1,φ and h2,φ encode elements of RP+V to elements of RD. Similarly,

l1,ι and l2,ι encode elements of RM+V to elements of RD. These functions are known

as the network encoders parametrized by φ and ι, respectively.

Thanks to Eqs. (1)-(4)-(6)-(7)-(8) and by computing the KL divergence in Eq. (5),

the evidence lower bound (ELBO) on the right hand side of Eq. (5) can be further

developed as

ELBO(Θ) =
∑
i,j

(
Eq(Ri,Cj)

[
−1

2

(
(Yij − (RTi Cj + biu + bjp))

2

η2
+ log η2

)])

+
∑
i,j

(
Eq(Ri,Cj)

[(
W (i,j)

)T
log (βσ(fγ(Ri, Cj)))

])

−
∑
i

[
−1

2

(
tr(SRi) + (µRi)TµRi −D − log |SRi |

)]
−
∑
j

[
−1

2

(
tr(SCj) + (µCj)TµCj −D − log |SCj |

)]
+ ξ

(9)

where now Θ := {η2, γ, β, bu, bp, φ, ι} denotes the set of generative model and varia-165

tional parameters, ξ is a constant term that includes all the elements not depending on

Θ.

VAE structure. The deep view of deepLTRS is shown in Figure 2. We point out that, in

the deep learning literature, the term encoder denotes a neural network that maps the

observed data into a lower dimension space [23]. This is precisely what the functions170

h1,φ, h2,φ and l1,ι, l2,ι do, by mapping the observed data from RP+V and RM+V ,

respectively, to the variational parameters in RD. Symmetrically, the term decoder

denotes a neural network that maps the “compressed” data from the lower dimension

space to the original dimension. In deepLTRS, this role is played by

10

• RCT , the matrix product of R and C, that maps the lower dimension representa-175

tions to the “reconstructed” ordinal data matrix Ŷ ;

• β, which maps the topic proportions from RK into vectors in RV (the “recon-

structed” rows of Ŵ).

Unconstrained β. From a practical point of view, when optimizing the ELBO with

respect to Θ, we remove the constraint on the columns of β, that have no longer to lie180

on the V − 1 simplex. This assumption corresponds to the ProdLDA model introduced

by [19]. In order to obtain consistent parameters for the multinomial distribution

followed by W (i,j), a softmax function σ(·) is applied to the product βθij instead of

θij only.

3.2. Monte Carlo EM algorithm and mini-batching185

The maximization of ELBO(Θ) in Eq. (9) can be performed by means of a Monte

Carlo EM algorithm that alternates a sampling step, to numerically approximate the

expectations, with a maximization step to update the value of the parameters Θ. This

algorithm was adopted previously for standard variational auto-encoders (VAEs) in [24,

25]. As in those papers (and in contrast with what happens in simpler latent variable190

models), there is no close formula for the maximization step and gradient descent

algorithms are employed to maximize the (Monte Carlo) lower bound with respect

Figure 2: A deep-learning-like model view of DeepLTRS.

11

to Θ1. Performing mini-batch optimization paired with stochastic gradient descent

algorithms [26] is necessary to reduce the computational burden when working with

large data sets. However, there is a substantial difference between the model we adopt195

and standard VAEs. Whereas in a standard VAE the ELBO can be written as the sum of

as many terms as the number of observations, ELBO(Θ) in Eq. (9) does not factorize

over the number of observations. In more detail, the model sees the pair (Yij ,W
(i,j)) as

one observation. Assuming for simplicity that there is no missing data, the total number

of observations is MP . The ELBO in Eq. (9) is unfortunately not the sum of MP200

terms due to the graphical structure of the generative model in Figure 1. Nevertheless,

stochastic gradient descent can still be performed in our case thanks to what follows.

