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Lower bound of Schrödinger operators on Riemannian

manifolds

M. LANSADE

Abstract

We show that a weighted manifold which admits a relative Faber Krahn inequality admits

the Fefferman Phong inequality 〈V ψ, ψ〉 ≤ CV ‖ψ‖2, with the constant depending on a

Morrey norm of V , and we deduce from it a condition for a L2 Hardy inequality to holds,

as well as conditions for Schrödinger operators to be positive. We also obtain an estimate

on the bottom of the spectrum for Schrödinger operators.

Résumé

On montre qu’une variété à poids admettant une inégalité de Faber-Krahn relative admet

une inégalité de Fefferman Phong 〈V ψ, ψ〉 ≤ CV ‖ψ‖2, où la constante dépend d’une norme

de Morrey de V . On en déduit une condition pour qu’une inégalité de Hardy L2 soit vérifiée,

et des conditions de positivité des opérateurs de Schrödinger sur M . On obtient aussi un

estimé du bas du spectre des opérateurs de Schrödinger.

1 Introduction

In [8, 9] Fefferman and Phong established the inequality, for p > 1 :

ˆ

Rn

V (x)ψ(x)2 dx ≤ Cn,pNp(V )

ˆ

Rn

|∇ψ(x)|2 dx, (1.1)

with ψ a compactly supported smooth function, V non negative and locally integrable, Cn,p
is a constant depending only on the dimension and p, and Np is the Morrey norm :

Np(V ) = sup
x∈R

n

r>0

(

r2p−n
ˆ

B(x,r)

|V (y)|p dy

)1/p

. (1.2)

Such an inequality yields a positivity condition for the Schrödinger operator H = ∆ − V
(with ∆ = −∑n

i=1 ∂
2
i ), namely that if Np(V ) ≤ 1/Cn,p, then H is a positive operator. In fact

the following estimates on the lower bound of the spectrum of H , λ1(H) were also given :

sup
x∈R

n

r>0

(

C1r
−n

ˆ

B(x,r)

V dy − r−2

)

≤ −λ1(H) ≤ sup
x∈R

n

r>0



Cpr
−n
(

ˆ

B(x,r)

V p dy

)1/p

− r−2





(1.3)
The conditions for such inequalities (though with a constant that doesn’t necessarily depends

on the Morrey norm) to hold in R
n has been studied extensively, see for example in [4, 15, 18].
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And in [19], Maz’ya and Verbitsky establish necessary and sufficient conditions for (1.1) to hold
with complex valued V . That being the case, it seems interesting to study to what extends, and
under which geometrical hypotheses those results extend on other spaces, such as Riemannian
manifolds.

The first aim of this article is to generalize the initial result of Fefferman and Phong to a
weighted Riemannian manifold M . A natural way to do that would be to use the Poincaré
inequality :

´

B(x,r) |f − fB(x,r)| dµ ≤ Cr
´

B(x,κr) |∇f | dµ, f ∈ C∞(κB), for any x ∈ M , r > 0,

with κ > 1, fB = 1
µ(B)

´

B
f dµ. It turns out that the result still holds under some weaker

hypothesis. Our proof will follow the general idea used by Schechter in [26], that (1.1) follows
from the inequality (which holds in R

n following a result of Muckenhoupt and Wheeden[21]) :

‖I1f‖L2 ≤ C‖M1f‖L2, (1.4)

with I1f(x) = cn
´

Rn

f(y)
|x−y|n−1 dµ(y), and M1f(x) = supr>0 r

1−n ´
B(x,r) |f(y)| dy, and that (1.3)

is proved using similar estimates, this time on (∆ + λ2)−1/2.
The proof of the generalisation of (1.3) will naturally yields weak versions of (1.1), which

holds under weaker hypothesis.

1.1 Definitions and Notations

A weighted Riemannian manifold (M, g, µ), or simply a weighted manifold, is the data of a
smooth manifold M , g a smooth Riemannian metric on M , and a Borel measure dµ = σ2 dvg on
M , with σ a smooth positive function on M and vg is the Riemannian volume measure associated
with the metric g. We define the (weighted) Dirichlet Laplace operator as the Friedrichs extension
of the operator on C∞

0 (M) defined by ∆µf = −σ−2div(σ2∇f), with associated quadratic form
Q(ψ) =

´

M |∇ψ|2 dµ. We will usually write the Dirichlet Laplace operator as simply ∆.
On a metric space (X, d), for x ∈ X , r > 0, the ball of center x and radius r is the set

B(x, r) = {y : d(x, y) < r}. If B = B(x, r) is the ball, θ ∈ R, then θB refers to the set B(x, θr).

For p ≥ 1, we let ‖ · ‖p be the Lp norm on (M,µ). We recall ‖f‖p =
(´

M |f |p dµ
)1/p

. For
T a bounded operator on Lp, we use ‖T ‖Lp→Lp or ‖T ‖p to refer to its operator norm : i.e.

‖T ‖p = supψ∈L2

ψ 6=0

‖Tψ‖p

‖ψ‖p
.

For an open U ⊂M , λ1(U) refers to the first Dirichlet eigenvalue of ∆µ on U :

λ1(U) = inf
ψ∈C∞

0 (U)
ψ 6=0

‖∇ψ‖22
‖ψ‖22

. (1.5)

When H is an operator defined on smooth function with compact support, λ1(H) is similarly
defined to be :

λ1(H) = inf
ψ∈C∞

0 (M)
ψ 6=0

〈Hψ,ψ〉
‖ψ‖22

(1.6)

On a weighted manifold (M, g, µ), for p ≥ 0 we define the Morrey norms Np as follows : if V
is a non-negative, locally integrable function, we let Np(V ) be :

Np(V ) = sup
x∈M
r>0

(

r2p
 

B(x,r)

V p dµ

)1/p

, (1.7)
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where
ffl

B f dµ = 1
µ(B)

´

B f dµ is the mean of f over B. We also define the Morrey norm taken

on balls of radius less than R > 0 :

Np,R(V ) = sup
x∈M

0<r<R

(

r2p
 

B(x,r)

V p dµ

)1/p

(1.8)

For our generalization to hold, it is important that (M, g, µ) must admits a relative Faber
Krahn inequality, (RFK)η, defined as follows :

Definition 1.1. A weighted Riemannian manifold (M, g, µ) admits a relative Faber-Krahn in-
equality if there are constants b, η > 0, such that for all x ∈M , r > 0, and for any U open subset
of the open ball B(x, r) relatively compact in B(x, r), then :

λ1(U) ≥ b

r2

(

µ (B (x, r))

µ(U)

)
2
η

. (1.9)

It instead admits a relative Faber-Krahn inequality at scale R, (RFK)ηR if (1.9) holds only
for 0 ≤ r ≤ R.

In what follows, we will call b, η in either (RFK)η or (RFK)ηR the Faber-Krahn constants of
the manifold.

1.2 Statements of the results

Theorem 1.1. Let (M, g, µ) be a weighted Riemannian manifold satisfying (RFK)η, then for
any p > 1, there is a constant Cp, which depends only on the Faber-Krahn constants and on p,
such that for any V ∈ L1

loc(M), V ≥ 0, and any ψ ∈ C∞
0 (M), we have

ˆ

M

V ψ2 dµ ≤ CpNp(V )

ˆ

M

|∇ψ|2 dµ. (1.10)

If only (RFK)ηR holds, then we still have the following weaker result :

Theorem 1.2. Let (M, g, µ) be a weighted Riemannian manifold, such that, for some R > 0,
(RFK)ηR holds. Then for any p > 1 there is a constant Cp > 0, which depends only on the
Faber-Krahn and on p, such that V ∈ L1

loc(M), V ≥ 0, and any ψ ∈ C∞
0 (M),

ˆ

M

V ψ2 dµ ≤ CpNp,R(V )

(
ˆ

M

|∇ψ|2 dµ+
1

R2

ˆ

M

ψ2 dµ

)

. (1.11)

From this inequality we can generalize the Fefferman Phong estimate on the lower bound of
the spectrum of the operator H = ∆−V . Indeed if (RFK)η holds, then for any R > 0, (RFK)ηR
is satisfied. Thus (1.11) is true for any R. Then the following theorem follows easily :

