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Introduction

In [START_REF] Fefferman | Lower bounds for Schrödinger equations[END_REF][START_REF] Fefferman | The uncertainty principle[END_REF] Fefferman and Phong established the inequality, for p > 1:

ˆRn V (x)ψ(x) 2 dx ≤ C n,p N p (V ) ˆRn |∇ψ(x)| 2 dx, (1.1) 
for any ψ smooth with compact support, where V is a non negative and locally integrable function, C n,p is a constant depending only on the dimension and p, and N p is the Morrey norm:

N p (V ) = sup x∈R n r>0 r 2p-n ˆB(x,r) |V (y)| p dy 1/p . (1.2) 
Such an inequality yields a positivity condition for the Schrödinger operator

H = ∆ -V (with ∆ = - n i=1 ∂ 2 i ), namely that if N p (V ) ≤ 1/C n,p
, then H is a positive operator. In fact they also gave the following estimates on the lower bound of the spectrum of H, λ 1 (H):

sup x∈R n r>0 C 1 r -n

ˆB(x,r)

V dyr -2 ≤ -λ 1 (H)

-λ 1 (H) ≤ sup x∈R n r>0   C p r -n ˆB(x,r) V p dy 1/p -r -2   . (1.
3)

The conditions for inequalities such as (1.1) (though with a constant that doesn't necessarily depends on the Morrey norm) to hold in R n has been studied extensively, see for example in [START_REF] Chang | Some weighted norm inequalities concerning the Schrödinger operators[END_REF][START_REF] Kerman | The trace inequality and eigenvalue estimates for schrödinger operators[END_REF][START_REF] Vladimir | Capacitary inequalities for fractional integrals, with applications to partial differential equations and sobolev multipliers[END_REF]. And in [START_REF] Vladimir | The schrödinger operator on the energy space: boundedness and compactness criteria[END_REF], Maz'ya and Verbitsky establish necessary and sufficient conditions for an analoguous inequality to (1.1) to hold with complex valued V . That being the case, it seems interesting to study to what extent, and under which geometrical hypotheses those results extend on other spaces, such as Riemannian manifolds.

The first aim of this article is to generalize the results of Fefferman and Phong to a weighted Riemannian manifold M . A natural way to do that would be to use the Poincaré inequality: for any κ > 1, there is a constant C > 0, such that for all x ∈ M , r > 0, and for any f ∈ C ∞ (B(x, κr)):

ˆB(x,r) |f -f B(x,r) | dµ ≤ Cr ˆB(x,κr) |∇f | dµ,
where f B = 1 µ(B) ´B f dµ. It turns out that the result still holds under some weaker hypothesis. Our proof will follow the general idea used by Schechter in [START_REF] Schechter | The spectrum of the Schrödinger operator[END_REF], that (1.1) follows from the inequality (which holds in R n following a result of Muckenhoupt and Wheeden [START_REF] Muckenhoupt | Weighted norm inequalities for fractional integrals[END_REF]):

I 1 f L 2 ≤ C M 1 f L 2 , (1.4) 
with

I 1 f (x) = c n ˆRn f (y) |x -y| n-1 dµ(y), M 1 f (x) = sup r>0 r 1-n ˆB(x,r) |f (y)| dy, (1.5) 
and that (1.3) is proved using similar estimates, with (∆ + λ 2 ) -1/2 replacing I 1 .

The proof of the generalisation of (1.3) will naturally yields weak versions of (1.1), which holds under weaker hypothesis.

Definitions and Notations

A weighted Riemannian manifold (M, g, µ), or simply a weighted manifold, is the data of a smooth manifold M , g a smooth Riemannian metric on M , and a Borel measure dµ = σ 2 dv g on M , with σ a smooth positive function on M and v g is the Riemannian volume measure associated with the metric g. We define the (weighted) Dirichlet Laplace operator as the Friedrichs extension of the operator on C ∞ 0 (M ) defined by:

∆ µ f = -σ -2 div(σ 2 ∇f ),
with associated quadratic form Q(ψ) = ´M |∇ψ| 2 dµ. We will usually write the Dirichlet Laplace operator as simply ∆.

On a metric space (X, d), for x ∈ X, r > 0, the ball of center x and radius r is the set B(x, r) = {y : d(x, y) < r}. If B = B(x, r) is the ball, θ ∈ R, then θB refers to the set B(x, θr).

For p ≥ 1, we let • p be the L p norm on (M, µ). We define

f p = ˆM |f | p dµ 1/p .
For T a bounded operator on L p , we use T L p →L p , or T p when there is no confusion, to refer to its operator norm:

T p = sup ψ∈L p ψ =0 T ψ p ψ p .
For an open set U ⊂ M , λ 1 (U ) refers to lower bound of the spectrum of ∆ µ on U :

λ 1 (U ) = inf ψ∈C ∞ 0 (U) ψ =0 ∇ψ 2 2 ψ 2 2 .
(1.6)

When H is a symmetric operator defined on smooth functions with compact support, λ 1 (H) is similarly defined to be:

λ 1 (H) = inf ψ∈C ∞ 0 (M) ψ =0
Hψ, ψ ψ 2

.

(1.7)

On a weighted manifold (M, g, µ), we define the Morrey norms N p , p ≥ 0, as follows:

∀f ∈ L 1 loc (M ), N p (f ) = sup x∈M r>0 r 2p B(x,r) |f | p dµ 1/p , (1.8) 
where ffl B f dµ = 1 µ(B) ´B f dµ is the mean of f over B. We also define the Morrey norm taken on balls of radius less than R > 0:

N p,R (f ) = sup x∈M 0<r<R r 2p B(x,r) |f | p dµ 1/p .
(1.9)

For our generalization to hold, it is important that (M, g, µ) must admits a relative Faber Krahn inequality (property (RFK) η ) defined as follows:

Definition 1.1. A weighted Riemannian manifold (M, g, µ) admits a relative Faber-Krahn inequality if there exist constants b, η > 0, such that for all x ∈ M , r > 0, and for any relatively compact open set U ⊂ B(x, r), the following inequality holds:

λ 1 (U ) ≥ b r 2 µ (B (x, r)) µ(U ) 2 η
.

(1.10)

We say that M admits a relative Faber-Krahn inequality at scale R (property (RFK) η R ) if (1.10) holds only for 0 ≤ r ≤ R.

In what follows, we refer to the constants b, η in (1.10) as the Faber-Krahn constants of the manifold.

Statements of the results

Theorem 1.1. Let (M, g, µ) be a weighted complete Riemannian manifold satisfying (RFK) η , then for any p > 1, there is a constant C p depending only on the Faber-Krahn constants and on p, such that for any V ∈ L 1 loc (M ), V ≥ 0, and any ψ ∈ C ∞ 0 (M ), the following inequality holds: .11) If only (RFK) η R holds, then we can prove the following localized inequality:

ˆM V ψ 2 dµ ≤ C p N p (V ) ˆM |∇ψ| 2 dµ. ( 1 
Theorem 1.2. Let (M, g, µ) be a complete weighted Riemannian manifold, such that, for some R > 0, (RFK) η R holds. Then, for any p > 1, there is a constant C p > 0 depending only on the Faber-Krahn constant and on p, such that for any V ∈ L 1 loc (M ), V ≥ 0, and any ψ ∈ C ∞ 0 (M ), the following inequality holds:

ˆM V ψ 2 dµ ≤ C p N p,R (V ) ˆM |∇ψ| 2 dµ + 1 R 2 ˆM ψ 2 dµ . (1.12)
From this inequality we can generalize the Fefferman Phong estimate on the lower bound of the spectrum of the operator H = ∆ -V . Indeed if (RFK) η holds, then for any R > 0, (RFK) η R is satisfied. Thus (1.12) is true for any R. Then the following theorem follows easily: Theorem 1.3. Let (M, g, µ) be a complete weighted Riemannian manifold satisfying (RFK) η . Then for any p > 1 there exist constants C 1 , C p > 0 depending only on the Faber-Krahn constants (and C p depending also on p), such that, for any V ∈ L 1 loc (M ), V ≥ 0, and for the operator H = ∆ µ -V the following inequalities hold:

sup x∈M δ>0 C 1 B(x,δ) V dµ -δ -2 ≤ -λ 1 (H) ≤ sup x∈M δ>0   C p B(x,δ) V p dµ 1/p -δ 2   .
(1.13)

In addition, if λ 1 (M ) > 0, then we can strengthen (1.12), and obtain the following result, giving a condition for ∆ -V to be positive: Theorem 1.4. Let (M, g, µ) be a complete weighted Riemannian manifold, such that (RFK) η R holds for R > 0. If in addition, λ 1 (M ) > 0, then for any p > 1, there is a constant C p > 0 depending only on the Faber-Krahn constants such that, for V ∈ L 1 loc (M ), V ≥ 0, and any ψ ∈ C ∞ 0 (M ), the following inequality holds:

ˆM V ψ 2 dµ ≤ C p N p,R (V ) 1 + λ 1 (M )R 2 λ 1 (M )R 2 ˆM |∇ψ| 2 dµ + λ 1 (M ) 2 ˆM ψ 2 dµ . (1.14)

L 2 Hardy inequality

Notice that the inequality (1.11) is, for potentials V with N p (V ) < +∞, nothing more than the generalized L 2 Hardy inequality:

∀ψ ∈ C ∞ 0 (M ), ˆM ψ 2 ρ 2 dµ ≤ C ˆM |∇ψ| 2 dµ, (1.15) 
with ρ = V -1/2 . Thus, on manifolds for which theorem 1.1 holds, the "classical" Hardy inequality, where ρ is the distance to a point, is true whenever N p (d(o, •) -2 ) is finite. For this to hold, we must make an additional assumption on the measure µ. Definition 1.2. A metric measure space (X, d, µ) satisfies the reverse doubling property of order ν, property (RD) ν , (or, µ is ν-reverse doubling) if, there is some constant a > 0 such that for all x ∈ M , 0 < r ≤ r ′ , the following inequality holds:

a r ′ r ν ≤ µ (B (x, r ′ )) µ (B (x, r)) . (1.16) 
Theorem 1.5. Let (M, g, µ) be a weighted Riemannian manifold. Assume that M satisfies (RFK) η , and that µ satisfies (RD) ν with ν > 2. Then there is some constant C > 0 depending only on the Faber-Krahn and reverse doubling constants, such that, for any o ∈ M , then for any ψ ∈ C ∞ 0 (M ) the following inequality holds:

ˆM ψ(x) 2 ρ(x) 2 dµ(x) ≤ C ˆM |∇ψ| 2 dµ, (1.17 
)

with ρ(x) = d(o, x).
We can compare this to the results of V. Minerbe [START_REF] Minerbe | Weighted Sobolev inequalities and Ricci flat manifolds[END_REF] or G. Grillo [START_REF] Grillo | Hardy and Rellich-type inequalities for metrics defined by vector fields[END_REF], who proved L p Hardy inequalities assuming a Poincaré inequalities and a doubling measure. While we only get a L 2 inequality, it holds true under the weaker hypothesis of a relative Faber-Krahn inequality.

A recent work by Cao, Grigor'yan and Liu [START_REF] Cao | Hardy's inequality and Green function on metric measure spaces[END_REF] proved Hardy inequalities as a consequence of volume doubling, reverse doubling, and certain estimates on either the Green function or the heat kernel. Their results are far more general than what we prove on Hardy inequality here.

Examples

We give various cases of manifolds which will satisfy a relative Faber-Krahn inequality (or a relative Faber-Krahn inequality at scale R). Then, theorem 1.1 (or theorem 1.2) holds.