Let us define

zi :=−DKL(q(Ri) ‖ p(Ri))

+ Eq(Ri,C)

[
log p(Yi|Ri, C,Θ) + log p(W (i,.)|Ri, C,Θ)

]
,

(10)

for all i ∈ {1, . . . ,M}, with Yi, Ri and W (i,.) previously defined. We now introduce a

new random variable Z such that

π := P {Z = zi} =
1

M
. (11)

A sample of Z corresponds to a uniformly at random extraction of one row in Y .

The proposition below states that the gradient ofMZ with respect to all parameters

but ι (the product encoder parameter) is an unbiased estimator of the ELBO’s gradient205

with respect to the same parameters.

Proposition 1. For the random variable Z, whose probability mass function is defined

in Eq. (11), it holds that

Eπ
[
∇(η2,γ,β,φ,bu,bp) (MZ)

]
= ∇(η2,γ,β,φ,bu,bp)

(
ELBO(Θ)

)
, (12)

where ∇x(f) denotes the gradient of a function f(·) with respect to the variable(s) x.

1We point out that maximizing ELBO(Θ) with respect to Θ is the same as minimizing −ELBO(Θ)

and this is why we mention gradient descent algorithms.

12

Proof. First, let us notice that, due to the definition of zi and the assumption in Eq. (6),

it holds that:

∇(η2,γ,β,φ,bu,bp)zi = ∇(η2,γ,β,φ,bu,bp)

[
−DKL(q(Ri) ‖ p(Ri))

+

P∑
j=1

(Eq(Ri,Cj)[log p(Yij |Ri, Cj ,Θ)])

+

P∑
j=1

(Eq(Ri,Cj)[log p(W (i,j))|Ri, Cj ,Θ)])
]
.

(13)

Then, Eq. (11) leads to

Eπ
(
∇(η2,γ,β,φ,bu,bp)MZ

)
=

M∑
i=1

∇(η2,γ,β,φ,bu,bp)zi,

and replacing Eq. (13) into the above equation we obtain Eq. (12), recalling that

∇(η2,γ,β,φ,bu,bp)(·) does not include the partial derivative with respect to ι. Thus

∇(η2,γ,β,φ,bu,bp) (−DKL(q(Cj) ‖ p(Cj)) = 0.

210

Similarly, the quantity

wj :=−DKL(q(Cj) ‖ p(Cj))

+ Eq(R,Cj)

[
log p(Y j |R,Cj ,Θ) + log p(W (.,j)|R,Cj ,Θ)

]
,

(14)

can be used to introduce an unbiased estimator of∇(η2,γ,β,ι,bu,bp)(ELBO(Θ)), where

the partial derivative of the lower bound with respect to φ (the user encoder parameter)

is now not taken into account.

The above proposition justifies a maximization of the ELBO which alternates

rows and columns mini-batching. First, rows of Y are extracted uniformly at ran-215

dom, with re-injection, in such a way that we obtain a collection of random variables

Z1, Z2, . . . , Zn, . . . , being i.i.d. copies of Z. Hence, each Zn is used to update all

the model parameters but ι. Moreover, when performing row mini-batch, the current

value of the whole matrix C is used, as well as all columns in Y and all the reviews

by products. Conversely, when performing column mini-batch, the whole matrix R is220

13

Algorithm 1 Mini-batch estimation of deepLTRS

1: procedure ESTIM(Y,W)

2: (R,C)← INIT(N (0, 1)) . Initialize with Gaussian distribution

3: Initialization parameters Θ

4: while log p
(
Y,W |R,C,Θ

)
increases do

5: for all i: . Row-majoring mini-batch

6: Ri ∼ N (h1,φ, h2,φ) . Sampling users

7: Θ−ι = OPTIM
(
log p(Y,W |Ri, C, η2, γ, β, bu, bp, φ)

)
8: for all j: . Column-majoring mini-batch

9: Cj ∼ N (l1,ι, l2,ι) . Sampling products

10: Θ−φ = OPTIM
(
log p(Y,W |R,Cj , η2, γ, β, bu, bp, ι)

)
return (R,C,Θ)

used, as well as all rows of Y and all the reviews by users. In this case, the optimiza-

tion is performed with respect to all the model parameters but φ. The pseudo code in

Algorithm 1 summarizes the procedure of estimation detailed so far for deepLTRS.