Theorem 1.3. Let (M, g, µ) be a complete non-compact weighted Riemannian manifold satisfy-
ing (RFK)η. Then for any p > 1 we have two constants C1, Cp > 0, which depends only on the
Faber-Krahn constants (and for Cp, on p), such that, for any V ∈ L1

loc(M), V ≥ 0 :

sup
x∈M
δ>0

(

C1

 

B(x,δ)

V dµ− δ−2

)

≤ −λ1(∆µ − V ) ≤ sup
x∈M
δ>0



Cp

(

 

B(x,δ)

V p dµ

)1/p

− δ2



 . (1.12)
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In addition, if λ1(M) > 0, then we can strengthen (1.11), and obtain the following result,
giving a condition for ∆− V to be positive :

Theorem 1.4. Let (M, g, µ) be a complete non-compact weighted Riemannian manifold, such
that (RFK)ηR holds for R > 0. If in addition, if λ1(M) > 0, then for any p > 1, there is a
constant Cp > 0 depending only on the Faber-Krahn constants such that, for V ∈ L1

loc(M), V ≥ 0,
and any ψ ∈ C∞

0 (M),

ˆ

M

V ψ2 dµ ≤ CpNp,R(V )
1 + λ1(M)R2

λ1(M)R2

(
ˆ

M

|∇ψ|2 dµ+
λ1(M)

2

ˆ

M

ψ2 dµ

)

. (1.13)

1.3 L
2 Hardy inequality

Notice that the inequality (1.10) is, for potentials V with Np(V ) < +∞, nothing more than a
generalized L2 Hardy inequality. Thus, on manifolds for which theorem 1.1 holds, the classical
Hardy inequality is true whenever Np(d(o, ·)−2) is finite for all points o ∈M . For this, we must
make an additional assumption on the measure µ.

Definition 1.2. A measured metric space (X, d, µ) satisfy the reverse doubling property (RD)ν

of order ν if, there is some constant a > 0 such that for all x ∈M , 0 < r ≤ r′,

a

(

r′

r

)ν

≤ µ (B (x, r′))

µ (B (x, r))
. (1.14)

Theorem 1.5. Let (M, g, µ) be a weighted Riemannian manifold, for which (RFK)η holds, and
where µ admits the reverse doubling property of order ν, (RD)ν , with ν > 2. For an arbitrary
o ∈ M , let ρ(x) = d(o, x). Then there is some constant C > 0, which depends only on the
Faber-Krahn and reverse doubling constants, such that for any ψ ∈ C∞

0 (M) we have :

ˆ

M

ψ(x)2

ρ(x)2
dµ(x) ≤ C

ˆ

M

|∇ψ|2 dµ (1.15)

We can compare this to the results of V. Minerbe [20] or G. Grillo [13], who proved Lp Hardy
inequalities assuming a Poincaré inequalities and a doubling measure. While we only get a L2

inequality, it holds true under the weaker hypothesis of a relative Faber-Krahn inequality.
Cao, Grigor’yan and Liu [2] proved Hardy inequalities as a consequence of volume doubling,

reverse doubling, and certain estimates on either the Green function or the heat kernel. Their
results are far more general than this article.

1.4 Examples of manifolds satisfying relative Faber-Krahn inequalities

We give various cases of manifolds which will satisfy a relative Faber-Krahn inequality (at scale
R). Then our results will follow.

1.4.1 Complete manifolds with Ricci curvature bounded from below

From Li and Yau[17], the heat kernel of a complete manifold (M, g, µ) of dimension n, with µ
here being the Riemannian volume measure, with Ricci curvature bounded from below by −K,
for a constant K ≥ 0, admits the following diagonal estimate :

pt(x, x) ≤
C0

µ
(

B
(

x,
√
t
))eC1Kt
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Also, as a consequence of the Bishop-Gromov volume comparison theorem, we get that (see
[6, 5, 23] for example), for any 0 < r ≤ r′ :

µ (B (x, r′))

µ (B (x, r))
≤
(

r′

r

)n

exp
(

√

(n− 1)KR
)

Those two conditions implies, (see for example [23, 14]), that there is some R > 0 such that
M satisfy (RFK)nR. If the Ricci curvature is non-negative, then we also have (RFK)n.

1.4.2 Manifolds satisfying Faber Krahn inequalities outside a compact set

We consider a complete weighted manifold M , and remove from it a compact set with smooth
boundary K. We let E1, . . . , Ek be the connected components of M \K, and suppose that each
Ei is the exterior of a compact set with smooth boundary in a complete manifold Mi.

A simple example of such manifold is the connected sum of two (or more) copies of Rn. It
admits (RFK)n, but it is known that such manifold doesn’t satisfy a Poincaré inequality (see
for example [1]).

Using [12], we get that if each Mi satisfy (RFK)η, then there is some R > 0 such that M
satisfies (RFK)ηR.

Acknowledgements I thank G. Carron for his many advices and remark that helped shape
this article into its present form, and L Guillopé for his comments on the manuscript. I also thank
the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical
environment. I was partially supported by the ANR grant: ANR-18-CE40-0012: RAGE.

2 Some techniques of harmonic analysis

Remark. We will often use C or c for generic constants which values might change from line
to line. When we need to make it clear on which parameters the constant depends, new constant
factors will be written when they appear before being folded into this generic constant.

2.1 Dydadic cubes

In R
n, the natural decomposition of the space into cubes of length 2k, k ∈ Z is a very powerful

tool. It turns out that families of open sets satisfying similar properties to those of the dyadic
cubes in the euclidean space can be constructed in a more general setting. See for example the
third part of [7].

We will use the construction of such "dyadic cubes" given by E. Sawyer and R. L. Wheeden
in [24]. Though it remains true in a more general setting, for our purposes it can be stated as :

Theorem 2.1. Let (X, d) be a separable metric space, then there is ρ > 1 (ρ = 8 works), such
that for any (large negative) integer m, there are points

{

xkα
}

and a family Dm =
{

Ekα
}

of Borel
sets for k = m, m+ 1, . . ., α = 1, 2, . . ., such that

• B(xkα, ρ
k) ⊂ Ekα ⊂ B(xkα, ρ

k+1).

• For each k = m,m+ 1, . . ., the family
{

Ekα
}

α
is pairwise disjoint in α and X =

⋃

α Ekα.

• If m ≤ k < l, then either Ekα ∩ E lβ = ∅ or Ekα ⊂ E lβ.

5



Given such a family Dm, the sets Ekα will be called dyadic cubes of M , or simply cubes. The
ball B(xkα, ρ

k+1) is called the containing ball of the cube Ekα. For any cube Q the containing ball
is denoted by B(Q). ρ will be called the sidelength constant of dyadic cubes.

The length of a cube Q is the radius of ρ−1B(Q), written ℓ(Q).

2.2 Properties of doubling measures

We start by recalling the definitions and some standard properties of doubling measures, while
covering at the same time the R-doubling case.

Definition 2.1. A measured metric space (X, d, µ) satisfy the doubling property (D)η of order
η if, there is some constant A > 0 such that for all x ∈M , 0 < r ≤ r′,

µ (B (x, r′))

µ (B (x, r))
≤ A

(

r′

r

)η

. (2.1)

We call A the doubling constant, and η the doubling order. We will also say "the doubling
constants" to refer to both A and η at the same time. The property (D)η is equivalent to the fact
that for some constant A > 0, for any ball B ⊂M :

µ(2B) ≤ Aµ(B) (2.2)

The proof of the equivalence is the same as that of the R-doubling case given after definition
2.3, (with R = ∞).

A note on the constants : (2.2) implies (2.1) with η = log2A (and A the same in both
inequalities), while conversely, (2.1) implies that the constant in (2.2) be 2ηA.