Complete manifolds with Ricci curvature bounded from below

From Li and Yau [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF], the heat kernel of a complete manifold (M, g, µ) of dimension n, with µ here being the Riemannian volume measure, with Ricci curvature bounded from below by -K, for a constant K ≥ 0, admits the following diagonal estimate:

p t (x, x) ≤ C 0 µ B x, √ t e C1Kt .
Also, as a consequence of the Bishop-Gromov volume comparison theorem, we get that (see [START_REF] Cheeger | Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds[END_REF][START_REF] Chavel | Riemannian Geometry: A Modern Introduction[END_REF][START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF] for example), for any 0 < r ≤ r ′ :

µ (B (x, r ′ )) µ (B (x, r)) ≤ r ′ r n exp (n -1)Kr ′ .
Those two conditions implies, (see for example [START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF][START_REF] Hebisch | On the relation between elliptic and parabolic Harnack inequalities[END_REF], or proposition 3.1 later), that there is some R > 0 such that M satisfies (RFK) n R . If the Ricci curvature is non-negative, then we also have (RFK) n .

Manifolds satisfying Faber Krahn inequalities outside a compact set

We consider a complete weighted manifold M , and remove from it a compact set with smooth boundary K. We let E 1 , . . . , E k be the connected components of M \ K, and suppose that each E i is the exterior of a compact set with smooth boundary in a complete manifold M i .

A simple example of such manifold is the connected sum of two (or more) copies of R n . It admits (RFK) n , but it is known that such manifold doesn't satisfy a Poincaré inequality (see for example [START_REF] Benjamini | Heat kernel lower bounds on Riemannian manifolds using the old ideas of Nash[END_REF]).

Using [START_REF] Grigor | Surgery of the Faber-Krahn inequality and applications to heat kernel bounds[END_REF], we get that if each M i satisfies (RFK) η , then there is some R > 0 such that M satisfies (RFK) η R .

Dydadic cubes

In R n , the natural decomposition of the space into cubes of length 2 k , k ∈ Z is a very powerful tool. It turns out that families of open sets satisfying similar properties to those of the dyadic cubes in the euclidean space can be constructed in a more general setting. We will use the construction of such "dyadic cubes" given by E. Sawyer and R. L. Wheeden in [START_REF] Sawyer | Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces[END_REF] (though other such constructions, such as the one given in [START_REF] Christ | A T (b) theorem with remarks on analytic capacity and the Cauchy integral[END_REF], could also be used without major changes). Though it remains true in a more general setting, for our purposes it can be stated as: Theorem 2.1. Let (X, d) be a separable metric space, then there is a constant ρ > 1 (ρ = 8 works), such that for any (large negative) integer m, there are points x k α and a family D m = E k α of Borel sets for k = m, m + 1, . . ., α = 1, 2, . . ., which satisfy the following properties:

• B(x k α , ρ k ) ⊂ E k α ⊂ B(x k α , ρ k+1 ). • For each k = m, m + 1, . . ., the family E k α α is pairwise disjoint in α and X = α E k α . • If m ≤ k < l, then either E k α ∩ E l β = ∅ or E k α ⊂ E l β .
Given such a family D m , the sets E k α will be called dyadic cubes of M , or simply cubes. The ball B(x k α , ρ k+1 ) is called the containing ball of the cube E k α . For any cube Q the containing ball is denoted by B(Q). ρ will be called the sidelength constant of dyadic cubes.

The length of a cube Q is the radius of ρ -1 B(Q), written ℓ(Q).

Properties of doubling measures

We start by recalling the definitions and some standard properties of doubling measures. Most of the proofs are classical, but are rarely explicitely done for the R doubling case, and we thus give them for completeness' sake, without claiming originality.

Definition 2.1. A metric measure space (X, d, µ) satisfies the doubling property (D) η of order η if, there is some constant A > 0 such that for all x ∈ M , 0 < r ≤ r ′ , the following inequality holds:

µ (B (x, r ′ )) µ (B (x, r)) ≤ A r ′ r η . ( 2 

.1)

We call A the doubling constant, and η the doubling order. We will also say "the doubling constants" to refer to both A and η at the same time. The property (D) η is equivalent to the fact that for some constant A > 0, for any ball B ⊂ M :

µ(2B) ≤ Aµ(B).
(2.

2)

The proof of the equivalence is the same as that of the R-doubling case given after definition 2.3, (with R = ∞).

A note on the constants: (2.2) implies (2.1) with η = log 2 A (and A the same in both inequalities), while conversely, (2.1) implies that the constant in (2.2) be 2 η A. By increasing A and η if necessary, we can always assume that A = 2 η .

We repeat, for completeness, the definition of the reverse doubling property: Definition 2.2. A metric measure space (X, d, µ) satisfies the reverse doubling property (RD) ν of order ν if, there is some constant a > 0 such that for all x ∈ M , 0 < r ≤ r ′ , the following inequality holds:

a r ′ r ν ≤ µ (B (x, r ′ )) µ (B (x, r)) . ( 2 

.3)

We call a the reverse doubling constant, and ν the reverse doubling order. The property (RD) ν is equivalent to the fact that for some constant a ∈ (0, 1), for any ball B ⊂ M : µ(B) ≤ aµ(2B).

(2.4)

Proof of (2.4) implies (2.3). We can assume that a ≤ 1. Let x ∈ X, 0 < r ≤ r ′ . Writing ⌊t⌋ for the integer part of t ∈ R, let k = log 2 r ′ r . Then:

µ (B (x, r)) ≤ a k µ B x, 2 k r ≤ a k µ (B (x, r ′ )) ≤ a -1+log 2 r ′ r µ (B (x, r ′ )) (a ≤ 1) ≤ 1 a r ′ r -ν µ (B (x, r ′ )) ,
with ν =log 2 a. Thus:

a r ′ r ν ≤ µ (B (x, r ′ )) µ (B (x, r)) .
Proposition 2.1. Let (X, d, µ) satisfies (D) η , then for any x, y ∈ M , r, r ′ > 0 such that B(y, r) ⊂ B(x, r ′ ), we have:

µ (B (x, r ′ )) µ (B (y, r)) ≤ A 2 r ′ r η . (2.5) 
This is a classical result. The proof is similar to what we will do to prove proposition 2.2.

Definition 2.3. A metric measure space (X, d, µ) satisfies the R-doubling property (D) η R if there is some constant A > 0 such that (2.1) holds for all x ∈ M , and 0 < r ≤ r ′ ≤ 2R. This is equivalent to (2.2) being true for all ball B with radius less than R.

X satisfies the R-reverse doubling property (RD) ν R if (2.4) holds for all balls of radius less than R (this is equivalent to (2.3) being true for all x ∈ X and 0 < r ≤ r ′ ≤ 2R).

We will write A R for the doubling constant when it's important to precise which R the constant is associated with. Some care is needed to get precisely those maximal radius. That (2.2) follows from (2.1) is immediate.

Proof of (2.2) implies (2.1). Suppose that there is some constant A such that for all ball B of radius less than R, then µ(2B)

≤ Aµ(B). Let r ≤ r ′ ≤ 2R, k = log 2 r ′ r .
We have:

2 -k-1 r ′ < r ≤ 2 -k r ′ ,
and, using repeatedly the doubling inequality µ (B (x, ρ)) ≤ Aµ (B (x, ρ/2)), valid for all ρ ≤ 2R, we have:

µ (B (x, r ′ )) ≤ A k+1 µ B x, 2 -k-1 r ′ ≤ A k+1 µ (B (x, r)) ≤ Ae log A log r ′ r / log 2 µ (B (x, r)) ≤ A r ′ r η µ (B (x, r)) , with η = log 2 A.
Proposition 2.2. Let X satisfies (D) η R , then for all x, y ∈ X, r, r ′ > 0 such that B(y, r) ⊂ B(x, r ′ ) and with r ′ < R, then for η = log 2 A:

µ (B (x, r ′ )) µ (B (y, r)) ≤ A 2 r ′ r η . (2.6)
If in addition X satisfies (RD) ν R , then we also have for some constant c > 0, that for all 0 < r, r ′ < R and B(y, r) ⊂ B(x, r ′ ),

c r ′ r ν ≤ µ (B (x, r ′ )) µ (B (y, r)) . (2.7)
Proof. For the first part, we simply use B(x, r) ⊂ B(y, 2r) then applies (2.1).

For the second part, since B(x, r ′ ) ⊂ B(y, 2r ′ ), we can use (2.5) and we get:

µ (B (x, r ′ )) µ (B (y, r)) = µ (B (y, r ′ )) µ (B (y, r)) µ (B (x, r ′ )) µ (B (y, r ′ )) ≥ a r ′ r ν µ (B (x, r ′ )) µ (B (y, 2r ′ )) ≥ aA -2 2 -η r ′ r ν .
We now suppose that (X, d) is a path metric space, i.e. that the distance d(x, y) is realised as the infimum of the length of continuous path with end points x and y. We will keep making this assumption in everything that follows (Most results are still true in a more general setting, but this simplify some proofs and is sufficient for our purposes).

Proposition 2.3. Let X be a metric space satisfying (D) η R . Assume that the annuli B(x, r ′ ) \ B(x, r), for any r, r ′ with 0 ≤ r < r ′ ≤ R are all non empty. Then there is some ν > 0 such that X satisfies (RD) ν R/2 . Proof. Let x ∈ X, r < R/2. Take y ∈ B(x, 7r/4) \ B(x, 5r/4) (which is non empty as 7r/4 ≤ R). Then:

B(y, r/4) ⊂ B(x, 2r) \ B(x, r).
Then we have:

µ (B (x, 2r)) ≤ A 2 8 η µ (B (y, r/4)) µ (B (y, r/4)) ≤ µ (B (x, 2r)) -µ (B (x, r))
Thus with C = A 2 8 η , we have:

(1 + C -1 )µ(B(x, r)) ≤ µ(B(x, 2r)).
Thus the measure satisfies the R-reverse doubling property.

The R-doubling also implies some upper bound on the volume of balls of large radius. The two following propositions, and their proof, are taken from [START_REF] Hebisch | On the relation between elliptic and parabolic Harnack inequalities[END_REF].

Proposition 2.4. If (X, d, µ) is a path metric space satisfying (D) η
R , then there is some C > 0 that depends only on the doubling constant and order, such that we have, for any r > 0, R ′ ≤ R:

µ (B (x, r + R ′ /4)) ≤ Cµ (B (x, r)) .
(2.8)

Proof. The case r ≤ R is obvious by the doubling property. For r > R, then let {x i } i be a maximal family in B(x, r -R/4) such that for any i = j, d(x i , x j ) > R ′ /2. Then the balls B(x i , R ′ /4) ⊂ B(x, r) are disjoints, and the balls

B(x i , R ′ ) cover B(x, r + R ′ /4), since a point of B(x, r + R ′ /4) is at distance at most R ′ /2 of B(x, r -R ′ /4) (this because (X, d) is a path-metric space). Thus µ (B (x, r + R ′ /4)) ≤ i µ (B (x i , R ′ )) ≤ A 2 i µ (B (x i , R ′ /4)) ≤ A 2 µ (B (x, r)) .
Proposition 2.5. If (X, d, µ) satisfies (D) η R then, there is a D > 0, that depends only on the the doubling constants, such that for any r > 0, we have:

µ (B (x, r)) ≤ e D r R µ(B(x, R)).
(2.9)

Proof. Let r > R, k = 4 r-R R
, then we have:

µ (B (x, r)) ≤ µ (B (x, R + (k + 1)R/4)) , thus by proposition 2.4, µ (B (x, r)) ≤ C k+1 µ (B (x, R)). Moreover, k + 1 ≤ 4 r R -3 ≤ 4 r R
, and so:

µ (B (x, r)) ≤ exp 4 ln (C) r R µ (B (x, R)) ,
and so we get (2.9) with D = 4 ln(C).

If r ≤ R, then:

µ(B(x, r)) ≤ µ(B(x, R)) ≤ e D r R µ(B(x, R
)) and thus (2.9) still holds.

Similarly to how we always use A for the doubling constant, D will always be used for this constant D = 8 log A.