4. Numerical experiments on simulated data

Before to go further, let us firstly describe the architecture of deepLTRS and the225

simulation setup that will be used later in this section.

4.1. Architecture and simulation setup

Architecture of deepLTRS. Our architecture involves three neural networks: two en-

coders, and an internal neural net working in the low dimensional space. The first

encoder (user encoder) models hφ in Eq. (7). It has two hidden layers, with 50 neurons230

each, equipped with a softplus activation function and followed by a dropout with a

ratio of 0.2 and batch normalization. The second encoder (product encoder) models lι in

Eq. (8). It also has two hidden layers, the number of neurons and subsequent operations

are the same as the user encoder. The internal neural net models fγ in Eq. (3). It has one

hidden layer equipped with 80 neurons and a softmax activation function. In deepLTRS,235

the decoding phase is managed in a simpler way: i) ratings: a scalar product between R

14

Table 2: Simulation of ratings and reviews

(a) Score assignments.

cluster 1 cluster 2

cluster 1 ∼ N (2, 1) ∼ N (3, 1)

cluster 2 ∼ N (3, 1) ∼ N (2, 1)

(b) Topic assignments.

cluster 1 cluster 2

cluster 1 A B

cluster 2 C D

and C, followed by the intercepts summation decodes the ratings; ii) reviews: a linear

map, involving the decoding matrix β, is followed by a softmax function in order to

produce the probabilities of word occurrences. We stress that the decoding of reviews,

from θ to the reconstructed matrix W , can be seen as a simple neural net with no hidden240

layers.

Simulation setup. An ordinal data matrix Y with M = 750 rows and P = 600 columns

is simulated according to a latent continuous cluster model. The rows and columns of Y

are randomly assigned to two latent groups, in equal proportions. Then, for each pair

(i, j) corresponding to an entry of Y , the sampling of a Gaussian random variable Zij

is detailed in Table 2a. In addition, the following thresholds t0 = −∞, t1 = 1.5, t2 =

2.5, t3 = 3.5, t4 = +∞ are used to sample the note Yij ∈ {1, ..., 4} as

Yij =

4∑
k=1

k1(Zij)]tk−1,tk[. (15)

Next, regarding the simulation of text reviews, four different texts from the BBC news

are used to build a message for each note Yij according to the scheme summarized in

Table 2b. One text is about the birth of Princess Charlotte, the second one is about

black holes in astrophysics, the third one focus on British politics and the last one is245

about cancer diseases in medicine (denoted by A, B, C, D respectively). Thus, when the

user i in cluster X(R)
i = 2 rates the product j in cluster X(C)

j = 1, a random variable

Zij ∼ N (3, 1) is sampled, then Yij is calculated via Eq. (15) and the review W (i,j) is

built by random extraction of words from message C. All the sampled messages have an

average length of 100 words. Finally, in order to introduce some noise, only 80% of250

words are extracted from the main topics, while the remaining 20% are extracted from

15

the other topics uniformly at random.

The time complexity of deepLTRS is linearly affected by the number of users,

products and the vocabulary. For instance, for data withM = 750, P = 600, V = 1034,

the training time of 20 epochs is 1111.57s, while with V = 558, the execution takes255

637.96s.

4.2. DeepLTRS with and without text data

A first experiment highlights the interest of using the reviews to make more accurate

rating predictions. To do so, 10 data sets are simulated according to the above simulation

setup, with sparsity rates of Y (i.e. proportion of missing data over MP entries) varying260

in the interval [0.5, 0.99]. The ratios of training set, validation set and test set are

80%, 10% and 10% of the observed (i.e. not missing) simulated data. Two versions

of deepLTRS are fitted to the simulated data, the first one accounting for both ordinal

and text data (corresponding to the generative model described in Section 2) and the

second one not using text, based on the PMF in Eq. (1). For the sake of simplicity, in265

both versions, as well as in all the experiments shown in this paper, bu and bp are fixed

(and not estimated) to the average rating by users and products, respectively.