We state again the reverse doubling property :

Definition 2.2. A measured metric space (X, d, µ) satisfy the reverse doubling property (RD)ν

of order ν if, there is some constant a > 0 such that for all x ∈M , 0 < r ≤ r′,

a

(

r′

r

)ν

≤ µ (B (x, r′))

µ (B (x, r))
. (2.3)

We call a the reverse doubling constant, and ν the reverse doubling order. The property
(RD)ν is equivalent to the fact that for some constant a ∈ (0, 1), for any ball B ⊂M :

µ(B) ≤ aµ(2B) (2.4)

Proof of (2.4) implies (2.3). We can assume that a ≤ 1. Let x ∈ X , 0 < r ≤ r′. Writing ⌊t⌋ for

the integer part of t ∈ R, let k =
⌊

log2
r′

r

⌋

. Then :

µ (B (x, r)) ≤ akµ
(

B
(

x, 2kr
))

≤ akµ (B (x, r′))

≤ a−1+log2
r′
r µ (B (x, r′)) (a ≤ 1)

≤ 1

a

(

r′

r

)−ν
µ (B (x, r′))

With ν = − log2 a. Thus :
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a

(

r′

r

)ν

≤ µ (B (x, r′))

µ (B (x, r))
.

Proposition 2.1. Let (X, d, µ) satisfies (D)η, then for any x, y ∈ M , r, r′ > 0 such that
B(y, r) ⊂ B(x, r′), we have :

µ (B (x, r′))

µ (B (y, r))
≤ A2

(

r′

r

)η

. (2.5)

This is a classical result. The proof is similar to what we will do to prove proposition 2.2.

Definition 2.3. A measured metric space (X, d, µ) satisfy the R-doubling property (D)ηR if there
is some constant A > 0 such that (2.1) holds for all x ∈ M , and 0 < r ≤ r′ ≤ 2R. This is
equivalent to (2.2) being true for all ball B with radius less than R.

We define in the same way the R-reverse doubling property (RD)νR.
We will write AR for the doubling constant when it’s important to precise which R the

constant is associated with.
Some care is needed to get precisely those maximal radius. That (2.2) follows from (2.1) is

immediate.

Proof of (2.2) implies (2.1). Suppose that there is some constant A such that for all ball B

of radius less than R, then µ(2B) ≤ Aµ(B). Let r ≤ r′ ≤ 2R. k =
⌊

log2
r′

r

⌋

. We have

2−k−1r′ < r ≤ 2−kr′, and, using repeatedly µ (B (x, ρ)) ≤ Aµ (B (x, ρ/2)), valid for all ρ ≤ 2R,
we have :

µ (B (x, r′)) ≤ Ak+1µ
(

B
(

x, 2−k−1r′
))

≤ Ak+1µ (B (x, r))

≤ Ae

(

logA log r′
r

)

/ log 2
µ (B (x, r))

≤ A

(

r′

r

)η

µ (B (x, r)) ,

with η = log2A.

Proposition 2.2. Let X satisfies (D)ηR, then for all x, y ∈ X, r, r′ > 0 such that B(y, r) ⊂
B(x, r′) and with r′ < R, then for η = log2A :

µ (B (x, r′))

µ (B (y, r))
≤ A2

(

r′

r

)η

. (2.6)

If in addition X satisfies (RD)νR, then we also have for some constant c > 0, that for all
0 < r, r′ < R and B(y, r) ⊂ B(x, r′),

c

(

r′

r

)ν

≤ µ (B (x, r′))

µ (B (y, r))
. (2.7)
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Proof. For the first part, we simply use B(x, r) ⊂ B(y, 2r) then applies (2.1).
For the second part, since B(x, r′) ⊂ B(y, 2r′), we can use (2.5) and we get :

µ (B (x, r′))

µ (B (y, r))
=
µ (B (y, r′))

µ (B (y, r))

µ (B (x, r′))

µ (B (y, r′))

≥ a

(

r′

r

)ν
µ (B (x, r′))

µ (B (y, 2r′))

≥ aA−22−η
(

r′

r

)ν

We now suppose that (X, d) is a path metric space, i.e. that the distance d(x, y) is realised
as the infimum of the length of continuous path with end points x and y. We will keep making
this assumption in everything that follows (though some results are still true in a more general
setting).

Proposition 2.3. Let X satisfy (D)ηR, and suppose that X \ B(x, 3R/4) is non empty for all
x ∈ X. Then there is some ν > 0 such that X satisfy (RD)νR/2.

Proof. Let x ∈ X , r < R/2. We take y ∈ X such that d(x, y) = 3
2r. Then B(y, r/2) ⊂

B(x, 2r) \B(x, r). Thus µ (B (x, 2r)) ≤ A24ηµ (B (y, r/2)) = A4µ (B (y, r/2)).
Thus (1 +A−4)µ(B(x, r)) ≤ µ(B(x, 2r)). From this we show (RD)νR/2 in a similar way as in

what follows definition 2.3.

The R-doubling also implies some upper bound on the volume of balls of large radius. The
two following propositions, and their proof, come from [14].

Proposition 2.4. If (X, d, µ) satisfy (D)ηR, then there is some C > 0 that depends only on the
doubling constant and order, such that we have, for any r > 0, R′ ≤ R :

µ (B (x, r +R′/4)) ≤ Cµ (B (x, r)) (2.8)

Proof. The case r ≤ R is obvious by the doubling property. For r > R, then let {xi}i be a
maximal family in B(x, r − R/4) such that for any i 6= j, d(xi, xj) > R′/2. Then the balls
B(xi, R

′/4) ⊂ B(x, r) are disjoints, and the balls B(xi, R
′) cover B(x, r+R′/4), since a point of

B(x, r+R′/4) is at distance at most R′/2 ofB(x, r−R′/4) (because (X, d) is a path-metric space).
Thus µ (B (x, r +R′/4)) ≤∑i µ (B (xi, R

′)) ≤ A2
∑

i µ (B (xi, R
′/4)) ≤ A2µ (B (x, r)).

Proposition 2.5. If (X, d, µ) satisfy (D)ηR then, there is a D > 0, that depends only on the
doubling constant and doubling order, such that for any r > 0, we have :

µ (B (x, r)) ≤ eD
r
Rµ(B(x,R)) (2.9)

Proof. Let r > R, k =
⌊

4 r−RR
⌋

, then we have µ (B (x, r)) ≤ µ (B (x,R+ (k + 1)R/4)). Thus by
proposition 2.4, µ (B (x, r)) ≤ Ck+1µ (B (x,R)). Moreover, k + 1 ≤ 4 rR − 3 ≤ 4 rR , and so :

µ (B (x, r)) ≤ exp
(

4 ln (C)
r

R

)

µ (B (x,R))

And thus we get (2.9) with D = 4 ln(C).
If r ≤ R, then µ(B(x, r)) ≤ µ(B(x,R)) ≤ eD

r
Rµ(B(x,R)) and thus (2.9) still holds.
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Similarly to how we always use A for the doubling constant, D will always be used for this
constant D = 8 logA.

Proposition 2.6. Let X satisfies (D)ηR, let r ≤ R, then there exists a constant C > 0, that
depends only on the doubling constant and order, such that for any x, y ∈ X, µ (B (x, r)) ≤
CeD

d(x,y)
r µ (B (y, r)).

Proof. B(x, r) ⊂ B(y, r + d(x, y)). Since r ≤ R, by proposition 2.4, we have µ (B (x, r)) ≤
A8µ (B (y, d(x, y))). Then using proposition 2.5 :

µ (B (x, r)) ≤ CeD
d(x,y)

R µ (B (y, r)) ≤ CeD
d(x,y)

r µ (B (y, r))

Proposition 2.7. If (X, d, µ) satisfy (D)ηR, then it also satisfy (D)ηR′ for any R′ > 0, with a

doubling constant AR′ = AR if R′ ≤ R, and AR′ = e2D
R′
R if R′ > R.

Proof. The case R′ ≤ R is obvious. Thus assume R > R′, let r ≤ R′. If r ≤ R then the result is
trivial since AR ≤ AR′ . If r > R, then by proposition 2.5, µ (B (x, 2r)) ≤ eD

2r
R µ (B (x, r)), and

e2D
r
R ≤ e2D

R′
R . Thus µ is R’-doubling, with a doubling constant AR′ = e2D

R′
R .

With this we can generalise proposition 2.6 for any r > 0 : if r > R, we can use the r-doubling
and apply proposition 2.6 for it. The constants are Ar = e2D

r
R , Dr = 4 log

(

A2
r

)

= 16D r
R ,

A8
r = e16D

r
R . Then we have, for any x, y ∈ X , r > 0 :

µ (B (x, r)) ≤ e16D
r+d(x,y)

R µ (B (y, r)) . (2.10)

Proposition 2.8. Let (X, d, µ) be a measured metric space that satisfy (D)ηR. If it also satisfy
(RD)νR, then for any κ > 1, it satisfy (RD)νκR with a different reverse doubling constant, that
depends only on the doubling, reverse doubling constant and orders, and on κ.