Proposition 2.6. Let X satisfies (D) η R , let r ≤ R, then there exists a constant C > 0, that depends only on the doubling constant and order, such that for any x, y ∈ X, µ

(B (x, r)) ≤ Ce D d(x,y) r µ (B (y, r)).
Proof. We have the inclusion B(x, r) ⊂ B(y, r+d(x, y)) ⊂ B(y, R+d(x, y)). Then, by proposition 2.4, we have:

µ (B (x, r)) ≤ A 8 µ (B (y, d(x, y))) ,
then using proposition 2.5:

µ (B (x, r)) ≤ Ce D d(x,y) R µ (B (y, r)) ≤ Ce D d(x,y) r µ (B (y, r)) . Proposition 2.7. If (X, d, µ) satisfies (D) η R , then it also satisfies (D) η R ′ for any R ′ > 0, with a doubling constant A R ′ = A R if R ′ ≤ R, and A R ′ = e 2D R ′ R if R ′ > R. Proof. The case R ′ ≤ R is obvious. Thus assume R > R ′ , let r ≤ R ′ . If r ≤ R then the result is trivial since A R ≤ A R ′ . If r > R,
then by proposition 2.5:

µ (B (x, 2r)) ≤ e 2D r R µ (B (x, r)) Since e 2D r R ≤ e 2D R ′ R , we conclude that µ is R'-doubling, with a doubling constant A R ′ = e 2D R ′ R .
With this we can generalise proposition 2.6 for any r > 0: if r > R, we can use the r-doubling and apply proposition 2.6 for it. The constants are

A r = e 2D r R , D r = 4 log A 2 r = 16D r R , A 8
r = e 16D r R . Then we have, for any x, y ∈ X, r > 0:

µ (B (x, r)) ≤ e 16D r+d(x,y) R µ (B (y, r)) .
(2.10)

Proposition 2.8. Let (X, d, µ) be a metric measure space that satisfies (D) η R . If it also satisfies (RD) ν R , then for any κ > 1, it satisfies (RD) ν κR with a different reverse doubling constant, that depends only on the doubling and reverse doubling constants, and on κ.

The notable part of this proposition is that the reverse doubling order is the same.

Proof. By proposition 2.7, µ is κR-doubling for all κ, with some doubling order η = η(κ). We take a point x ∈ M , and r, r ′ with 0 < r ≤ r ′ ≤ κR. We want to prove that there's some constant a κ such that, for any such x, r, r ′ :

µ (B (x, r ′ )) µ (B (x, r)) ≥ a κ r ′ r ν . If 0 < r ≤ r ′ ≤ R, then there's nothing to do but apply (RD) ν R . If 0 < r ≤ R < r ′ ≤ κR, then: µ (B (x, r ′ )) µ (B (x, r)) ≥ µ (B (x, R)) µ (B (x, r)) ≥ a R r ν ≥ aκ -ν r ′ r ν .
Finally, when R < r ≤ r ′ < κR, then:

µ (B (x, r ′ )) µ (B (x, r)) ≥ µ B x, r ′ κ Aκ η µ B x, r κ ≥ a Aκ η r ′ r ν Thus (2.2) holds for a κ = min a, aκ -ν , aA -1 κ -η = aA -1 κ -η .
Proposition 2.9. Let (X, d, µ) satisfies (D) η R . Take x ∈ X, r > 0, and let B = B(x, r). Let δ be such that 0 < δ ≤ min(r, R), and {x i } i ⊂ B be a family of points such that the balls B i = B(x i , δ) form a covering of B and that for any i = j, 1 2 B i ∩ 1 2 B j = ∅. Then there are constants C, c, depending only on the doubling constant such that card(I) ≤ Ce c r δ .

(2.11)

Proof. For any i, B i ⊂ B(x, r + δ), and since δ ≤ R, then we can use proposition 2.4 to get

µ (B (x, r + δ)) ≤ Cµ (B (x, r)) .
Now, if r > R, then by proposition 2.5, since δ ≤ R then µ is δ doubling with the same doubling constant as that of the R-doubling, and:

µ (B (x, r)) ≤ e D r δ µ (B (x, δ))
Moreover by proposition 2.6:

µ (B (x, δ)) ≤ Ce D d(x,x i ) δ µ (B (x i , δ)) ≤ Ce D r δ µ(B i ), using that, since x i ∈ B, then d(x, x i ) ≤ r. Thus we have µ(B(x, r)) ≤ Ce 2D r δ µ(B i ),
and the constant C depends only on the doubling constants. We then have:

(card I) µ (B (x, r + δ)) ≤ Ce 2D r δ i∈I µ(B i ) ≤ ACe 2D r δ i µ 1 2 B i ≤ Ce 2D r δ µ (B (x, r + δ)) .
Thus card(I) ≤ Ce 2D r δ and the constant C depends only on the doubling constants.

Remark. For any ball B, such a covering always exists: take for {x i } i ⊂ B a maximal family with d(x i , x j ) ≥ δ for any i = j.

Proposition 2.10. Let M R be the centered maximal function defined by:

∀f ∈ L 1 loc (M ), M R f (x) = sup r<R B(x,r) |f | dµ.
(2.12)

Then, if µ satisfies (D) η R , M R/2 is bounded on L p for all p ∈ (1, +∞], and the operator norm is bounded by a constant that only depends on the doubling constant A and on p.

We will use the following classical results: Lemma 2.1 (Vitali's covering lemma). Let (X, d) be a separable metric space, and {B j } j∈J a collection of balls, such that sup j r(B j ) < ∞. Then for any c > 3 there exists a subcollection {B jn } n∈N ⊂ {B j } j∈J such that the B jn are pairwise disjoint and j∈J B j ⊂ n∈N cB jn . Theorem 2.2 (Marcinkiewicz interpolation theorem). Let (X, µ) be a measure space, T a sublinear operator acting on functions, i.e. there is a κ > 0 such that for any f, g measurable, then T f, T g are measurable and

T (f + g)(x) ≤ κ (T f (x) + T g(x)) for almost every x ∈ X. Let 1 ≤ p < r ≤ ∞. If r < ∞, assume that: ∀f ∈ L p , µ{x ∈ X : T f (x) > λ} ≤ A λ p f p p , ∀f ∈ L r , µ{x ∈ X : T f (x) > λ} ≤ B λ r f r r ,
If r = ∞, then assume instead that:

∀f ∈ L p , µ{x ∈ X : T f (x) > λ} ≤ A λ p f p p , ∀f ∈ L ∞ , |T f (x)| ≤ B|f (x)|, a.e. x ∈ X
Then, for every s ∈ (p, r), for all f ∈ L s , T f ∈ L s and:

T f s ≤ C(A, B, p, r, s, κ) f s . (2.13)
Proof of the proposition. We have, for any

f ∈ L ∞ (M ), M R f ∞ ≤ f ∞ . If f ∈ L 1 (M )
, then for any λ > 0, define:

E λ = x ∈ M : M R/2 f (x) > λ .
If x ∈ E λ , then there is some r x > 0 such that λ < ffl B(x,rx) |f | dµ, and 2r x ≤ R. Then:

µ(B(x, r x )) ≤ λ -1 ˆB(x,r) |f | dµ.
We have E λ ⊂ x B(x, r x ), thus by Vitali's covering lemma, there is a subcollection {x n } such that the B(x n , r n ) are pairwise disjoint and

E λ ⊂ n B(x n , 4r n ).
Also, since r n < R/2, and µ is R-doubling, we have µ

(B (x n , 4r n )) ≤ A 2 µ (B (x n , r n ))
. Then:

µ(E λ ) ≤ n µ(B(x n , 4r n )) ≤ A 2 n µ(B(x n , r n )) ≤ A 2 λ -1 n ˆB(xn,rn) |f | dµ ≤ A 2 f 1 λ .
So, by the Marcinkiewicz interpolation theorem, for any p ∈ (1, +∞), M R/2 is bounded on L p with an operator norm M R/2 p→p ≤ C p , with C p depending only on A and p.

Remark. Of course, (D) η R implies (D) η R ′ for all R ′ > R, then M R itself is also bounded, but with the constant C p depending on the constant for (D) η 2R . And so are all the M R ′ with R ′ > R, with the constant C p depending on p, the R-doubling constant, and the ratio R ′ /R. Proposition 2.11. Let MR the uncentered maximal function defined by: for all

f ∈ L 1 loc (M ), MR f (x) = sup x∈B, r(B)≤R B |f | dµ. (2.14)
With this supremum to be interpretated as being over all balls B satisfying the given condition, and r(B) being the radius of B.

Then, if µ is R-doubling, there exist some constant

C > 0 such that M R ≤ MR ≤ CM 2R .
Proof. Since a ball centered at x is a ball containing x, M R ≤ MR is obvious. Now, for some balls B = B(y, r) containing x, with radius less than R, we have B ⊂ B(x, 2r) and:

B |f | dµ ≤ µ (B (x, 2r)) µ(B) B(x,2r) |f | dµ ≤ CM 2R f (x).
Proposition 2.12. Let (X, d, µ) be a separable metric measure space, and D m be a chosen construction of dyadic cubes on X. Define the associated dyadic maximal function M d,m by:

M d,m f (x) = sup Q∈Dm x∈Q Q |f | dµ. (2.15)
Then there is a constant C p such that for any p > 1, for any

f ∈ L p , M d,m f p ≤ C p f p .
As a consequence, M d,m,l , the maximal function defined the same way, but with the cubes in the supremum being only those of length less than l, is also bounded on L p for all p > 1.

Proof. Let f ∈ L 1 (X), λ > 0, we define:

E λ = {x ∈ X : M d,m f (x) > λ}. If x ∈ E λ , then there is a cube Q ∈ D m such that ffl Q |f | dµ > λ, and so Q ⊂ E λ .
Then there are two possibilities:

If there is a maximal dyadic cube P containing x such that

ffl P |f | dµ > λ. This cube satisfies P ⊂ E λ .
If there is no such cube (in which case, x is in a region of space with infinite diameter but finite measure), then define Ω = Q∈Dm x∈Q Q. We can always find an arbitrarily large cube containing x which is a subset of E λ , and so Ω ⊂ E λ , and

µ(Ω) ≤ λ -1 ´Ω |f | dµ < ∞.
Then take {Q i } i to be the family of all the maximal dyadic cubes such that ffl Qi |f | dµ > λ, and {Ω j } j be the family of all the the regions Ω j = k Q j k , where {Q j k } is an infinite increasing sequence of cubes with ffl

Q k j |f | dµ > λ. The Q i , Ω j are pairwise disjoints: first it is clear by maximality that the Q i are. Then, if for a cube Q, we have Q ∩ Ω j = ∅, then there is a cube P ⊂ Ω j such that P ∩ Q = ∅, thus we have either P ⊂ Q or Q ⊂ P . In both case, Q ⊂ Ω j since Ω j
is the union of all cubes containing P . This mean both that Q i ∩ Ω j = ∅ for all i, j, and that Ω j ∩ Ω l = ∅ for j = l. Thus, we have the disjoint union:

E λ = i Q i ∪ j Ω j , Then µ(Q i ) < λ -1 ´Qi |f | dµ, and µ(Ω j ) ≤ λ -1 ´Ωj |f | dµ.
Summing on all cubes and all regions,

µ(E λ ) ≤ λ -1 ´Eλ |f | dµ ≤ λ -1 f 1 . Thus: µ ({x ∈ X : M d,m f (x) > λ}) ≤ f 1 λ . (2.16) Moreover, for f ∈ L ∞ (X), we clearly have M d,m f (x) ≤ f ∞ . Then by Marcienkiewicz interpolation theorem, for any p > 1 there is a constant C p > 1 such that M d,m f p ≤ C p f p .

Estimates of operator norms by that of a maximal function

We refers to the works of C. Pérez and R.L. Wheeden [START_REF] Pérez | Potential operators, maximal functions, and generalizations of A ∞[END_REF] for a more general approach. Well will first describe one of their result in the more specific context that is of interest to us, then will give a generalization of this result that holds on a R-doubling space.