0.5 0.6 0.7 0.8 0.9 1.0
Rate of sparsity

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Te
st

 R
M

SE

deepLTRS
deepLTRS (no texts)

Figure 3: Comparison of deepLTRS with and without text information.

Figure 3 shows the evolution of the test RMSE of deepLTRS, with and without using

text data for rating forecasts, versus the data sparsity level. We can observe that, even

though both models suffer from the high data sparsity (increasing RMSE), the use of the270

16

text greatly helps deepLTRS to maintain a high prediction accuracy for data sets with

many missing values. Furthermore, the use of text reviews tends to reduce the variance

of the deepLTRS predictions. More intuitively, the visualization of user and product

embeddings of deepLTRS with and without text data is provided in Appendix B.

4.3. Benchmark and effect of data sparsity275

In this part, we benchmark deepLTRS by comparing with some state-of-the-art

methods, in condition of high data sparsity. The same experimental setup was used to

benchmark deepLTRS (from now on, always accounting for text data). Our model is here

compared to HFT, HPF [6], CCPF [8] and ALFM. Since for CCPF, many combinations

of sparsity and response models exist, we select the pair of models having the best280

performance as described in [8].

0.5 0.6 0.7 0.8 0.9 1.0
Rate of sparsity

1.0

1.5

2.0

2.5

Te
st

 R
M

SE

HFT
HPF
CCPF-PMF
ALFM
deepLTRS

Figure 4: Test RMSE of models with different sparsity level on simulated data.

Figure 4 shows the evolution of the test RMSE for deepLTRS and its competitors.

We first remark that, although HFT accounts for the text reviews, it does not perform

very well in our simulated scenario and turns out to be very sensitive to the data sparsity.

Second, HPF also appears to be quite sensitive to the data sparsity and it always performs285

worse than CCPF, ALFM and deepLTRS. Finally, although CCPF and ALFM present

less sensitivity to the data sparsity, as the changes in the RMSE are small along with

the sparsity level, generally HFT performs better than them when the sparsity is less

than a certain threshold. In addition, even if the sparsity reaches 0.99, deepLTRS still

17

outperforms all other models. Let us recall that the simulation setup does not follow the290

deepLTRS generative model and therefore does not favor any method here.

5. Application on real-world data

We now consider applying deepLTRS to real-world datasets consisting of different

product reviews from Amazon23. The data includes reviews (ratings, text), product

metadata (descriptions, category, price, brand and image features) and links. In this295

section, deepLTRS is compared with previously mentioned models: HFT, HPF, CCPF,

ALFM and TransNet.

Data pre-processing. In the pre-processing step, we kept records including user and

product information, ratings and a plain-text review. For Amazon Fine Food dataset,

we only considered users with more than 20 reviews and products reviewed by more300

than 50 users to obtain more meaningful information; for other three categories of

Amazon product data, we used the reduced 5-core version where each of the remaining

users and items have at least 5 reviews. Retained data were processed by removing all

punctuations, numbers and stop words, then we deleted the words that appeared less

than 3 times in the entire vocabulary for all data sets. The statistics of the processed305

data sets are given in Table 3.

Table 3: Statistics of evaluation data sets.

Dataset #users #items #reviews #total_words #rest_words sparsity

Fine Foods 1643 1733 32811 5743 3047 98.85%

Musical Instruments 1429 900 10254 15050 5846 99.20%

Patio 1686 962 13258 22441 8746 99.18%

Automotive 2928 1835 20467 20113 7737 99.62%

2https://snap.stanford.edu/data/web-FineFoods.html
3https://jmcauley.ucsd.edu/data/amazon/

18

https://snap.stanford.edu/data/web-FineFoods.html
https://jmcauley.ucsd.edu/data/amazon/

Settings. Five independent runs of the algorithm were performed. For each run, we

randomly selected 80% of the data as the training set, 10% samples for validation and

the remaining 10% data as the test set. We trained our model for 100 epochs. As a

method for stochastic optimization, we adopted an Adam optimizer [27], with a learning310

rate of 2e−3. The RMSE is calculated on both the validation and test set. Reported

test RMSE is obtained when the RMSE on the validation set was the lowest, as for all

methods.