The notable part of this proposition is that the reverse doubling order is conserved.

Proof. By proposition 2.7, µ is κR-doubling for all κ, with some doubling order η = η(κ). We
take a point x ∈M , and r, r′ with 0 < r ≤ r′ ≤ κR. We want to prove that there’s some constant
aκ such that, for any such x, r, r′ :

µ (B (x, r′))

µ (B (x, r))
≥ aκ

(

r′

r

)ν

If 0 < r ≤ r′ ≤ R, then there’s nothing to do but apply (RD)νR. If 0 < r ≤ R < r′ ≤ κR,
then :

µ (B (x, r′))

µ (B (x, r))
≥ µ (B (x,R))

µ (B (x, r))
≥ a

(

R

r

)ν

≥ aκ−ν
(

r′

r

)ν

Finally, when R < r ≤ r′ < κR, then :

µ (B (x, r′))

µ (B (x, r))
≥ µ (B (x, r′))

µ (B (x,R))

µ (B (x,R))

µ (B (x, r))

≥ aκ−ν
(

r′

R

)ν

A−1

(

R

r

)η
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≥ aA−1κ−ν
(

R

r

)η−ν (
r′

r

)ν

≥ aA−1κ−η
(

r′

r

)ν

Thus (2.2) holds for aκ = min
(

a, aκ−ν , aA−1κ−η
)

= aA−1κ−η.

Proposition 2.9. Let (X, d, µ) satisfy (D)ηR. Take x ∈ X, r > 0, and let B = B(x, r). Let δ be
such that 0 < δ ≤ min(r, R), and {xi}i ⊂ B be a family of points such that the balls Bi = B(xi, δ)
form a covering of B and that for any i 6= j, 1

2Bi ∩ 1
2Bj = ∅.

Then there are constants C, c, depending only on the doubling constant such that

card(I) ≤ Cec
r
δ (2.11)

Proof. For any i, Bi ⊂ B(x, r + δ), and since δ ≤ R, then by proposition 2.4, µ (B (x, r + δ)) ≤
Cµ (B (x, r)). Now, if r > R, then by proposition 2.5, µ (B (x, r)) ≤ eD

r
δ µ (B (x, δ)) (δ ≤ R and

so we use that µ is δ-doubling with the same doubling constant as that of the R-doubling).

Moreover by proposition 2.6, µ (B (x, δ)) ≤ CeD
d(x,xi)

δ µ (B (xi, δ)) ≤ CeD
r
δ µ(Bi), since xi ∈

B, thus d(x, xi) ≤ r.
Thus we have µ(B(x, r)) ≤ Ce2D

r
δ µ(Bi). Up to this point the constant C depends only on

the doubling constants.

(card I)µ (B (x, r + δ)) ≤ Ce2D
r
δ

∑

i∈I
µ(Bi)

≤ ACe2D
r
δ

∑

i

µ

(

1

2
Bi

)

≤ Ce2D
r
δ µ (B (x, r + δ))

Thus card(I) ≤ Ce2D
r
δ and the constant C depends only on the doubling constants.

Remark. For any ball B, such a covering always exists : take for {xi}i ⊂ B a maximal family
with d(xi, xj) ≥ δ for any i 6= j.

Proposition 2.10. Let MR be the centered maximal function defined by :

∀f ∈ L1
loc(M), MRf(x) = sup

r<R

 

B(x,r)

|f | dµ (2.12)

Then, if µ satisfies (D)ηR, MR/2 is bounded on Lp for all p ∈ (1,+∞], and the operator norm
is bounded by a constant that only depends on the doubling constant A and on p.

We will use the following classical results :

Lemma 2.1 (Vitali’s covering lemma). Let (X, d) be a separable metric space, and {Bj}j∈J a
collection of balls, such that supj r(Bj) < ∞. Then for any c > 3 there exists a subcollection
{Bjn}n∈N ⊂ {Bj}j∈J such that the Bjn are pairwise disjoint and

⋃

j∈J Bj ⊂
⋃

n∈N
cBjn .

Theorem 2.2 (Marcinkiewicz interpolation theorem). Let (X,µ) be a measure space, T a sub-
linear operator acting on functions, i.e. there is a κ > 0 such that for any f, g measurable, then
Tf, T g are measurable and T (f + g)(x) ≤ κ (Tf(x) + Tg(x)) for almost every x ∈ X.

10



Assume that for 1 ≤ p < r <∞ :

∀f ∈ Lp, µ{x ∈ X : Tf(x) > λ} ≤ A

λp
‖f‖pp,

∀f ∈ Lr, µ{x ∈ X : Tf(x) > λ} ≤ B

λr
‖f‖rr,

or that, for 1 ≤ p < r = ∞, we replace the second line by : ∀f ∈ L∞, |Tf(x)| ≤ B|f(x)| for
almost every x ∈ X.

Then, for every s ∈ (p, r), for all f ∈ Ls, Tf ∈ Ls and :

‖Tf‖s ≤ C(A,B, p, r, s, κ)‖f‖s (2.13)

Proof of the proposition. We have, for any f ∈ L∞(M), ‖MRf‖∞ ≤ ‖f‖∞.
If f ∈ L1(M), then for any λ > 0, define Eλ =

{

x ∈M : MR/2Rf(x) > λ
}

. If x ∈ Eλ,
then there is some rx > 0 such that λ <

ffl

B(x,rx)
|f | dµ, and 2rx ≤ R. Then µ(B(x, rx)) ≤

λ−1
´

B(x,r)
|f | dµ.

We have Eλ ⊂ ⋃

xB(x, rx), thus by Vitali’s covering lemma, there is a subcollection {xn}
such that the B(xn, rn) are pairwise disjoint and Eλ ⊂ ⋃nB(xn, 4rn).

Also, since rn < R/2, and µ is R-doubling, we have µ (B (xn, 4rn)) ≤ A2µ (B (xn, rn)). Then
:

µ(Eλ) ≤
∑

n

µ(B(xn, 4rn))

≤ A2
∑

n

µ(B(xn, rn))

≤ A2λ−1
∑

n

ˆ

B(xn,rn)

|f | dµ

≤ A2 ‖f‖1
λ

.

And so by the Marcinkiewicz interpolation theorem, for any p ∈ (1,+∞), MR/2 is bounded
on Lp with an operator norm ‖MR/2‖p→p ≤ Cp, with Cp depending only on A and p.

Remark. Of course, (D)ηR implies (D)ηR′ for all R′ > R, then MR itself is also bounded, but
with the constant Cp depending on the constant for (D)η2R. And so are all the MR′ with R′ > R,
with the constant Cp depending on p, the R-doubling constant, and the ratio R′/R.

Proposition 2.11. Let M̃R the uncentered maximal function defined by : for all f ∈ L1
loc(M),

M̃Rf(x) = sup
x∈B,
r(B)≤R

 

B

|f | dµ (2.14)

With this supremum to be interpretated as being over all balls B satisfying the given condition,
and r(B) being the radius of B.

Then, if µ is R-doubling, there exist some constant C > 0 such that MR ≤ M̃R ≤ CM2R.
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Proof. Since a ball centered at x is a ball containing x, MR ≤ M̃R is obvious. Now, for some
balls B = B(y, r) containing x, with radius less than R, we have B ⊂ B(x, 2r) and :

 

B

|f | dµ ≤ µ (B (x, 2r))

µ(B)

 

B(x,2r)

|f | dµ ≤ CM2Rf(x)

Proposition 2.12. Let (X, d, µ) be a separable, measured metric space, and Dm be a chosen
construction of dyadic cubes on X. Define the associated dyadic maximal function Md,m by :

Md,mf(x) = sup
Q∈Dm

x∈Q

 

Q

|f | dµ (2.15)

Then there is a constant Cp such that for any p > 1, for any f ∈ Lp, ‖Md,mf‖p ≤ Cp‖f‖p.
As a consequence, Md,m,l, the maximal function defined the same way, but with the cubes in

the supremum being only those of length less than l, is also bounded on Lp for all p > 1.