In what follows, we let (X, d) be a separable R-doubling metric space. We take T an operator given by a kernel K : X × X \ Diag → R, i.e.

T f (x) = ˆX f (y)K(x, y) dµ(y).

(2.17)

We say that the operator T , or its kernel K, satisfies the condition (K) if K is non negative and if there are constants C 1 , C 2 > 1 such that:

d(x ′ , y) ≤ C 2 d(x, y) ⇒ K(x, y) ≤ C 1 K(x ′ , y), d(x, y ′ ) ≤ C 2 d(x, y) ⇒ K(x, y) ≤ C 1 K(x, y ′ ).
(2.18)

We take ρ > 1 such as, by theorem 2.1, for any integer m ∈ Z, we have a decomposition of X in dyadic cubes D m of lenghts ρ ℓ , ℓ ≥ m. We define ϕ as the following functional on balls

ϕ(B) = sup x,y∈B d(x,y)≥ 1 2ρ r(B) K(x, y), (2.19) 
and M ϕ to be the following maximal functions:

M ϕ f (x) = sup x∈B ϕ(B) ˆB |f | dµ. (2.20)
We want to establish an inequality of the type T f p ≤ C p M ϕ f p , as the later can be more convenient to estimate.

For T satisfying (K), it is shown in (4.3) of [START_REF] Sawyer | Weighted norm inequalities for operators of potential type and fractional maximal functions[END_REF] that ϕ is decreasing in the following sense:

Proposition 2.13. There is a constant α, depending only on C 1 , C 2 , ρ such that for any balls

B ⊂ B ′ , ϕ(B ′ ) ≤ αϕ(B)
Proof. First we want to prove that if (2.18) holds, then, for any C 2 > 1, there exist a corresponding C 1 such that (2.18) holds with those new constants. We can of course replace C 2 by a smaller constant. To replace it with a smaller, we show that for any integer k ≥ 1:

d(x ′ , y) ≤ C k 2 d(x, y) ⇒ K(x, y) ≤ C k 1 K(x ′ , y),
and that the same holds with (x, y ′ ) replacing (x ′ , y).

We proceed by induction. The case k = 1 is simply (2.18). Let k > 2, take x, x ′ , y ∈ X such that d(x ′ , y) ≤ C k 2 d(x, y), and suppose that:

d(x ′ , y) ≤ C k-1 2 d(x, y) ⇒ K(x, y) ≤ C k-1 1 K(x ′ y), then, if d(x ′ , y) ≤ C k-1 2 
d(x, y), the result holds and there is nothing to prove. If d(x ′ , y) > C k-1 2 d(x, y), then X is a path metric space, so there is a path from y to x ′ of length d(x ′ , y), and on this path is a point z such that d(y, z) = C k-1 2 d(x, y). But then:

d(x ′ , y) ≤ C k 2 d(x, y) = C 2 d(z, y), thus K(z, y) ≤ C 1 K(x ′ , y).
Then by induction, we proved that K(x, y) ≤ C k 1 K(x ′ , y) for all x, x ′ , y with d(x ′ , y) ≤ C k 2 d(x, y). It follows that if (2.18) holds, then for any C 2 > 1 there exist a C 1 > 1 such that (2.18) holds. Now we can prove the proposition proper. Take x ′ , y ′ ∈ B ′ , x, y ∈ B such that:

d(x ′ , y ′ ) ≥ cr(B ′ ), d(x, y) ≥ cr(B),
with c = 1 2ρ . By exchanging x ′ and y ′ if necessary, we can suppose that d(x, y ′ ) ≥ d(x, x ′ ), then:

cr(B ′ ) ≤ d(x ′ , y ′ ) ≤ d(x ′ , x) + d(x, y ′ ) ≤ 2d(x, y ′ ).
Moreover, since B ⊂ B ′ , we have d(x, y ′ ) ≤ 2r(B ′ ), and thus:

d(x, y ′ ) ≤ 2 c d(x ′ , y ′ ),
Thus by (2.18) there is a constant c 1 > 1 such that K(x ′ , y ′ ) ≤ c 1 K(x, y ′ ). Moreover:

d(x, y) ≤ d(x, y ′ ) + d(y ′ , y) ≤ d(x, y ′ ) + 2r(B ′ ) ≤ (1 + 4/c)d(x, y ′ ),
thus by (2.18) there is a constant c 2 > 1 such that K(x, y ′ ) ≤ c 2 K(x, y). Thus:

K(x ′ , y ′ ) ≤ c 1 c 2 K(x, y),
and we have ϕ(B ′ ) ≤ c 1 c 2 ϕ(B).

We further assume that ϕ satisfies the following condition: there is some ε > 0 and some constant L > 0 such that for any balls B 1 , B 2 , with B 1 ⊂ B 2 , we have:

ϕ(B 1 )µ(B 1 ) ≤ L r(B 1 ) r(B 2 ) ε ϕ(B 2 )µ(B 2 ).
(2.21)

Theorem 2.3 (C. Pérez and R.L. Wheeden [START_REF] Pérez | Potential operators, maximal functions, and generalizations of A ∞[END_REF]). Let (X, d, µ) be a metric space with a doubling measure µ. Let T be an operator defined by (2.17) and satisfying (K), with ϕ satisfying (2.21).

Then there is a constant C, depending only on the doubling constant and p, such that, for any measurable f : X → R: This theorem is useful, but can't be applied to spaces that are only R-doubling. We will now prove a version that we can use in R-doubling spaces.

T f p ≤ C M ϕ f p . ( 2 
We consider the operator T δ , δ < R, with kernel K δ (x, y) = K(x, y)χ {d(x,y)<δ} , and we want to compare its L p norm to that of the maximal function M ϕ,δ defined by:

M ϕ,δ f (x) = sup x∈B r(B)<δ ϕ(B) ˆB |f | dµ.
(2.23)

The idea of the proof of this comparison will be essentially the same as that of theorem 2.3 given in [START_REF] Pérez | Potential operators, maximal functions, and generalizations of A ∞[END_REF], but some care must be taken to account for the different hypotheses properly, and thus we will give the details in what follows.

The hypothesis to prove T f p ≤ C M ϕ,δ f p can be weakened compared to those of theorem 2.3. A key point is that proposition 2.13 has to hold at least for balls of radius at most 2δ. Looking at the proof of the proposition, this is true as long as (2.18) holds for C 2 ≤ (1 + 8ρ) and d(x, y) ≤ 4δ.

Then we take (X, d, µ) a R-doubling space. T an operator defined by a kernel K. We say that T , or K verify the condition (K) δ , if there exist constants C 1 > 1, C 2 ≥ 1 + 8ρ, such that for any x, y such that d(x, y) ≤ 4δ, we have:

∀x ′ ∈ X, d(x ′ , y) ≤ C 2 d(x, y), K(x, y) ≤ C 1 K(x ′ , y) ∀x ′ ∈ X, d(x, y ′ ) ≤ C 2 d(x, y), K(x, y) ≤ C 1 K(x, y ′ ).
(2.24)

Property (K) δ ensure that 2.13 holds for balls of radius less than 2δ. Since we will end up considering balls of a radius slightly larger than δ, the following proposition will be useful.

Proposition 2.14. Let (X, d, µ) satisfies (D) η 2(2κ+1)δ for δ > 0, κ > 1, T an operator satisfying (K) 4(2κ+1)δ , and such that the associated functional ϕ satisfies (2.21) when r(B 1 ), r(B 2 ) ≤ 2(2κ+ 1)δ. Then for any p ∈ (1, ∞], there is some constant C depending only on p, κ, the doubling constants, and the constants α, L, ε, in proposition 2.13 and in (2.21) such that for any non negative f , M ϕ,κδ f p ≤ C M ϕ,δ f p .

Proof. We have:

M ϕ,κδ f (x) = M ϕ,δ f (x) + sup x∈B, δ<r(B)≤κδ ϕ(B) ˆB |f | dµ ≤ M ϕ,δ f (x) + C sup x∈B, r(B)=κδ ϕ(B) ˆB(x,2κδ) |f | dµ.
Using that for x ∈ B, B ⊂ B(x, 2r(B)) ⊂ B(x, 2κδ) and that for any ball B with radius greater than δ, by (2.21) (on balls with radius at most κδ), we have:

ϕ(B) ≤ ALκ η ϕ κδ r(B) B .
Now, for any ball B containing x with radius equal to κδ. Let B x = B(x, δ). For y ∈ 2κB x , consider the ball Q(y) = B(y, δ). We have Q(y) ⊂ (2κ + 1)B x , thus using (D) η (2κ+1)δ , we have that:

µ(2κB x ) ≤ A 2 (2κ + 1) η µ(Q(y)).

For y ∈ (2κ + 1)B x , we also have that B ⊂ B(z, 2(2κ + 1)δ), thus using (2.21) (for balls with radius at most 2(2κ + 1)δ)), (D) η 2(2κ+1) and (K) 4(2κ+1)δ) , we get that:

ϕ(B) ≤ A 2 2(2κ + 1) 2κ η αϕ(Q(y)).
Putting all this together, we get:

ϕ(B) ˆB(x,2κδ) |f | dµ = ϕ(B) 2κBx µ(2κB x )|f | dµ ≤ Cϕ(B) 2κBx µ(Q(y))|f (y)| dµ(y) ≤ C 2κBx ϕ(B) ˆQ(y) dµ(z)|f (y)| dµ(y) ≤ C 1 µ (B (x, 2κδ)) ˆ(2κ+1)Bx ϕ(B) ˆ2κBx∩B(z,δ) |f (y)| dµ(y) dµ(z) ≤ CA 2κ + 1 2κ η (2κ+1)Bx ϕ(B(z, δ)) ˆB(z,δ) |f (y)| dµ(y) dµ(z) ≤ C (2κ+1)Bx M ϕ,δ f dµ.
And the constant C depends only on the doubling constants, L, α and κ. Then we have:

M ϕ,κδ f (x) ≤ M ϕ,δ f (x) + CM (2κ+1)δ (M ϕ,δ f ) (x).
(2.25)

The theorem follows from the boundedness of the classical maximal function M (2κ+1)δ on any L p , p > 1, under (D) η 2(2κ+1)δ .

Theorem 2.4. Let δ > 0. Let ρ > 0 be the sidelength constant of dyadic cubes. Suppose that (X, d, µ) satisfies (D) η 2(6ρ+1)δ . Assume that K satisfies (K) 4(6ρ+1)δ , and that ϕ satisfies (2.21) for balls with radius at most 2(6ρ + 1)δ. Let p ≥ 1. Then there is a constant C > 0 (depending only on the doubling constants, ρ, p and of the constants in (2.21), (2.18)) such that we have:

ˆX |T δ f | p dµ ≤ C ˆX (M ϕ,δ f ) p dµ.
(2.26)

Proof. We will show that there exist some constant C > 0 such that for any non negative function f , we have

´X |T δ f | p dµ ≤ C ´X (M ϕ,3ρδ f ) p dµ.
Then the theorem will follows by proposition 2.14.

To prove this, we define, for any m ∈ Z, the operator T m by:

T m f (x) = ˆd(x,y)>ρ m K δ (x, y)f (y) dµ(y).
Then, if for any m ∈ Z, and for any non negative measurable functions f, g, we have:

ˆX T m f g dµ = ˆd(x,y)>ρ m K δ (x, y)f (y)g(x) dµ(x, y) ≤ C M ϕ,3δ f p g p ′ .
(2.27)

Then by the monotone convergence theorem, taking m → -∞, the same inequality holds but with T m replaced by T , and by duality, (2.26) is true.

