DeepLTRS: A deep latent recommender system based on user ratings and reviews
Abstract
We introduce a deep latent recommender system named deepLTRS in order to provide users with high quality recommendations based on observed user ratings \textit{and} texts of product reviews. The underlying motivation is that, when a user scores only a few products, the texts used in the reviews represent a significant source of information, thereby enhancing the predictive ability of the model. Our approach adopts a variational auto-encoder (VAE) architecture as a deep generative latent model for an ordinal matrix encoding ratings and a document-term matrix encoding the reviews. Taking into account both matrices as model inputs, deepLTRS uses a neural network to capture the relationship between latent factors and latent topics. Moreover, a user-majoring encoder and a product-majoring encoder are constructed to jointly capture user and product preferences. Due to the specificity of the model structure, an original row-column alternated mini-batch optimization algorithm is proposed to deal with user-product dependencies and computational burden. Numerical experiments on simulated and real-world data sets demonstrate that deepLTRS outperforms the state-of-the-art, in particular in context of extreme data sparsity.
Origin | Files produced by the author(s) |
---|