Rating prediction. Table 4 presents the test RMSE for deepLTRS and its competitors

on the predicted ratings for Amazon data sets. Since HFT is restricted by the fact that315

the numbers of latent factors and topics should be equal, we set D = K = 50. First of

all, HPF and CCPF only considered the user rating information. By replacing the single

Poison distribution in HPF with a mixture model, CCPF has made great improvements

in RMSE. Next, the remaining four methods all consider both ratings and reviews.

Table 4: Test RMSE on Amazon data sets.

Data sets HFT HPF CCPF-PMF

Fine Food 1.4477 (±0.0465) 2.9528 (±0.0144) 1.2913 (±0.0105)

Musical Instruments 1.3505 (±0.0061) 4.0926 (±0.0164) 1.1151 (±0.0242)

Patio 1.2183 (±0.0096) 3.8782 (±0.0051) 1.1353 (±0.0174)

Automotive 1.0844 (±0.0084) 4.3252 (±0.0041) 1.0105 (±0.0186)

Average 1.2752 (±0.3729) 3.8122 (±0.5220) 1.1381 (±0.1020)

Data sets ALFM TransNet deepLTRS

Fine Food 1.0705 (±0.0014) 1.3783 (±0.0012) 0.9788 (±0.0215)

Musical Instruments 0.8929 (±0.0013) 1.0912 (±0.0057) 0.9702 (±0.0143)

Patio 1.0219 (±0.0027) 1.0589 (±0.0009) 0.9855 (±0.0319)

Automotive 0.8797 (±0.0016) 1.0649 (±0.0012) 0.9299(±0.0511)

Average 0.9663 (±0.0819) 1.1483(±0.1334) 0.9661 (±0.0392)

19

Among them, TransNet and deepLTRS are deep-learning based models. It can be seen320

that, in general, ALFM and deepLTRS always have better performance than HFT and

TransNet.

It is worth mentioning that deepLTRS outperforms ALFM on two data sets, Fine

food and Patio, while ALFM has better performance on the other two data sets since

when the data has many positive ratings, ALFM setup benefits from this configuration.325

Indeed, in the score generation phase, ALFM introduces the average of all ratings to the

formula, which leads the predictions to a higher ranking level. When most of the scores

of the experimental data are very positive, for example, a lot of scores are equal to 4 in

Amazon data, ALFM can achieve very good results thanks to this average bias parameter.

Nevertheless, when the score distribution of the data is more scattered, ALFM cannot330

perform well. Another analysis between the prediction of ALFM and deepLTRS on the

simulated data is given in Appendix C.

6. Conclusion and perspectives

We introduced the deepLTRS model for rating recommendation using both the

ordinal and text data available. Our approach adopted a VAE architecture as the deep335

generative latent model for both an ordinal matrix encoding the ratings, and a document-

term matrix encoding the reviews. DeepLTRS presents the advantage to jointly learn

representations of users and products through the alternated mini-batch optimization and

a neural network was introduced to capture the relationship between latent factors and

latent topics. Even with a simple topic model for the text part, we are still able to improve340

performance compared to the state-of-the-art techniques. Numerical experiments on

simulated and real-world data sets show that our model outperforms other competitors

in the context of high data sparsity.

We finally outline some research perspectives. First, although we mainly focused

on the rating matrix, by exploiting the document-term matrix, the further ability of345

deepLTRS to predict the top words used by reviewers to comment products could be

inspected in future works. Furthermore, in order to improve the modelling of text, we

might replace LDA by a deep latent generative model, possibly involving RNNs [28]

20

or BERT [29] for review prediction. Moreover, the inference of the model parameters

could be fine-tuned by means of the particle swarm optimization algorithm [30] for350

self-adaptation of the hyper-parameters and some recent researches [31, 32, 33] focusing

on computational efficiency in the context of high-dimensional and sparse matrices in

recommender systems could be considered in order to speed-up the learning process.