Take m ∈ Z, and let f, g be non negative measurable functions. Let D m = E k α k≥m α∈N * be a decomposition of X in dyadic cubes given by theorem 2.1 with sidelengths ρ k . If (x, y) ∈ X are such that d(x, y) > ρ m , we take the integer l ≥ m such that:

ρ l < d(x, y) ≤ ρ l+1 . Let Q be the cube of length ρ l containing x, B(Q) = B c Q , ρ l+1 the containing ball. We recall that ρ -1 B(Q) ⊂ Q ⊂ B(Q).
We have:

d(c Q , y) ≤ d(c Q , x) + d(x, y) ≤ 2ρ l+1 , thus y ∈ 2B(Q). Since d(x, y) > ρ l = 1 2ρ r (2B(Q))
, we have by definition of ϕ, and by proposition 2.13:

K(x, y) ≤ ϕ(2B(Q)) ≤ αϕ(B(Q))
To apply proposition 2.13 we need (K) 4ρδ .

If we suppose that δ ≤ ρ l = ℓ(Q), then d(x, y) ≥ δ and K δ (x, y) = 0.

We have proved that if Q is the cube of length comparable with d(x, y), containing x, we have y ∈ 2B(Q) and:

K δ (x, y) ≤ Cϕ(B(Q))χ {R∈Dm, ℓ(R)<δ} (Q)χ Q (x)χ 2B(Q) (y).
If r is the largest integer such that ρ r < δ, define D r m = E k α ; m ≤ k ≤ r . For any x, y ∈ X with d(x, y) > ρ m , there is at least one cube Q ∈ D m such that the previous inequation holds, and since both sides of it are zero if ℓ(Q) ≥ δ, we have, for any x, y ∈ X:

K δ (x, y) ≤ Q∈D r m Cϕ(B(Q))χ Q (x)χ 2B(Q) (y).
And so, for any f, g ≥ 0:

ˆX T m f g dµ ≤ C Q∈D r m ϕ(B(Q)) ˆ2B(Q) f dµ ˆQ g dµ.
But for any fixed integer k ≥ m, the cubes of length of length ρ k , E k α are pairwise disjoints, and X = α E k α . Then using this decomposition for k = r,

ˆX T m f g dµ ≤ C α≥1 Q∈D r m Q⊂E r α ϕ(B(Q)) ˆ2B(Q) f dµ ˆQ g dµ.
Then for a constant γ ≥ 1 to be determined, for any α ≥ 1, and n ∈ Z, define:

C n α = Q ∈ D r m , Q ⊂ E r α ; γ n < 1 µ(B(Q)) ˆQ g dµ ≤ γ n+1 . (2.28) 
We let n α be the unique integer such that E r α ∈ C nα α . Notice that {C n α } n∈Z is a partition of {Q ∈ D r m ; Q ⊂ E r α }. Then we have:

ˆX T m f g dµ ≤ C α≥1 n∈Z γ n+1 Q∈C n α ϕ(B(Q))µ(B(Q)) ˆ2B(Q) f dµ.
For any α ≥ 1, we let Q n j,α j∈Jn , for some index set J n , be the collection of the maximal dyadic cubes subset of E r α such that:

γ n < 1 µ B Q n j,α ˆQn j,α g dµ.
If n ≤ n α , then there is exactly one such maximal cube: E r α . Also, the function

(n, Q) → Q is an injection from the set of the couples (n, Q) with n ≤ n α , Q ∈ C n α to {Q ∈ D r m : Q ⊂ E r α }, thus: n≤nα Q∈C n α γ n+1 ϕ(B(Q))µ(B(Q)) ˆ2B(Q) f dµ ≤ γ nα+1 Q∈D r m Q⊂E r α ϕ(B(Q))µ(B(Q)) ˆ2B(Q) f dµ.
If n > n α , then any Q n j,α is a strict subset of E r α . For such a maximal cube F , we let P be his dyadic parent i.e. the only cube of length ρℓ(F ) containing P . We have P ⊂ E r α , and by using the maximality of F , and that B(F ) ⊂ 2B(P ), and using the ρδ-doubling (B(P ) has radius less than ρδ):

γ n < 1 µ(B(F )) ˆF g dµ ≤ µ(B(P )) µ(B(F )) 1 µ(B(P )) ˆP g dµ ≤ Cρ η γ n = κγ n , (2.29) 
with the constant κ depending only on ρ and on the doubling constant. Then choosing γ > κ, we have:

1 µ(B(F )) ˆF g dµ ≤ γ n+1 , thus F ∈ C n α .
Thus for a fixed n > n α , every cube in C n α is in a (unique) Q n j,α , which are disjoint in j by maximality. Thus, writing Q nα j,α for E r α we have:

ˆX (T m f ) g dµ ≤ C α≥1 n≥nα γ n+1 j∈Jn Q∈D m α Q⊂Q n j,α ϕ(B(Q))µ(B(Q)) ˆ2B(Q) f dµ.
Now we use the following lemma (see lemma 6.1 of [START_REF] Pérez | Potential operators, maximal functions, and generalizations of A ∞[END_REF]):

Lemma 2.2. Let (X, d, µ) satisfies (D) η δ .
Let ϕ be a functional on balls that satisfies (2.21) for balls of radius at most ρδ. Then there is a constant C depending only on the constant L of (2.21) and on the doubling constant such that for any f ≥ 0 and any dyadic cube

Q 0 ∈ D r m , with ρ r ≤ δ, Q∈Dm Q⊂Q0 ϕ(B(Q))µ(B(Q)) ˆ2B(Q)) f dµ ≤ Cϕ(B(Q 0 ))µ(B(Q 0 )) ˆ3B(Q0) f dµ. (2.30)
Proof. By (2.21), we have:

Q∈Dm Q⊂Q 0 ϕ(B(Q))µ(B(Q)) ˆ2B(Q)) f dµ ≤ Lϕ(B(Q0))µ(B(Q0)) Q∈Dm Q⊂Q 0 ℓ(Q) ℓ(Q0) ε ˆ2B(Q)) f dµ ≤ Lϕ(B(Q0))µ(B(Q0)) +∞ l=0 ρ -εl Q∈Dm Q⊂Q 0 ℓ(Q)=ρ -l ℓ(Q 0 ) ˆ2B(Q)) f dµ. (2.31) Then for Q ∈ D m , Q ⊂ Q 0 , and ℓ(Q) ≤ ℓ(Q 0 ) we have 2B(Q) ⊂ 3B(Q 0 ). Indeed, if y ∈ 2B(Q), then: d(y, x Q0 ) ≤ d(y, x Q ) + d(x Q , x Q0 ) ≤ 2r(B(Q)) + r(B(Q 0 )) ≤ 3r(B(Q 0 )).
Thus, the left hand side of (2.31) is less than:

Lϕ(B(Q 0 ))µ(B(Q 0 )) ˆ3B(Q0)) f (x) ∞ l=0 ρ -εl Q∈Dm Q⊂Q0 ℓ(Q)=ρ -l ℓ(Q0) χ 2B(Q) (x) dµ(x).
Then it suffices to show that for each l, any x of 3B(Q 0 ) is in at most N of the 2B(Q), with ℓ(Q) = ρ -l ℓ(Q 0 ), with N independant of the choices of x and Q 0 . For l = 0, there is only one Q: Q 0 itself, and thus it is true. Now fix l > 1, let x ∈ M , and Q be a cube of sidelength ρ -l ℓ(Q 0 ) such that x ∈ 2B(Q). We write ℓ = ℓ(Q) ≤ ρ -1 δ. Then for y ∈ Q:

d(x, y) ≤ d(x, x Q ) + d(y, x Q ) ≤ 3ρℓ ≤ 3δ, then we have B(x Q , ℓ) ⊂ Q ⊂ B(x, 3ρℓ)
. By the proposition 2.9, then there can be at most N disjoint balls of radius ℓ ≤ δ with center in a ball of radius 3ρℓ, with the constant N depending only on ρ and on the δ-doubling constant.

Thus:

∞ l=0 ρ -εl Q∈Dm Q⊂Q0 ℓ(Q)=ρ -l ℓ(Q0) 1 ≤ N 1 1 -ρ -ε ,
and the lemma follows.

Then applying the lemma:

ˆX (T m f ) g dµ ≤ C α≥1 n≥nα γ n+1 j∈Jn ϕ B Q n j,α µ B Q n j,α ˆ3B(Q n j,α ) f dµ. And thus since Q n j,α ∈ C n α , γ n ≤ 1 µ(B(Q n j,α )) ´Qα j,n
g dµ, and so,

ˆX (T m f ) g dµ ≤ Cγ α≥1 n≥nα j∈Jn ϕ B( Q n j,α ˆ3B(Q n j,α ) f dµ ˆQn j,α
g dµ, and we have:

ˆX (T m f ) g dµ ≤ c α,n,j ϕ B Q n j,α µ Q n j,α ˆ3B(Q n j,α ) f dµ 1 µ(Q n jα ) ˆQn j,α
g dµ.

(2.32)

Then using Hölder's inequality, and that by (2.21) there is some constant c depending only on α, A, L, ε such that ϕ(B) ≤ cϕ(3B) (ball of radius 3ρδ), we get:

ˆX (T m f ) g dµ ≤ C   α,n,j µ Q n j,α ϕ B 3Q n j,α ˆ3B(Q n j,α ) f dµ p   1 p   α,n,j µ Q n j,α 1 µ(Q n jα ) ˆQn j,α g dµ p ′   1 p ′
. Now we just need to establish a majoration of µ(Q n j,α ) by a constant time the measure of a set E n j,α , with the E n j,α being pairwise disjoint in j, n, α. For this, define Ω n α by

Ω n α =      x ∈ E r α ; sup Q∈D r m x∈Q 1 µ(B(Q)) ˆQ g dµ > γ n      = j∈Jn Q n j,α , (2.33) 
and define the set E n j,α = Q n j,α \ Ω n+1 α . We have that E n j,α ⊂ Ω n α \ Ω n+1 α , and the E n j,α are pairwise disjoints in j, n, α. Now we want to show that for γ chosen large enough, µ(Q n j,α ) ≤ 2µ(E n j,α ). First:

Q n j,α ∩ Ω n+1 α = i Q n j,α ∩ Q n+1 i,α
, but we have:

1 µ B Q n+1 i,α ˆQn+1 i,α g dµ > γ n+1 > γ n ,
thus by maximality of Q n j,α , and by the properties of dyadic cubes, etiher

Q n+1 i,α ⊂ Q n j,α or Q n j,α ∩ Q n+1 i,α = ∅. Hence: µ Q n j,α ∩ Ω n+1 α = i:Q n j,α ∩Q n+1 i,α =∅ µ Q n j,α ∩ Q n+1 i,α = i:Q n+1 i,α ⊂Q n j,α µ Q n+1 i,α , but: µ Q n+1 i,α ≤ µ B Q n+1 i,α ≤ γ -n-1 ˆQn+1 i,α
g dµ, and since the Q n+1 i,α considered are disjoints and subsets of Q n j,α , we have:

µ(Q n j,α ∩ Ω n+1 α ) ≤ γ -n-1 ˆQn j,α g dµ ≤ κγ -1 µ(B(Q n j,α )),
where κ is the constant in (2.29). But we have:

µ(Q n j,α ) = µ(E n j,α ) + µ(Q n j,α ∩ Ω n+1 α )
, and so choosing γ = 2κ, it follows that:

µ Q n j,α ≤ γ γ -κ µ E n j,α = 2µ E n j,α .
Consequently, we have:

ˆX (T m f ) g dµ ≤ 2C   α,n,j µ E n j,α ϕ B 3Q n j,α ˆ3B(Q n j,α ) f dµ p   1 p   α,n,j µ E n j,α 1 µ(Q n jα ) ˆQn j,α g dµ p ′   1 p ′ , but since E n j,α ⊂ Q n j,α , it follows that: µ E n j,α ϕ B 3Q n j,α 3B(Q n j,α ) f dµ p ≤ ˆEn j,α M ϕ,3ρ r+1 f p dµ,
and a similar inequality for the integral on g. In addition using that the E n j,α are pairwise disjoint, and that ρ r < δ, we get:

ˆX (T m f ) g dµ ≤ 2C ˆX (M ϕ,3ρδ f ) p dµ 1 p ˆX (M d,δ g) p ′ dµ 1 p ′ . (2.34)
we easily verify that ϕ satisfies (2.21) with ε = s.