Proof. Let f ∈ L1(X), λ > 0, we define Eλ = {x ∈ X : Md,mf(x) > λ}. If x ∈ Eλ, then there is
a cube Q ∈ Dm such that

ffl

Q |f | dµ > λ, and so Q ⊂ Eλ. Then there is two possibilities : First,

there is a maximal dyadic cube P containing x such that
ffl

P |f | dµ > λ, then P ⊂ Eλ. Second,
there is no such cube, then Ω =

⋃

Q∈Dm

x∈Q
Q ⊂ Eλ, and we have µ(Ω) ≤ λ−1

´

Ω |f | dµ <∞.

Then take {Qi}i to be the family of all the maximal dyadic cubes such that
ffl

Qi
|f | dµ > λ,

and {Ωj}j be the family of all the the regions Ωj =
⋃

k Q
j
k, where {Qjk} is an infinite increasing

sequence of cubes with
ffl

Qk
j
|f | dµ > λ. The Qi,Ωj are pairwise disjoints : it is clear that the Qi

are. Now, if for a cube Q, we have Q∩Ωj 6= ∅, then there is a cube P ⊂ Ωj such that P ∩Q 6= ∅,
thus we have either P ⊂ Q or Q ⊂ P . In both case, Q ⊂ Ωj since Ωj is the union of all cubes
containing P . This mean both that Qi ∩ Ωj = ∅ for all i, j, and that Ωj ∩ Ωl = ∅ for j 6= l.

Thus, we have the disjoint union :

Eλ =
⋃

i

Qi ∪
⋃

j

Ωj ,

Then µ(Qi) < λ−1
´

Qi
|f | dµ, and µ(Ωj) ≤ λ−1

´

Ωj
|f | dµ. Summing on all cubes and all

regions, µ(Eλ) ≤ λ−1
´

Eλ
|f | dµ ≤ λ−1‖f‖1. Thus :

µ ({x ∈ X : Md,mf(x) > λ}) ≤ ‖f‖1
λ

(2.16)

Moreover, for f ∈ L∞(X), we clearly have Md,mf(x) ≤ ‖f‖∞. Then by Marcienkiewicz
interpolation theorem, there is a constant Cp > 1 such that ‖Md,mf‖p ≤ Cp‖f‖p.

2.3 Estimates of operator norms by that of a maximal function

We refers to the works of C. Pérez and R.L. Wheeden [22] for a more general approach.
In what follows, we let (X, d) be a separable R-doubling metric space. We take T an operator

given by a kernel K : X ×X \Diag → R, i.e.

Tf(x) =

ˆ

X

f(y)K(x, y) dµ(y) (2.17)
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We say that T , or K, satisfy the condtion (K) if K is non negative and if there are constants
C1, C2 > 1 such that :

d(x′, y) ≤ C2d(x, y) ⇒ K(x, y) ≤ C1K(x′, y),

d(x, y′) ≤ C2d(x, y) ⇒ K(x, y) ≤ C1K(x, y′).
(2.18)

For each m ∈ Z, X admits a decomposition in dyadic cube. We take ρ > 1 to be as in
theorem 2.1. We define ϕ as the following functional on balls

ϕ(B) = sup
x,y∈B

d(x,y)≥ 1
2ρ r(B)

K(x, y), (2.19)

and Mϕ to be the following maximal functions :

Mϕf(x) = sup
x∈B

ϕ(B)

ˆ

B

|f | dµ (2.20)

For T satisfying (K), it is shown in (4.3) of [25] that ϕ is decreasing in the following sense :

Proposition 2.13. There is a constant α, which depends only on C1, C2, ρ such that for any
balls B ⊂ B′, ϕ(B′) ≤ αϕ(B)

Proof. First we want to prove that if (2.18) holds, then for any integer k ≥ 1, d(x′, y) ≤ Ck2 d(x, y)
implies K(x, y) ≤ Ck1K(x′, y) (and the same with x, y′.

We proceed by induction. The case k = 1 is obvious. Let k > 2, x, x′, y ∈ X such that
d(x′, y) ≤ Ck2 d(x, y), and suppose d(x′, y) ≤ Ck−1

2 d(x, y) ⇒ K(x, y) ≤ Ck−1
1 K(x′y). Then, if

d(x′, y) ≤ Ck−1
2 d(x, y), the results holds and there is nothing to prove. If d(x′, y) > Ck−1

2 d(x, y),
then X is a path metric space, so there is a path from y to x′ of length d(x′, y), and on this path
is a point z such that d(y, z) = Ck−1

2 d(x, y). But then :

d(x′, y) ≤ Ck2 d(x, y) = C2d(z, y)

And thus K(z, y) ≤ C1K(x′, y). Then by induction we get that K(x, y) ≤ Ck1K(x′, y) for all
x, x′, y with d(x′, y) ≤ Ck2 d(x, y). We can generalize sligthly, and we have that for any C2 > 1
there exist a C1 > 1 such that (2.18) holds.

Now we can prove the proposition proper. For x′, y′ ∈ B′, x, y ∈ B such that d(x′, y′) ≥ cr(B′)
and d(x, y) ≥ cr(B), with c = 1

2ρ . We can suppose that d(x, y′) ≥ d(x, x′) (if not, we can exchange

x′ and y′).
Then cr(B′) ≤ d(x′, y′) ≤ d(x′, x) + d(x, y′) ≤ 2d(x, y′). Moreover, since B ⊂ B′, d(x, y′) ≤

2r(B′), and thus :

d(x, y′) ≤ 2

c
d(x′, y′)

Thus by (2.18) there is a constant c1 > 1 such that K(x′, y′) ≤ c1K(x, y′).
Moreover d(x, y) ≤ d(x, y′) + d(y′, y) ≤ d(x, y′) + 2r(B′) ≤ (1 + 4/c)d(x, y′). Thus by (2.18)

there is a constant c2 > 1 such that K(x, y′) ≤ c2K(x, y). Thus

K(x′, y′) ≤ c1c2K(x, y)

And thus ϕ(B′) ≤ c1c2ϕ(B).
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We further assume that ϕ satisfy the following condition : there is some ε > 0 and some
constant L > 0 such that for any balls B1, B2, with B1 ⊂ B2, we have :

ϕ(B1)µ(B1) ≤ L

(

r(B1)

r(B2)

)ε

ϕ(B2)µ(B2) (2.21)

Theorem 2.3 (C. Pérez and R.L. Wheeden [22]). Let (X, d, µ) be a metric space with a doubling
measure µ. For T an operator defined by (2.17) satisfying (K), and with ϕ satisfying (2.21),
then there is some constant C, depending only on the doubling constant and p, such that, for any
f : X → R :

‖Tf‖p ≤ C‖Mϕf‖p (2.22)

In addition for the operator Tf(x) =
´

M
d(x,y)s

µ(B(x,d(x,y)))f(y) dµ(y), we can replace Mϕ by the

maximal function defined by Msf(x) = supr>0 r
s
ffl

B(x,r)
|f | dµ. See corollary 2.1.

We will also show a variant on this theorem. We consider the operator Tδ, δ < R, with kernel
Kδ(x, y) = K(x, y)χ{d(x,y)<δ}, and we want to compare its Lp norm to that of the maximal
function Mϕ,δ defined by :

Mϕ,δf(x) = sup
x∈B
r(B)<δ

ϕ(B)

ˆ

B

|f | dµ. (2.23)

The idea of the proof of this result will be essentially the same as that of theorem 2.3 given
in [22], but some care must be taken to account for the different hypotheses properly, and thus
we will give the details in what follows.

The hypothesis to prove ‖Tf‖p ≤ C‖Mϕ,δ‖p can be weakened compared to those of theorem
2.3. A key point is that proposition 2.13 has to hold at least for balls of radius at most 2δ.
Looking at the proof of the proposition, this is true as long as (2.18) holds for C2 ≤ (1+8ρ) and
d(x, y) ≤ 4δ.