Acknowledgements

This work has been supported by the French government, through the 3IA Côte355

d’Azur Investment in the Future, project managed by the National Research Agency

(ANR) with the reference numbers ANR-19-P3IA-0002.

References

[1] Z. Huang, D. Zeng, H. Chen, A comparison of collaborative-filtering recom-

mendation algorithms for e-commerce, IEEE Intelligent Systems 22 (5) (2007)360

68–78.

[2] H. Gao, Y. Xu, Y. Yin, W. Zhang, R. Li, X. Wang, Context-aware qos prediction

with neural collaborative filtering for internet-of-things services, IEEE Internet of

Things Journal 7 (5) (2019) 4532–4542.

[3] X. Su, T. M. Khoshgoftaar, A survey of collaborative filtering techniques, Ad-365

vances in artificial intelligence 2009.

[4] A. Ramlatchan, M. Yang, Q. Liu, M. Li, J. Wang, Y. Li, A survey of matrix

completion methods for recommendation systems, Big Data Mining and Analytics

1 (4) (2018) 308–323.

[5] L. Chen, G. Chen, F. Wang, Recommender systems based on user reviews: the370

state of the art, User Modeling and User-Adapted Interaction 25 (2) (2015) 99–154.

[6] P. Gopalan, J. M. Hofman, D. M. Blei, Scalable recommendation with hierarchical

poisson factorization., in: UAI, 2015, pp. 326–335.

21

[7] M. Basbug, B. Engelhardt, Hierarchical compound poisson factorization, in: Inter-

national Conference on Machine Learning, 2016, pp. 1795–1803.375

[8] M. E. Basbug, B. E. Engelhardt, Coupled compound poisson factorization, arXiv

preprint arXiv:1701.02058.

[9] C. Wang, D. M. Blei, Collaborative topic modeling for recommending scientific

articles, in: Proceedings of the 17th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2011, pp. 448–456.380

[10] C. Liu, T. Jin, S. C. Hoi, P. Zhao, J. Sun, Collaborative topic regression for

online recommender systems: an online and bayesian approach, Machine Learning

106 (5) (2017) 651–670.

[11] A. Mnih, R. R. Salakhutdinov, Probabilistic matrix factorization, in: Advances in

neural information processing systems, 2008, pp. 1257–1264.385

[12] J. McAuley, J. Leskovec, Hidden factors and hidden topics: understanding rating

dimensions with review text, in: Proceedings of the 7th ACM conference on

Recommender systems, 2013, pp. 165–172.

[13] Z. Cheng, Y. Ding, L. Zhu, M. Kankanhalli, Aspect-aware latent factor model:

Rating prediction with ratings and reviews, in: Proceedings of the 2018 world390

wide web conference, 2018, pp. 639–648.

[14] Z. Y. Khan, Z. Niu, S. Sandiwarno, R. Prince, Deep learning techniques for rating

prediction: a survey of the state-of-the-art, Artificial Intelligence Review 54 (1)

(2021) 95–135.

[15] L. Zheng, V. Noroozi, P. S. Yu, Joint deep modeling of users and items using395

reviews for recommendation (2017). arXiv:1701.04783.

[16] R. Catherine, W. Cohen, Transnets: Learning to transform for recommendation,

in: Proceedings of the eleventh ACM conference on recommender systems, 2017,

pp. 288–296.

22

http://arxiv.org/abs/1701.04783

[17] Z.-H. Zhou, J. Feng, Deep forest: towards an alternative to deep neural networks,400

in: Proceedings of the 26th International Joint Conference on Artificial Intelligence,

2017, pp. 3553–3559.