Then it is enough to prove that the centered and uncentered version of the maximal function M s,δ are equivalent in L p norms. This follow from the same argument as that of proposition 2.11.

3 Relative Faber-Krahn inequality and estimates on the heat kernel and the Riesz and Bessels potentials

Faber-Krahn and doubling

The results from this subsection are due to A.A. Grigor'yan [START_REF] Grigor | Heat kernel upper bounds on a complete non-compact manifold[END_REF][START_REF] Grigor | Heat kernel and analysis on manifolds[END_REF], or are slight adaptation of his results to the R-doubling case.

Theorem 3.1. [START_REF] Grigor | Heat kernel and analysis on manifolds[END_REF] Let (M, g, µ) be a weighted manifold, and let {B(x i , r i )} i∈I be a family of relatively comapct balls in M, where I is an arbitrary index set. Assume that, for any i ∈ I, U ⊂ B(x i , r i ), there is a constant a i > 0 such that the following Faber-Krahn inequality holds:

λ 1 (U ) ≥ a i µ(U ) -2/η . (3.1) 
Let Ω = i∈I B x i , ri 2 . Then for all x, y ∈ Ω and t ≥ t 0 > 0, we have:

p t (x, y) ≤ C(η) 1 + d(x,y) 2 t η/2 exp -d(x,y) 2 4t -λ 1 (M )(t -t 0 ) a i a j min (t 0 , r 2 i ) min t 0 , r 2 j η/4 , (3.2) 
where i, j are the indices such that x ∈ B x i , ri 2 and y ∈ B x j , rj 2 . On a manifold which admits (RFK) η R , applying this theorem with the family of all balls of radius less than R, {B(x, r)} x∈M, 0<r≤R , with a x,r = b r 2 µ (B (x, r)) 2/η , t 0 = t, and r = √ t, when t ≤ R 2 we get:

p t (x, y) ≤ C(η) 1 + d(x,y) 2 t η/2 e -d(x,y) 2 4t a x, √ t b y, √ t t 2 η/4 , ≤ C(η) b η/2 e -d(x,y) 2 ct µ B x, √ t 1/2 µ B y, √ t 1/2 .
If t > R 2 , then we do the same thing, but with r = R, and we obtain the following: Theorem 3.2. Let (M, g, µ) be a weighted Riemannian manifold, suppose that there is R > 0 such that M satisfies (RFK) η R . Then µ satisfies (D) η R , and for any c > 4 there is some constant K > 0 such that the heat kernel has the following upper bounds:

p t (x, y) ≤ K µ B x, √ t 1/2 µ B y, √ t 1/2 e -d(x,y) 2 ct , t ≤ R 2 (3.3) p t (x, y) ≤ K µ (B (x, R)) 1/2 µ (B (y, R)) 1/2 e -d(x,y) 2 ct , t > R 2 . (3.4)
The constant K depends only on b and η in the Faber-Krahn inequality and on the c > 4 chosen.

The estimate on the heat kernel follows from Theorem 5.2 of [START_REF] Grigor | Heat kernel upper bounds on a complete non-compact manifold[END_REF]. The R-doubling follow from the proof of Proposition 5.2 of the same article.

Conversely, we have:

Proposition 3.1.
[10] Let (M, g, µ) be a complete, weighted Riemannian manifold. If µ satisfies (D) η R , if for any x ∈ M , the annuli B(x, r ′ ) \ B(x, r), for 0 ≤ r < r ′ ≤ R are non-empty, and if there is some constant B such the heat kernel satisfies:

p t (x, x) ≤ B µ B x, √ t , (3.5) 
for all x ∈ M , and for all 0 < t ≤ R 2 , then there is some constant κ ∈ (0, 1), depending only on the doubling and reverse doubling constants, such that M admits a relative Faber-Krahn inequality at scale κR, with η being the doubling order and b depending only on A, B, and κ depends only on the doubling constants and on B.

Proof. This is a modification of the proof in [START_REF] Grigor | Heat kernel upper bounds on a complete non-compact manifold[END_REF], to take into account the R doubling case. Fix a ball B(x, r), with r < R, and let U be an open relatively compact subset of B(x, r). Using the doubling volume property, we have, if t ≤ r 2 :

e -λ1(U)t ≤ ˆU p t (y, y) dµ(y) ≤ B ˆU dµ(y) µ B y, √ t ≤ AB µ(U ) µ (B (x, r)) r √ t η ,
thus we have:

λ 1 (U ) ≥ 1 t log 1 AB µ (B (x, r)) µ(U ) √ t r η .
Choose t such that the logarithm in the above inequality is equal to 1, i.e.

t = r 2 eAB µ(U ) µ (B (x, r)) 2/η
, the condition t ≤ r 2 then impose µ(U ) ≤ 1 eAB µ (B (x, r)). For such U , we then have:

λ 1 (U ) ≥ (eAB) -2/η r 2 µ (B (x, r)) µ(U ) 2/η . (3.6) 
Now since the measure µ satisfies (D) η R , and since the annuli of radius less than R are non empty, it satisfies (RD) ν R for some ν > 0. There is some constant a ∈ (0, 1) such that for any 0 < r < r ′ ≤ R we have:

µ (B (x, r)) ≤ a r r ′ ν µ (B (x, r ′ )) , with ν = -log 2 a. Then for κ = (aeAB) -1/ν , if r ≤ κR, choose r ′ = κ -1 r.
We have for all U relatively compact open subset of B(x, r):

µ(U ) ≤ 1 eAB µ(B(x, r ′ )),
thus we can apply (3.6). Then using by R-reverse doubling µ (B (x, r ′ )) ≥ a -1 κ -ν µ (B (x, r)), we have:

λ 1 (U ) ≥ b r 2 µ (B (x, r)) µ(U ) 2/η . With b = κ 2 .

An estimate on the heat kernel

Proposition 3.2. Let (M, g, µ) be a complete weighted manifold satisfying (RFK) η R for R > 0, then for any c > 4, there are constants K 1 , K 2 , K 3 > 0 and α > 0 such that the following estimates on the heat kernel hold:

If 0 ≤ t ≤ R 2 , then:

p t (x, y) ≤ K 1 µ B x, √ t e -d(x,y) 2 ct . (3.7) 
If t > R 2 and d(x, y) ≤ R, then:

p t (x, y) ≤ K 2 µ (B (x, R)) e -d(x,y) 2 ct . (3.8) 
If t > R 2 and d(x, y) > R, then:

p t (x, y) ≤ K 3 µ (B (x, R)) e α t R 2 e -d(x,y) 2 ct . (3.9) 
Proof. Using the R-doubling, we have that for any t > 0,

µ B x, √ t ≤ Cµ B y, √ t e D d(x,y) √ t , (3.10) 
and so, for t ≤ R 2 , we get, for any c ′ > 4:

p t (x, y) ≤ CK µ B x, √ t e D 2 d(x,y) √ t -d(x,y) 2 c ′ t , (3.11) 
so taking c ′ < c, there's some constant K 1 such that:

p t (x, y) ≤ K 1 µ B x, √ t e -d(x,y) 2 ct . (3.12) 
When t > R 2 and d(x, y) ≤ R, then the R-doubling property for small balls immediately lead to the desired result.

When d(x, y) > R, then by the R-doubling we obtain, for any c ′ > 4:

p t (x, y) ≤ CK µ (B (x, R)) e D 2 d(x,y) R - d(x,y) 2 c ′ t .
We have that Dd(x,y)

2R -d(x,y) 2 c ′ t ≤ c ′ cD 2 t 16R 2 (c-c ′ ) -d(x,y) 2 ct
, thus there is some constants K 3 , α which depend on the doubling constant and the choice of c, c ′ , such that:

p t (x, y) ≤ K 3 µ (B (x, R)) e α t R 2 -d(x,y) 2 ct (3.13)

Estimation of the Riesz potential

Let s > 0, and define the Riesz potential to be the operator I s = ∆ -s/2 on L 2 (M, µ). Define i s (x, y) by:

i s (x, y) = 1 Γ s 2 ˆ+∞ 0 t s/2-1 p t (x, y)dt. (3.14) 
Whenever i s is finite for all x, y ∈ M , it is the Schwartz Kernel of the Riesz potential: in such case, for any f ∈ C ∞ 0 (M ), f is in the domain of I s and:

I s f (x) = ˆM i s (x, y)f (y)dµ(y), (3.15) 
we thus call i s the Riesz kernel. A sufficient condition for the Riesz Kernel to be defined is given in the following proposition, which also yields an estimate on it:

Proposition 3.3. Let (M, g, µ) be a manifold satisfying (RFK) η and (RD) ν , ν > 0. Then for any s < ν, there is a constant C depending only on the Faber-Krahn and reverse doubling constants, such that the following inequality holds:

i s (x, y) ≤ C d(x, y) s µ (B (x, d(x, y))) (3.16)
Proof. Using proposition 3.2 when the manifold satisfies (RFK) η , there is C > 0 such that for all x, y ∈ M , t > 0:

p t (x, y) ≤ K 1 µ B x, √ t exp - d(x, y) 2 5t , (3.17) 
and so:

i s (x, y) ≤ C s ˆ∞ 0 t s/2-1 µ B x, √ t e -d(x,y) 2 5t
dt.

(3.18)

Using the doubling and reverse property, with η the doubling order and ν the reverse doubling order, we obtain, writing d = d(x, y):

     1 µ(B(x, √ t)) ≤ c 1 µ(B(x,d)) d √ t η 0 < t ≤ d 2 1 µ(B(x, √ t)) ≤ c 1 µ(B(x,d)) d √ t ν t > d 2 , (3.19) 
and so:

i s (x, y) ≤ C 1 µ (B (x, d)) d η ˆd2 0 t s-η 2 -1 e -d 2 5t dt + d ν ˆ∞ d 2 t s-ν 2 -1 e -d 2 5t dt . (3.20) 
Then provided ν > s, we have:

ˆ∞ d 2 t s-ν 2 -1 e -d 2 ct dt ≤ ˆ∞ d 2 t s-ν 2 -1 dt = 2 s -ν d s-ν . (3.21)
For the other integral, we make the change of variable t = d 2 /u, obtaining:

ˆd2 0 t s-η 2 -1 e -d 2 ct dt = d s-η ˆ∞ 1 u η-s 2 -1 e -u c du. (3.22)
This integral is convergent and equal to a constant that depends only on s and c. Then, we have for every x, y ∈ M :

i s (x, y) ≤ C d(x, y) s µ (B (x, d(x, y))) (3.23)

Estimation of the Bessel potential

Define the Bessel potential for λ > 0, s > 0 to be the operator G s,λ = ∆ + λ 2 -s/2 on L 2 (M, µ).

It is, by the spectral theorem, a bounded operator, and, similarly to the case of the Riesz potential, admits for kernel:

g λ s (x, y) = 1 Γ s 2 ˆ∞ 0 t s/2-1 e -λ 2 t p t (x, y) dt, (3.24) 
provided that g λ s is finite for all x, y ∈ M .

Proposition 3.4. Let (M, g, µ) be a complete weighted manifold satisfying (RFK) η R and (RD) ν R . If λ > 0 is such that λR ≥ 1, then for any s < ν, there is a constant C > 0, depending only on s and on the Faber-Krahn constants, such that for all x, y ∈ X with d(x, y) ≤ R, we have:

g λ s (x, y) ≤ C d(x, y) s µ (B (x, d(x, y))) . (3.25) 
Proof. We have:

g λ s (x, y) = 1 Γ s 2 ˆ∞ 0 t s 2 -1 e -λ 2 t p t (x, y)dt, (3.26) 
and we split this integral into three, integrating on (0, d 2 ), (d 2 , R 2 ) and (R 2 , +∞).