Then we take (X, d, µ) a R-doubling space. T an operator defined by a kernel K. We say
that T , or K verify the condition (K)δ, if there exist constants C1 > 1, C2 ≥ 1 + 8ρ, such that
for any x, y such that d(x, y) ≤ 4δ, we have :

∀x′ ∈ X, d(x′, y) ≤ C2d(x, y), K(x, y) ≤ C1K(x′, y)

∀x′ ∈ X, d(x, y′) ≤ C2d(x, y), K(x, y) ≤ C1K(x, y′).
(2.24)

Property (K)δ ensure that 2.13 holds for balls of radius less than 2δ.
Since we will end up considering balls of a radius slightly larger than δ, the following propo-

sition will be useful.

Proposition 2.14. Let (X, d, µ) satisfy (D)η2(2κ+1)δ for δ > 0, κ > 1, T an operator satisfying

(K)4(2κ+1)δ, and such that the associated functional ϕ satisfies (2.21) when r(B1), r(B2) ≤ 2(2κ+
1)δ. Then for any p ∈ (1,∞], there is some constant C which depends only on p, κ, the doubling
constants, and the constants α, L, ε, in proposition 2.13 and in (2.21) such that for any non
negative f , ‖Mϕ,κδf‖p ≤ C‖Mϕ,δf‖p.

Proof. We have :

Mϕ,κδf(x) =Mϕ,δf(x) + sup
x∈B,

δ<r(B)≤κδ

ϕ(B)

ˆ

B

|f | dµ
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≤Mϕ,δf(x) + C sup
x∈B,

r(B)=κδ

ϕ(B)

ˆ

B(x,2κδ)

|f | dµ

Using that for x ∈ B, B ⊂ B(x, 2r(B)) ⊂ B(x, 2κδ) and that for any ball B with radius

greater than δ, by (2.21) (on balls with radius at most κδ), we have ϕ(B) ≤ ALκηϕ
(

κδ
r(B)B

)

.

Now, for any ball B containing x with radius equal to κδ. For y ∈ B(x, 2κδ), consider the
ball Q(y) = B(y, δ). We have Q(y) ⊂ B(x, (2κ + 1)δ), thus using (D)η(2κ+1)δ, we have that

µ(B(x, 2κδ)) ≤ A2(2κ+ 1)ηµ(Q(y)).
For y ∈ B(x, (2κ + 1)δ), we also have that B ⊂ B(z, 2(2κ + 1)δ), thus using (2.21) (for

balls with radius at most 2(2κ + 1)δ)), (D)η2(2κ+1) and (K)4(2κ+1)δ), we get that ϕ(B) ≤
A2
(

2(2κ+1)
2κ

)η

αϕ(Q(y)). Putting all this together, we get :

ϕ(B)

ˆ

B(x,2κδ)

|f | dµ = ϕ(B)

 

B(x,2κδ)

µ(B(x, 2κδ))|f | dµ

≤ Cϕ(B)

 

B(x,2κδ)

µ(Q(y))|f(y)| dµ(y)

≤ C

 

B(x,2κδ)

ϕ(B)

ˆ

Q(y)

dµ(z)|f(y)| dµ(y)

≤ C
1

µ (B (x, 2κδ))

ˆ

B(x,(2κ+1)δ)

ϕ(B)

ˆ

B(x,2κδ)∩B(z,δ)

|f(y)| dµ(y) dµ(z)

≤ CA

(

2κ+ 1

2κ

)η  

B(x,(2κ+1)δ)

ϕ(B(z, δ))

ˆ

B(z,δ)

|f(y)| dµ(y) dµ(z)

≤ C

 

B(x,(2κ+1)δ)

Mϕ,δf dµ

And the constant C depends only on the doubling constants, L, α and κ. Then we have :

Mϕ,κδf(x) ≤Mϕ,δf(x) + CM(2κ+1)δ (Mϕ,δf) (x) (2.25)

The theorem follows from the boundedness of the classical maximal function M(2κ+1)δ on any
Lp, p > 1, under (D)η2(2κ+1)δ.

Theorem 2.4. Let δ > 0. Let ρ > 0 be the sidelength constant of dyadic cubes. Suppose that
(X, d, µ) satisfy (D)η2(6ρ+1)δ . Assume that K satisfies (K)4(6ρ+1)δ, and that ϕ satisfies (2.21) for

balls with radius at most 2(6ρ+ 1)δ. Let p ≥ 1. Then there is a constant C > 0 (which depends
only on the doubling constants, ρ, p and of the constants in (2.21), (2.18)) such that we have :

ˆ

X

|Tδf |p dµ ≤ C

ˆ

X

(Mϕ,δf)
p dµ (2.26)

Proof. We will show that there exist some constant C > 0 such that for any non negative function
f , we have

´

X |Tδf |p dµ ≤ C
´

X(Mϕ,3ρδf)
p dµ. Then the theorem will follows by proposition

2.14.
To prove this, we define, for any m ∈ Z, the operator Tm by :

Tmf(x) =

ˆ

d(x,y)>ρm
Kδ(x, y)f(y) dµ(y)
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Then, if for any m ∈ Z, and for any non negative measurable functions f, g, we have :

ˆ

X

Tmfg dµ =

ˆ

d(x,y)>ρm
Kδ(x, y)f(y)g(x) dµ(x, y) ≤ C‖Mϕ,3δf‖p‖g‖p′ (2.27)

Then by the monotone convergence theorem, taking m→ −∞, the same inequality holds but
with Tm replaced by T , and by duality, (2.26) is true.

Take m ∈ Z, and let f, g be non negative measurable functions. Let Dm =
{

Ekα
}k≥m
α∈N∗ be a

decomposition of X in dyadic cubes given by theorem 2.1 with sidelengths ρk. If (x, y) ∈ X are
such that d(x, y) > ρm, we take the integer l ≥ m such that ρl < d(x, y) ≤ ρl+1. Let Q be the
cube of length ρl containing x, B(Q) = B

(

cQ, ρ
l+1
)

the containing ball. We recall that we have
ρ−1B(Q) ⊂ Q ⊂ B(Q).

d(cQ, y) ≤ d(cQ, x) + d(x, y) ≤ 2ρl+1, thus y ∈ 2B(Q). Since d(x, y) > ρl = 1
2ρr (2B(Q)), we

have by definition of ϕ, K(x, y) ≤ ϕ(2B(Q)) ≤ αϕ(B(Q)) by proposition 2.13 (which needs to
hold for balls of radius 2ρδ, thus we need (K)4ρδ. And if we suppose that δ ≤ ρl = ℓ(Q), then
d(x, y) ≥ δ and Kδ(x, y) = 0.

We have proved that if Q is the cube of length comparable with d(x, y), containing x, we
have y ∈ 2B(Q) and :

Kδ(x, y) ≤ Cϕ(B(Q))χ{R∈Dm, ℓ(R)<δ}(Q)χQ(x)χ2B(Q)(y)

If r is the largest integer such that ρr < δ, define Dr
m =

{

Ekα; m ≤ k ≤ r
}

. For any x, y ∈ X
with d(x, y) > ρm, there is at least one cube Q ∈ Dm such that the previous inequation holds,
and since both sides of it are zero if ℓ(Q) ≥ δ, we have, for any x, y ∈ X :

Kδ(x, y) ≤
∑

Q∈Dr
m

Cϕ(B(Q))χQ(x)χ2B(Q)(y)

And so, for any f, g ≥ 0 :

ˆ

X

Tmfg dµ ≤ C
∑

Q∈Dr
m

ϕ(B(Q))

ˆ

2B(Q)

f dµ

ˆ

Q

g dµ

But for any fixed integer k ≥ m, the cubes of length of length ρk,
{

Ekα
}

are pairwise disjoints,
and X =

⋃

α Ekα. Then using this decomposition for k = r,

ˆ

X

Tmfg dµ ≤ C
∑

α≥1

∑

Q∈Dr
m

Q⊂Er
α

ϕ(B(Q))

ˆ

2B(Q)

f dµ

ˆ

Q

g dµ

Then for a constant γ ≥ 1 to be determined, for any α ≥ 1, and n ∈ Z, define :

Cnα =

{

Q ∈ Dr
m, Q ⊂ Erα; γn <

1

µ(B(Q))

ˆ

Q

g dµ ≤ γn+1

}

(2.28)

We let nα be the unique integer such that Erα ∈ Cnα
α . Notice that {Cnα}n∈Z

is a partition of
{Q ∈ Dr

m; Q ⊂ Erα}. Then we have :