[18] D. Wu, X. Luo, M. Shang, Y. He, G. Wang, M. Zhou, A deep latent factor model for

high-dimensional and sparse matrices in recommender systems, IEEE Transactions

on Systems, Man, and Cybernetics: Systems.405

[19] A. Srivastava, C. Sutton, Autoencoding variational inference for topic models,

arXiv preprint arXiv:1703.01488.

[20] A. B. Dieng, F. J. Ruiz, D. M. Blei, Topic modeling in embedding spaces, arXiv

preprint arXiv:1907.04907.

[21] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, the Journal of410

machine Learning research 3 (2003) 993–1022.

[22] Z. Gilula, R. E. McCulloch, Y. Ritov, O. Urminsky, A study into mechanisms of

attitudinal scale conversion: A randomized stochastic ordering approach, Quantita-

tive Marketing and Economics 17 (3) (2019) 325–357.

[23] D. P. Kingma, M. Welling, An introduction to variational autoencoders, arXiv415

preprint arXiv:1906.02691.

[24] D. P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint

arXiv:1312.6114.

[25] D. J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation and approxi-

mate inference in deep generative models, in: Proceedings of the 31st International420

Conference on International Conference on Machine Learning-Volume 32, JMLR.

org, 2014, pp. II–1278.

[26] L. Bottou, Large-scale machine learning with stochastic gradient descent, in:

Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.

[27] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint425

arXiv:1412.6980.

23

[28] A. F. Agarap, P. Grafilon, Statistical analysis on e-commerce reviews, with sen-

timent classification using bidirectional recurrent neural network (rnn), arXiv

preprint arXiv:1805.03687.

[29] S. Xu, S. E. Barbosa, D. Hong, Bert feature based model for predicting the430

helpfulness scores of online customers reviews, in: Future of Information and

Communication Conference, Springer, 2020, pp. 270–281.

[30] I. C. Trelea, The particle swarm optimization algorithm: convergence analysis and

parameter selection, Information processing letters 85 (6) (2003) 317–325.

[31] X. Luo, Y. Yuan, M. Zhou, Z. Liu, M. Shang, Non-negative latent factor model435

based on β-divergence for recommender systems, IEEE Transactions on Systems,

Man, and Cybernetics: Systems.

[32] X. Luo, M. Zhou, S. Li, D. Wu, Z. Liu, M. Shang, Algorithms of unconstrained

non-negative latent factor analysis for recommender systems, IEEE Transactions

on Big Data.440

[33] X. Luo, W. Qin, A. Dong, K. Sedraoui, M. Zhou, Efficient and high-quality

recommendations via momentum-incorporated parallel stochastic gradient descent-

based learning, IEEE/CAA Journal of Automatica Sinica 8 (2) (2020) 402–411.

24

Appendix A. Rotational invariance in PMF

From Eqs.(1)-(2), it easily follows that

Yij ∼ N (bui + bpj , D + η2). (A.1)

Now, instead of assuming isotropic prior distributions for Ri and Cj , we set

Ri
i.i.d∼ N (0,ΣR), ∀i

Cj
i.i.d∼ N (0,ΣC), ∀j

with ΣR and ΣC being symmetric positive definite matrices. Then

ΣR = QRΛRQ
T
R,

with ΛR being the diagonal matrix with the eigenvalues of ΣR on the main diagonal

and QR the orthogonal matrix of the corresponding eigenvectors. Similarly

ΣC = QCΛCQ
T
C .

Then, the two random vectorsRi := Λ
− 1

2

R QTRRi andCj := Λ
− 1

2

C QTCCj are independent

and follow an isotropic Gaussian distribution each. Thus, if we set

Yij = 〈Ri, Cj〉+ bui + bpj + εij ,

we recover the marginal distribution in Eq. (A.1).445

Appendix B. Interpretability on simulated data

This part aims at binging out the role of the latent embeddings of users and products

in our model. Figure B.5 and Figure B.6 show the t-SNE representations of Ri and Cj

for deepLTRS with and without text data, respectively, with data sparsity of 0.99. We

note that the two (row and column) clusters are well separated despite the large degree450

of sparsity in Figure B.5, which is well representative of the simulation setup. However,

without text data, the model does not capture well the structure of simulated data, as

shown in Figure B.6. The visualization effects demonstrate that the addition of text

information is important and useful for deepLTRS.