We use proposition 3.2. The same calculations as in the proof for the Riesz potential yields the estimate:

ˆd2 0 t s 2 -1 e -λ 2 t p t (x, y)dt ≤ C d(x, y) s µ (B (x, d(x, y))) (3.27) When d ≤ √ t ≤ R, we have by the R-reverse doubling that µ (B (x, d)) ≤ a d √ t ν µ B x, √ t , thus: ˆR2 d 2 t s 2 -1 e -λ 2 t p t (x, y)dt ≤ C ˆR2 d 2 t s 2 -1 e -λ 2 t 1 µ B x, √ t e -d 2 5t dt ≤ C d ν µ (B (x, d)) ˆR2 d 2 t s-ν 2 -1 e -λ 2 t e -d 2 5t dt ≤ C d ν µ (B (x, d)) ˆR2 d 2 t s-ν 2 -1 e -λ 2 t dt ≤ C d ν µ (B (x, d)) 2 s -ν R s-ν -d s-ν ,
and since sν < 0 we have: 

ˆR2 d 2 t s 2 -1 e -λ
≤ d R ν µ (B (x, R)).
Moreover, we have t s 2 -1 e -λ 2 t ≤ c s λ 2-s e -λ 2 2 t , thus we have:

ˆ∞ R 2 t s 2 -1 e -λ 2 t p t (x, y)dt ≤ C d R ν λ 2-s µ (B (x, d)) ˆ∞ R 2 e -λ 2 2 t dt ≤ C d R ν λ -s µ (B (x, d)) e -(λR) 2 2
Then, since λR ≥ 1, and f (t) = t -s e -t 2 2 is decreasing, we have λ -s e -(λR) 2

2

≤ R s e -1 2 , which leads to:

ˆ∞ R 2 t s 2 -1 e -λ 2 t p t (x, y)dt ≤ C R d s-ν d s µ (B (x, d)) , (3.29) 
then sν < 0 and d < R, thus we have:

ˆ∞ R 2 t s 2 -1 e -λ 2 t p t (x, y)dt ≤ C d(x, y) s µ (B (x, d(x, y))) (3.30)
4 Proof of the main results

Let (M, g, µ) be a weighted Riemannian manifold. Let V ∈ L 1 loc (M, dµ), V ≥ 0, for any R > 0 and p ≥ 1, we define N p (V ) and N p,R (V ) as in (1.8) and (1.9). Notice that N p (V ) = M 2p (V p ) 1/p . Though we can deduce theorem 1.1 as a special case of 1.2, we start by giving a separate, simpler proof of it. The general idea behind the proof of both theorems remains the same, but in the case of theorem 1.2, much more care will be required in establishing the bounds on the norm of certain operators.

Proof the global inequality (Theorem 1.1)

We assume here that µ is reverse doubling of order ν, with ν > 1, and we will show later on that this implies the general result.

Given ϕ ∈ L 2 (M ), we first estimate ∆ -1/2 V 1/2 ϕ 2 . By proposition 3.3, for any nonnegative, measurable function f , we have:

∆ -1 2 f (x) ≤ C ˆM d(x, y) µ (B (x, d(x, y)))
f (y)dµ(y).

Let T be the operator defined by the kernel K(x, y) = d(x,y) µ(B(x,d(x,y))) . Since M is a doubling space, applying corollary 2.1, we have that:

T f 2 ≤ C M 1 f 2 ,
and so:

∆ -1 2 f ≤ M 1 f 2 .
It follows that:

∆ -1/2 V 1/2 ϕ 2 ≤ C M 1 V 1/2 ϕ 2 .
Then, using the Hölder inequality, we have, with q = 2p, 1 q + 1 q ′ = 1:

M 1 V 1/2 ϕ ≤ M q V q/2 1 q M 0 |ϕ| q ′ 1 q ′ ≤ N p (V ) 1 2 M 0 |ϕ| q ′ 1 q ′ , since N p (V ) = M 2p (V p ) 1 p .
And by the L 2/q ′ boundedness of the Hardy-Littlewood maximal function, we obtain that:

M 1 V 1/2 ϕ 2 ≤ N p (V ) 1 2 M 0 |ϕ| q ′ 1 q ′ 2 ≤ N p (V ) 1 2 M 0 |ϕ| q ′ 1 q ′ 2 q ′ ≤ C p N p (V ) 1 2 ϕ 2 .
And so:

∆ -1/2 V 1/2 ϕ 2 ≤ C p N p (V ) 1 2 ϕ 2 , (4.1) 
and

∆ -1/2 V 1/2 • is a bounded linear operator on L 2 . Its adjoint is V 1/2 ∆ -1/2
, and for any

ψ ∈ C ∞ 0 (M ), if we let ϕ = ∆ 1/2 ψ, ϕ ∈ L 2 and ´M V ψ 2 dµ = ´M V 1/2 ∆ -1/2 ϕ 2 dµ
. By (4.1) we get:

ˆM V ψ 2 dµ ≤ C p N p (V ) 1/2 ϕ 2 2 = C p N p (V ) ∇ψ 2 2 . (4.2)

Proof of the local inequality (Theorem 1.2)

We again make a technical hypothesis on the reverse doubling order, proving the following result:

Theorem 4.1. Let (M, g, µ) be a complete weighted Riemannian manifold satisfying (RFK) η R for some R > 0, and (RD) ν R for some ν > 1. Then, for any p > 1, there is some constant C p depending only on the Faber Krahn constants and p, such that for any non-negative, locally integrable V , and any ψ ∈ C ∞ 0 (M ), the following inequality holds:

ˆM V ψ 2 dµ ≤ C p N p,R (V ) ˆM |∇ψ| 2 dµ + 1 R 2 ˆM ψ 2 dµ (4.3)
We will show afterwards how to remove this hypothesis to obtain theorem 1.2

Proof of Theorem 4.1

Given λ > 0 such that λR ≥ 1, we let g λ = g λ 1 be the kernel of the Bessel potential G λ = ∆ + λ 2 -1 2 . By proposition 3.4, we have g λ (x, y) ≤ d(x,y) µ(B(x,d(x,y))) , for λd(x, y) < 1. We let: For any x ∈ M , r ≥ R, p ≥ 1, we have:

T 1 ψ(x) = ˆd(x,y)≤R g λ (x, y)V 1 2 (y)ψ(y)dµ(y), T 2 ψ(x) = ˆd(x,y)>R g λ (x, y)V 1 2 ψ(y)dµ(y) (4.4) By corollary 2.1, we have T 1 ψ p ≤ C p M 1,R V 1 
ˆB(x,r) |V (y)|dµ(y) ≤ C R 2 µ (B (x, r)) N p,R (V ) (4.6) 
Indeed, we cover B(x, r) by a family B i of balls of radius R with center in B(x, r) such that the balls with half the radius are pairwise disjoints. Then we have:

ˆB(x,r) |V (y)|dµ(y) ≤ i ˆBi |V (y)|dµ(y) ≤ C i µ 1 2 B i Bi |V (y)|dµ(y) ≤ C R 2 i µ 1 2 B i R 2 Bi |V (y)| p dµ(y) 1 p ≤ C R 2 µ B x, r + R 2 N p,R (V ) ≤ C R 2 µ (B (x, r)) N p,R (V ).
For all t ≥ R 2 , we use the corresponding estimate of proposition 3.2, and get a constant α > 0 such that:

ˆM\B(x,R) p t (x, y)|V (y)|dµ(y) ≤ Ce α t R 2 µ (B (x, R)) ˆM\B(x,R) e -d(x,y) 2 5t
|V (y)|dµ(y).

By writhing e - 

ˆM\B(x,R) e -d(x,y) 2 5t |V (y)|dµ(y) ≤ C R 2 N p,R (V ) ˆ∞ R e -r 2 5t 2r 5t µ (B (x, r)) dr,
then by the R-doubling, using (2.9), there is a constant β > 0 that depends on the doubling constant such that µ (B (x, r)) ≤ µ (B (x, R)) e β r R , thus:

ˆM\B(x,R) e -d(x,y) 2 5t |V (y)|dµ(y) ≤ C R 2 N p,R (V )µ (B (x, R)) ˆ∞ R 2r 5t e -r 2 5t +β r R dr,
and we then can find a constant γ > 0 such that e -r 2 5t +β r R ≤ e -r 2 10t +γ t R 2 . As a result, we get that:

ˆ∞ R 2r 5t e -r 2 10t dr = 2e -R 2 10t .

To conclude we obtain that for all t ≥ R 2 ˆM\B(x,r)

p t (x, y)|V (y)|dµ(y) ≤ C N p,R (V ) R 2 e -R 2 10t +2γ t R 2 . (4.7) 
For t ≤ R 2 , we obtain in the same way:

ˆM\B(x,R) p t (x, y)|V (y)|dµ(y) ≤ c µ B x, √ t N p,R (V ) R 2 ˆ∞ R e -r 2 5t 2r 5t µ (B (x, r)) dr ≤ c µ B x, √ t µ (B (x, R)) N p,R (V ) R 2 ˆ∞ R e -r 2 5t 2r 5t e β r R dr ≤ c R √ t ν N p,R (V ) R 2 e -R 2 10t +γ t R 2 ,
and finally we obtain:

ˆM\B(x,R) p t (x, y)|V (y)|dµ(y) ≤ C max R √ t , 1 ν N p,R (V ) R 2 e -R 2 10t +2γ t R 2 . (4.8) 
Thus we get the majoration:

ˆM |a(x, z)|dµ(z) ≤ C λ N p,R (V ) R 2 ˆ∞ 0 max R √ t , 1 ν e -R 2 10t +2γ t R 2 e -λ 2 t dt √ πt , (4.9) 
which by a change of variable t = R 2 u, transform into:

ˆM |a(x, z)|dµ(z) ≤ C λ N p,R (V ) R ˆ∞ 0 max 1 √ u , 1 ν e -1 10u +(2γ-λ 2 R 2 )u du √ πu , (4.10) 
and if λR ≥ √ 3γ = κ > 1 we obtain:

ˆM a(x, z)dz ≤ CN p,R (V ). (4.11) 
Thus, by the Schur test,

T 2 T * 2 L 2 →L 2 ≤ CN p,R (V ), and T 2 L 2 →L 2 ≤ CN p,R (V ) 1 2 . Then, we have, for all λ ≥ κ R : ˆM V ψ 2 dµ ≤ C ˆM |∇ψ| 2 dµ + λ 2 ˆM ψ 2 dµ , (4.12) 
and in particular:

ˆM V ψ 2 dµ ≤ Cκ 2 ˆM |∇ψ| 2 dµ + 1 R 2 ˆM ψ 2 dµ . (4.13) 

Proof of theorem 1.4

We now suppose that λ 1 (M ) > 0. Then the previous results can be strenghtened to prove theorem 1.4.

Proof. We apply theorem 1.2, and use that λ 1 (M ) ´M ψ 2 dµ ≤ ´M |∇ψ| 2 dµ. Then we obtain:

V ψ, ψ ≤ C p N p,R (V ) 1 + 1 λ 1 (M )R 2 ˆM |∇ψ| 2 dµ, which gives:

λ 1 (M )R 2 C p N p,R (V )(1 + λ 1 (M )R 2 )
ˆM V ψ 2 dµ ≤ ˆM |∇ψ| 2 dµ, and:

λ 1 (M )R 2 2C p N p,R (V )(1 + λ 1 (M )R 2 ) ˆM V ψ 2 dµ + λ 1 (M ) 2 ˆM ψ 2 dµ ≤ ˆM |∇ψ| 2 dµ.
Then, for any V , we have:

V ψ, ψ ≤ C p N p,R (V )(1 + λ 1 (M )R 2 ) λ 1 (M )R 2 ∇ψ 2 - λ 1 (M ) 2 ψ 2 , (4.14) 
which is (1.14).