ˆ

X

Tmfg dµ ≤ C
∑

α≥1

∑

n∈Z

γn+1
∑

Q∈Cn
α

ϕ(B(Q))µ(B(Q))

ˆ

2B(Q)

f dµ
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For any α ≥ 1, we let
{

Qnj,α
}

j∈Jn
, for some index set Jn, be the collection of the maximal

dyadic cubes subset of Erα such that γn < 1

µ(B(Qn
j,α))

´

Qn
j,α
g dµ. If n ≤ nα, then there is exactly

one such maximal cube : Erα. Also, we have an injection from the set of the couples (n,Q) with
n ≤ nα, Q ∈ Cnα to {Q ∈ Dr

m : Q ⊂ Erα}, thus :

∑

n≤nα

γn+1
∑

Q∈Cn
α

ϕ(B(Q))µ(B(Q))

ˆ

2B(Q)

f dµ ≤ γnα+1
∑

Q∈Dr
m

Q⊂Er
α

ϕ(B(Q))µ(B(Q))

ˆ

2B(Q))

f dµ

If n > nα, then any Qnj,α is a strict subset of Erα. For such a maximal cube F , we let P be his
dyadic parent i.e. the only cube of length ρℓ(R) containing P . We have P ⊂ Erα, and by using
the maximality of F , and that B(R) ⊂ 2B(P ), and using the ρδ-doubling (B(P ) has radius less
than ρδ) :

γn <
1

µ(B(F))

ˆ

F
g dµ ≤ µ(B(P ))

µ(B(F))

1

µ(B(P ))

ˆ

P

g dµ ≤ Cρηγn = κγn, (2.29)

the constant κ depending only on ρ and on the doubling constant. Then choosing γ > κ, we
have 1

µ(B(F))

´

F g dµ ≤ γn+1, thus F ∈ Cnα. Thus for a fixed n > nα, every cube in Cnα is in a

(unique) Qnj,α, which are disjoint in j by maximality. Thus, writing Qnα

j,α for Erα we have :

ˆ

X

(Tmf) g dµ ≤ C
∑

α≥1

∑

n≥nα

γn+1
∑

j∈Jn

∑

Q∈Dm
α

Q⊂Qn
j,α

ϕ(B(Q))µ(B(Q))

ˆ

2B(Q)

f dµ

Now we use the following lemma (see lemma 6.1 of [22]) :

Lemma 2.2. Let (X, d, µ) satisfy (D)ηδ . Let ϕ be a functional on balls that satisfy (2.21) for
balls of radius at most ρδ. Then there is a constant C which depends only on the constant L of
(2.21) and on the doubling constant such that for any f ≥ 0 and any dyadic cube Q0 ∈ Dr

m, with
ρr ≤ δ,

∑

Q∈Dm

Q⊂Q0

ϕ(B(Q))µ(B(Q))

ˆ

2B(Q))

f dµ ≤ Cϕ(B(Q0))µ(B(Q0))

ˆ

3B(Q0)

f dµ (2.30)

Proof. By (2.21), we have :

∑

Q∈Dm

Q⊂Q0

ϕ(B(Q))µ(B(Q))

ˆ

2B(Q))

f dµ ≤ Lϕ(B(Q0))µ(B(Q0))
∑

Q∈Dm

Q⊂Q0

(

ℓ(Q)

ℓ(Q0)

)ε ˆ

2B(Q))

f dµ

≤ Lϕ(B(Q0))µ(B(Q0))

+∞
∑

l=0

ρ−εl
∑

Q∈Dm

Q⊂Q0

ℓ(Q)=ρ−lℓ(Q0)

ˆ

2B(Q))

f dµ.

(2.31)

Then for Q ∈ Dm, Q ⊂ Q0, and ℓ(Q) ≤ ℓ(Q0) we have 2B(Q) ⊂ 3B(Q0). Indeed, if
y ∈ 2B(Q), then :
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d(y, xQ0) ≤ d(y, xQ) + d(xQ, xQ0)

≤ 2r(B(Q)) + r(B(Q0))

≤ 3r(B(Q0)).

Thus, the left hand side of (2.31) is less than :

Lϕ(B(Q0))µ(B(Q0))

ˆ

3B(Q0))

f(x)
∞
∑

l=0

ρ−εl
∑

Q∈Dm

Q⊂Q0

ℓ(Q)=ρ−lℓ(Q0)

χ2B(Q)(x) dµ(x).

Then it suffices to show that for each l, any x of 3B(Q0) is in at most N of the 2B(Q), with
ℓ(Q) = ρ−lℓ(Q0), with N independant of the choices of x and Q0. For l = 0, there is only one Q
: Q0 itself, and thus it is true.

Now fix l > 1, let x ∈M , and Q be a cube of sidelength ρ−lℓ(Q0) such that x ∈ 2B(Q). We
write ℓ = ℓ(Q) ≤ ρ−1δ. Then for y ∈ Q, d(x, y) ≤ d(x, xQ) + d(y, xQ) ≤ 3ρℓ ≤ 3δ. Then we have
B(xQ, ℓ) ⊂ Q ⊂ B(x, 3ρℓ). By the proposition 2.9, then there can be at most N disjoint balls of
radius ℓ ≤ δ with center in a ball of radius 3ρℓ, with the constant N depending only on ρ and
on the δ-doubling constant.

Thus

∞
∑

l=0

ρ−εl
∑

Q∈Dm

Q⊂Q0

ℓ(Q)=ρ−lℓ(Q0)

1 ≤ N
1

1− ρ−ε
,

and the lemma follows.

Then applying the lemma :

ˆ

X

(Tmf) g dµ ≤ C
∑

α≥1

∑

n≥nα

γn+1
∑

j∈Jn

ϕ
(

B
(

Qnj,α
))

µ
(

B
(

Qnj,α
))

ˆ

3B(Qn
j,α)

f dµ.

And thus since Qnj,α ∈ Cnα, γn ≤ 1

µ(B(Qn
j,α))

´

Qα
j,n
g dµ, and so,

ˆ

X

(Tmf) g dµ ≤ Cγ
∑

α≥1

∑

n≥nα

∑

j∈Jn

ϕ
(

B(
(

Qnj,α
))

ˆ

3B(Qn
j,α)

f dµ

ˆ

Qn
j,α

g dµ,

and we have :

ˆ

X

(Tmf) g dµ ≤ c
∑

α,n,j

ϕ
(

B
(

Qnj,α
))

µ
(

Qnj,α
)

ˆ

3B(Qn
j,α)

f dµ
1

µ(Qnjα)

ˆ

Qn
j,α

g dµ. (2.32)

Then using Hölder’s inequality, and that by (2.21) there is some constant c depending only
on α,A, L, ε such that ϕ(B) ≤ cϕ(3B) (ball of radius 3ρδ), we get :
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ˆ

X

(Tmf) g dµ ≤ C





∑

α,n,j

µ
(

Qnj,α
)

(

ϕ
(

B
(

3Qnj,α
))

ˆ

3B(Qn
j,α)

f dµ

)p




1
p





∑

α,n,j

µ
(

Qnj,α
)

(

1

µ(Qnjα)

ˆ

Qn
j,α

g dµ

)p′




1
p′

Now we just need to establish a majoration of µ(Qnj,α) by a constant time the measure of a
set Enj,α, with the Enj,α being pairwise disjoint in j, n, α. For this, define Ωnα by

Ωnα =











x ∈ Erα; sup
Q∈Dr

m
x∈Q

1

µ(B(Q))

ˆ

Q

g dµ > γn











=
⋃

j∈Jn

Qnj,α (2.33)

and define the set Enj,α = Qnj,α \ Ωn+1
α . We have that Enj,α ⊂ Ωnα \ Ωn+1

α , and the Enj,α are
pairwise disjoints in j, n, α.

Now we want to show that for γ chosen large enough, µ(Qnj,α) ≤ 2µ(Enj,α).