25

30 20 10 0 10 20 30

40

30

20

10

0

10

20

30

User
Product

Figure B.5: Visualization of embeddings of

deepLTRS with text data.

40 20 0 20 40 60

20

10

0

10

20

30
User
Product

Figure B.6: Visualization of embeddings of

deepLTRS without text data.

Appendix C. Analysis of the predictions455

Here we analyze the differences between the prediction of ALFM and deepLTRS

with the real ratings on the simulated data with the sparsity of 0.9. It is worth men-

tioning that, here we only compared ALFM with deepLTRS since ALFM has achieved

significant performance on the experimental data sets.

Table C.5: Statistics of the predictions

Data set Models Min. Max. Mean

Simulated data_0.9
ALFM 1.8843 3.1557 2.5075

deepLTRS 0.6013 4.3340 2.5638

Table C.5 demonstrates the statistics of the predictions. Different from ALFM that460

all predicted ratings are concentrated in the range of [2, 3], the scores predicted by

deepLTRS are well distributed in the interval [1, 4], which is consistent with our initial

setup. Moreover, Figure C.7 illustrates that the method used to calculate the predicted

ratings in ALFM makes all predictions concentrated near the average. Thus, when the

distribution of scores is very scattered (as in the simulated data), the test RMSE will465

become very large.

26

1.0 2.0 3.0 4.0
real rating

2.0

2.2

2.4

2.6

2.8

3.0

3.2

AL
FM

 p
re

di
ct

io
n

1.0 2.0 3.0 4.0
real rating

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

de
ep

LT
RS

 p
re

di
ct

io
n

Figure C.7: Comparisons of the predictions of ALFM with actual ratings (Left) and deepLTRS with actual

ratings (Right).

Appendix D. Interpretability on Amazon Fine Food

Figure D.8 presents a visualization with t-SNE of the high-dimensional latent

representations (D = K = 50) of the users and products for the Amazon Fine food

data. The overlapping regions of user and product representations correspond to users470

that are likely to comment on the corresponding products.

75 50 25 0 25 50 75 100

30

20

10

0

10

20

30

40

50

User
Product

Figure D.8: Projection with t-SNE of user and product latent representations for the Amazon Fine Food data

set.

In order to deeper understand the latent representations meaning, we provide in

Figure D.9 and D.10 the visualization of user latent positions on two specific latent

variables (variable 3 and 11) that can be easily interpreted according to average ratings

and numbers of reviews the users give to products. Indeed, it clearly appears that475

27

variable 11 captures the rating scale of Fine food users whereas variable 3 seems to

encode the user activity (number of reviews).

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−0.8

−0.4

0.0

0.4

0.0 0.5 1.0 1.5
V3

V
11

Avg. rating

●

●

●

●

●

1

2

3

4

5

Figure D.9: Latent representation of users on variable 3 according to average ratings.

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−0.8

−0.4

0.0

0.4

0.0 0.5 1.0 1.5
V3

V
11

Review nb

●

●

●

high (>30)

low (<=5)

medium

Figure D.10: Latent representation of users on variable 11 according to numbers of reviews they give to

products.

28

	Introduction and related works
	Context and problem
	Related works
	Contributions of our work

	A rating-and-review based recommender system
	Framework and notations
	Generative model of deepLTRS

	Variational auto-encoding inference
	Variational lower bound (ELBO)
	Monte Carlo EM algorithm and mini-batching

	Numerical experiments on simulated data
	Architecture and simulation setup
	DeepLTRS with and without text data
	Benchmark and effect of data sparsity

	Application on real-world data
	Conclusion and perspectives
	Rotational invariance in PMF
	Interpretability on simulated data
	Analysis of the predictions
	Interpretability on Amazon Fine Food