Proof of theorem 1.3

Let C p be the constant of theorem 1.2. We let Then we have:

L = sup
B(x,δ) V p dµ 1/p ≤ L + δ -2 2C p , (M 2p,δ (V p )(x)) 1/p ≤ δ 2 L + 1 2C p .
Take δ = L -1/2 , then N p,δ (V ) ≤ 1 Cp . Then by theorem 1.2 we have:

V ψ, ψ -∇ψ 2 2 ≤ L ψ 2 , (4.16) thus: 
λ 1 (∆ -V ) ≤ sup V dµ, this for all r > 0. Thus:

-λ 1 (∆ -V ) ≥ sup x,δ
A -1-η/2 B(x,δ)

V dµδ -2 . (4.18)

Removing the dependancy on reverse doubling

Let M be a manifold satisfying (RFK) η . We consider M = R × M , ( M , g, μ) the product Riemannian manifold: g = dx 2 + g, dμ = dx dµ. For V ∈ L 1 loc (M ) we define Ṽ (x, m) = V (m). We write ∆ for the laplacian on ( M , g, μ), and ∆ for the laplacian on (M, g, µ). The Morrey norm in M is written Ñp,R .

We have:

Proposition 4.1. ( M , g, μ) satisfies the following properties:

1. If µ is R-doubling, then μ is R-doubling, and R-reverse doubling with order ν > 1.

2. The heat kernel of M is pt ((x, m), (y, n)) = 1 √ 4πt e -|x-y| 2 4t p t (m, n).

3. If M satisfies (RFK) η R , then there is some θ ∈ (0, 1) such that M satisfies (RFK) η θR . θ depends only on the Faber Krahn constants. From this, with r ≤ R we immediately get μ( B((x, m), 2r)) ≤ 4A 2 μ( B((x, m), r)), with A the R-doubling constant of µ. Moreover, since µ is R-doubling, it is R-reverse doubling, with reverse doubling order ν > 0. Then, we have, for r < r ′ < θR: 

Sp( ∆ -Ṽ ) = {λ + λ ′ ; λ ∈ Sp(∆ -V ), λ ′ ≥ 0}.
Thus the infimum of the spectrum of ∆ -Ṽ is the infimum of the spectrum of ∆ -V .

3. We use proposition 3.1. 5. We use (4.19). Using that ´B Ṽ dμ ≤ 2r ´B V dµ, we have: r 2p μ( B((x, m), r) ˆB Ṽ p dμ ≤ r 2p (r/2)µ (B (m, r/2))

2r ˆB V p dµ.

Then by R doubling Ñp,R ( Ṽ ) ≤ 4AN p,R (V ). The other inequality is obtained in a similar same way.

Proof of theorem 1.2. From the points 1., 3. of the above proposition, if (M, g, µ) is a manifold satisfying (RFK) η R , then there is some θ ∈ (0, 1), depending only on the Faber Krahn constants, such that ( M , g, μ) satisfies (RFK) η θR and (RD) ν R , with ν > 1. Then we can apply 1.2 to M : there is a constant Cp such that if Ṽ is such that Cp Ñp,R ( Ṽ ) ≤ 1, then λ 1 ( ∆ -Ṽ ) ≥ -1 θ 2 R 2 .

Using 5., then there is a constant C p > 0 such that C p N p,R (V ) ≥ Cp Ñp,R ( Ṽ ). Then since λ 1 (∆ -V ) = λ 1 ( ∆ -Ṽ ), if C p N p,R (V ) ≤ 1, then λ 1 (∆ -V ) ≥ -1 θ 2 R 2 . For an arbitrary V ≥ 0, locally integrable, with N p,R (V ) < +∞, we can apply the above to V /C p N p,R (V ), then for any ψ ∈ C ∞ 0 (M ):

1 C p N p,R (V ) ˆM V ψ 2 dµ ≤ 1 θ 2 ˆM |∇ψ| 2 + 1 R 2 ψ 2 dµ, (4.20) 
which is (1.12). Then applying theorems 1.2 and 1.1, we immediately obtain:

Hardy inequality

. 22 )

 22 In addition, for the operator T f (x) = ´M d(x,y) s µ(B(x,d(x,y))) f (y) dµ(y), we can replace M ϕ by the maximal function defined by M s f (x) = sup r>0 r s ffl B(x,r) |f | dµ. See corollary 2.1 for the justification.

2 ≤

 2 r < λ -1 ≤ R, and define f r : [0, ∞) → [0, +∞) by f (t) = r if t ≤ r, f (t) = 2rt if t ∈ (r, 2r] and f r (t) = 0 if t > 2r. Then for o ∈ M , ψ = f r (d(o, x)). ψ is a Lipschitz function with compact support, and we have, by (D) η R :λ 1 (∆ -V ) ≤ ∇ψ 2 -´M V ψ 2 dµ ψ µ (B (x,2r)) r 2 µ (B (x, r)) -

4. λ 1 1 .

 11 ( ∆ -Ṽ ) = λ 1 (∆ -V ) 5. If µ is R-doubling,then there are two constants c, C which depends only on the doubling constant, such that cN p,R (V ) ≤ Ñp,R ( Ṽ ) ≤ CN p,R (V ) Proof. For E ⊂ R measurable, we denote |E| the usual lebesgue measure of E. We have: |(-r/2, r/2)|µ(B(m, r/2)) ≤ μ( B((x, m), r)) ≤ |(-r, r)|µ(B(m, r)). (4.19)

1+ν 2 ., 4 . 1 √

 241 μ( B((x, m), r ′ )) μ( B((x, m), r))Thus μ is reverse doubling of order ν = 1 + ν > 1. We have ∆ = -d 2 dx 2 + ∆. Thus pt ((x, m), (y, n)) = 4πt e -|x-y| 2 4t p t (m, n), and the spectrum of ∆ -Ṽ is:

For some point o ∈ M , the L 2 2 B 0 a - 1

 2201 Hardy inequality:∀ψ ∈ C ∞ 0 (M ), ˆM ψ(x) 2 d(o, x) 2 dµ(x) ≤ C ˆM |∇ψ(x)| 2 dµ(x) (5.1)is equivalent to the positivity of the operator ∆ -V , withV (x) = 1 C d(o, x) -2. Moreover, we have:Proposition 5.1. Let (M, g, µ) be a weighted Riemannian manifold, R ∈ (0, ∞]. If µ satisfies (D) ηR and (RD) ν R , with ν > 1, then for any p ∈ (1, ν/2), there is a constant K p < ∞ such that for all r < R we have:r We let ρ(y) = d(o, y), B = B(x, r), for r < R.If r ≤ ρ(x)/2, then for y ∈ B(x, r), ρ(y) ≥ ρ(x)r ≥ ρ(x)/2 ≥ r. Then: ˆB ρ(y) -2p dµ ≤ r -2p µ(B).If r > ρ(x)/2, then B(x, r) ⊂ B(o, 3r), and:ˆB ρ -2p dµ ≤ ˆB(o,3r) ρ -2p dµ ≤ ˆ∞ 0 (2p -1)t -2p-1 µ (B (o, min(t, 3r))) dt ≤ ˆ3r (2p -1)t ν-2p-1 (3r) -ν µ (B (o, 3r)) dt + r -2p µ (B (o, 3r)) -2p µ (B (o, 3r)) ≤ C p r -2p µ (B (x, r)) ,since ν > 2p, with the constant C p depending uniquely on p and the doubling and reverse doubling constants.

  To estimate T 2 , we can study the operator T 2 T * 2 , with kernel a(x, z) defined as:a(x, z) = ˆM g λ (x, y)χ {d(x,y)>R} |V (y)|χ {d(y,z)>R} g λ (y, z)dµ(y),where we recall χ E to be the characteristic function of the set E. We then apply the Schur test to T 2 T * 2 : being a symetric operator, it will be bounded on L 2 if the integral:ˆM |a(x, z)|dµ(z)is uniformely bounded with respect to x. Given that we have g λ (y, z) = ´∞ 0 e -λ 2 t √ πt p t (y, z)dt, as well as ´M p t (y, z)dµ(z) ≤ 1, we calculate: by distinguishing the cases t ≥ R 2 and t < R 2 .

								2 ψ	p	, and the rest follows as in the global
	case. ˆM g λ (y, z)dµ(z) ≤	ˆ∞ 0	e -λ 2 t √ πt	dt =	1 λ	,
	but then:						
	ˆM |a(x, z)|dµ(z) ≤ ˆM ˆM g ≤ ˆM\B(x,R)	g λ (x, y)	ˆM\B(z,R)	g λ (y, z)dµ(z)|V (y)|dµ(y)dµ(z),
	and so we get:	ˆM |a(x, z)|dµ(z) ≤	1 λ ˆM\B(x,R)	g λ (x, y)|V (y)|dµ(y),
	or:	ˆM |a(x, z)|dµ(z) ≤	1 λ	ˆ+∞ 0	e -λ 2 t √ πt ˆM\B(x,R)	p t (x, y)|V (y)|dµ(y)dt	(4.5)

λ (x, y)χ {d(x,y)>R} |V (y)|χ {d(y,z)>R} g λ (y, z)dµ(y)dµ(z)

To estimate this integral, we estimate ´M\B(x,R) p t (x, y)|V (y)|dµ(y)

Some techniques of harmonic analysisRemark. The letter c, C will usually be used for generic constants, which value might change from line to line. When the dependance on some parameter is judged important and non obvious, it will be made clear when it appears, before being folded into the generic constants on subsequent lines.
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Now, using proposition 2.12, for all f, g ≥ 0, there is a constant C depending only on p, A, α, ε (specifically it depends on the constants for the ρδ-doubling) such that:

This holds under (D) η rδ , (K) 2ρδ and the fact that (2.21) holds for balls of radius at most 3ρδ. The stronger hypotheses are what we need to apply proposition 2.14 which gives us:

which proves the theorem.

Finally we have the theorem applied to the operators which will be of interest to us: B(x,d(x,y))) , then the associated operator T δ satisfies the hypotheses of theorem 2.4. Moreover, the theorem still holds with M ϕ,δ f replaced by the following maximal function:

(2.36)

Proof. First, take some b > 1, by proposition 2.8, µ is bR-reverse doubling of order ν. Then, we must verify that K satisfies the hypotheses of theorem 2.4. Let d(x, y) ≤ R and d(x, y ′ ) ≤ bd(x, y), then we have by doubling and reverse doubling,:

.

Thus, provided that s ≤ ν:

Furthermore, if d(x ′ , y) ≤ αd(x, y), using the doubling property, there are c, C such that cµ (B (y, d(x ′ , y))) ≤ µ (B (x ′ , d(x ′ , y))) ≤ Cµ (B (y, d(x ′ , y))), and so doing the same calcuations we have:

And there are C 1 , C 2 > 1 such that (2.18) is satisfied. Then, using the definition of ϕ and doubling:

for some constants that depends only on s, ρ and the doubling constant. Then since we have, for

(5.3) Corollary 5.2. If (M, g, µ) satisfies (RFK) η , (RD) ν with ν > 2 then there is a constant C such that:

(5.4)

The second corollary being theorem 1.5. This time the condition on the reverse doubling order is not merely a technical hypothesis. It is, in fact, a necessary condition for the Hardy inequality to holds if we assume the measure µ to be doubling: Proposition 5.2. Let (M, g, µ) be a weighted Riemannian manifold, with µ a doubling measure, assume that there is a constant ν > 2 such that for any o ∈ M , ψ ∈ C ∞ 0 (M ), M admits the Hardy inequality:

then µ satisfies (RD) ν .

Note that that we can always write a Hardy inequality (5.4) in the form (5.5) simply by chosing ν = 2 + 2 1/C.

Using a method from [START_REF] Carron | Geometric inequalities for manifolds with Ricci curvature in the Kato class[END_REF][START_REF] Li | Complete manifolds with positive spectrum[END_REF], we have: 

using that µ is doubling. Thus there is some constant a > 0 such that:

and µ is reverse doubling of order ν > 2.