First, Qnj,α ∩ Ωn+1
α =

⋃

i

(

Qnj,α ∩Qn+1
i,α

)

. But we have 1

µ(B(Qn+1
i,α ))

´

Qn+1
i,α

g dµ > γn+1 > γn,

thus by maximality of Qnj,α, and by the properties of dyadic cubes, etiher Qn+1
i,α ⊂ Qnj,α or

Qnj,α ∩Qn+1
i,α = ∅. Hence :

µ
(

Qnj,α ∩ Ωn+1
α

)

=
∑

i:Qn
j,α∩Qn+1

i,α =∅

µ
(

Qnj,α ∩Qn+1
i,α

)

=
∑

i:Qn+1
i,α ⊂Qn

j,α

µ
(

Qn+1
i,α

)

But :

µ
(

Qn+1
i,α

)

≤ µ
(

B
(

Qn+1
i,α

))

≤ γ−n−1

ˆ

Qn+1
i,α

g dµ.

And since the Qn+1
i,α considered are disjoints and subsets of Qnj,α :

µ(Qnj,α ∩ Ωn+1
α ) ≤ γ−n−1

ˆ

Qn
j,α

g dµ ≤ κγ−1µ(B(Qnj,α)),

where κ is the constant in (2.29). But we have :

µ(Qnj,α) = µ(Enj,α) + µ(Qnj,α ∩ Ωn+1
α ),

and so choosing γ = 2κ, it follows that :

µ
(

Qnj,α
)

≤ γ

γ − κ
µ
(

Enj,α
)

= 2µ
(

Enj,α
)

Thus we have :
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ˆ

X

(Tmf) g dµ ≤ 2C





∑

α,n,j

µ
(

Enj,α
)

(

ϕ
(

B
(

3Qnj,α
))

ˆ

3B(Qn
j,α)

f dµ

)p




1
p





∑

α,n,j

µ
(

Enj,α
)

(

1

µ(Qnjα)

ˆ

Qn
j,α

g dµ

)p′




1
p′

.

But since Enj,α ⊂ Qnj,α, µ
(

Enj,α
)

(

ϕ
(

B
(

3Qnj,α
)) ffl

3B(Qn
j,α)

f dµ
)p

≤
´

En
j,α

(

Mϕ,3ρr+1f
)p

dµ,

and a similar inequality for the integral on g. In addition using that the Enj,α are pairwise
disjoint, and that ρr < δ, we get :

ˆ

X

(Tmf) g dµ ≤ 2C

(
ˆ

X

(Mϕ,3ρδf)
p
dµ

)
1
p
(
ˆ

X

(Md,δg)
p′

dµ

)
1
p′

; (2.34)

then using proposition 2.12, for all f, g ≥ 0, there is a constant C which depends only on
p,A, α, ε (specifically it depends on the constants for the ρδ-doubling) such that :

ˆ

X

(Tmf) g dµ ≤ C ‖Mϕ,3ρδf‖p ‖g‖p′ .

This holds under (D)ηrδ, (K)2ρδ and the fact that (2.21) holds for balls of radius at most 3ρδ.
The stronger hypotheses are what we need to apply proposition 2.14 which gives us :

ˆ

X

(Tmf) g dµ ≤ C ‖Mϕ,δf‖p ‖g‖p′. (2.35)

Which proves the theorem.

Finally we have :

Corollary 2.1. Let µ be a measure satisfy (D)ηR and (RD)νR, for R > 0, η ≥ ν > 0 (η ≥ ν is

automatic). Let s ≤ ν. Let δ ≤ R. If K(x, y) = d(x,y)s

µ(B(x,d(x,y))) , then the associated operator Tδ
satisfy the hypotheses of theorem 2.4. Moreover, the theorem still holds with Mϕ,δf replaced by
the following maximal function :

Ms,δf(x) = sup
0<r<δ

rs
 

B(x,r)

|f | dµ. (2.36)

Proof. First, take some b > 1, by proposition 2.8, µ is bR-reverse doubling of order ν. Then, we
must verify that K satisfy the hypotheses of theorem 2.4. Let d(x, y) ≤ R and d(x, y′) ≤ bd(x, y),
then we have by doubling and reverse doubling, :

1

µ (B (x, d(x, y)))
≤ 1

µ (B (x, d(x, y′)))

µ (B (x, bd(x, y)))

µ (B (x, d(x, y)))

µ (B (x, d(x, y′)))

µ (B (x, bd(x, y)))
,

≤ Cbη−ν
(

d(x, y′)

d(x, y)

)ν
1

µ (B (x, d(x, y′))
.

Thus, provided that s ≤ ν :
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K(x, y) ≤ Cbη−ν
(

d(x, y′)

d(x, y)

)ν−s
K(x, y′) ≤ Cbη−sK(x, y′).

Furthermore, if d(x′, y) ≤ αd(x, y), by doubling there are c, C such that cµ (B (y, d(x′, y))) ≤
µ (B (x′, d(x′, y))) ≤ Cµ (B (y, d(x′, y))), and so doing the same calcuations we have :

K(x, y) ≤ Cbν−sK(x′, y).

And there are C1, C2 > 1 such that (2.18) is satisfied.

Then, using the definition of ϕ and doubling, c r(B)s

µ(B) ≤ ϕ(B) ≤ C r(B)s

µ(B) for some constants

that depends only on s, ρ and the doubling constant. Then since we have, for B1 ⊂ B2, r(B1)
s ≤

2sr(B2)
s, we easily verify that ϕ satisfy (2.21) with ε = s.

Then it is enough to prove that the centered and uncentered version of the maximal function
Ms,δ are equivalent in Lp norms. This follow from the same argument as that of proposition
2.11.

3 Relative Faber-Krahn inequality and estimates on the

heat kernel and the Riesz and Bessels potentials

3.1 Faber-Krahn and doubling

The results from this subsection are due to A.A. Grigor’yan [10, 11], or are slight adaptation of
his results to the R-doubling case.

Theorem 3.1. [11] Let (M, g, µ) be a weighted manifold, and let {B(xi, ri)}i∈I be a family of
relatively comapct balls in M, where I is an arbitrary index set. Assume that, for any i ∈ I, the
Faber-Krahn inequality holds :

λ1(U) ≥ aiµ(U)−2/η, (3.1)

for any open set U ⊂ B(xi, ri), where ai > 0. Let Ω =
⋃

i∈I B
(

xi,
ri
2

)

. Then for all x, y ∈ Ω
and t ≥ t0 > 0 :

pt(x, y) ≤
C(η)

(

1 + d(x,y)2

t

)η/2

exp
(

− d(x,y)2

4t − λ1(M)(t− t0)
)

(

aiaj min (t0, r2i )min
(

t0, r2j
))η/4

, (3.2)

where i, j are the indices such that x ∈ B
(

xi,
ri
2

)

and y ∈ B
(

xj ,
rj
2

)

.

On a manifold which admits (RFK)ηR, applying this theorem with the family {B(x, r)} x∈M,
0<r≤R

,

ax,r =
b
r2µ (B (x, r))

2/η
, t0 = t, and r =

√
t when t ≤ R2 we get :

pt(x, y) ≤ C(η)

(

1 + d(x,y)2

t

)η/2

e−
d(x,y)2

4t

(

ax,
√
tby,

√
tt

2
)η/4

,

≤ C(η)

bη/2
e−

d(x,y)2

ct

µ
(

B
(

x,
√
t
))1/2

µ
(

B
(

y,
√
t
))1/2

.
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If t > R2, then we do the same thing, but with r = R. Thus we obtain the following :

Theorem 3.2. Let (M, g, µ) be a weighted Riemannian manifold, suppose that there is R > 0
such that M satisfy (RFK)ηR. Then µ satisfy (D)ηR, and for any c > 4 there is some constant
C > 0 such that the heat kernel satisfies the upper bound :

pt(x, y) ≤
C

µ
(

B
(

x,
√
t
))1/2

µ
(

B
(

y,
√
t
))1/2

e−
d(x,y)2

ct , t ≤ R2 (3.3)

pt(x, y) ≤
C

µ (B (x,R))1/2 µ (B (y,R))1/2
e−

d(x,y)2

ct , t > R2. (3.4)

The constant C depends only on b and η in the Faber-Krahn inequality and on the c > 4
chosen.

The estimate on the heat kernel follows from Theorem 5.2 of [10]. The R-doubling follow
from the proof of Proposition 5.2 of the same article.

Conversely, we have :

Proposition 3.1. [10] Let (M, g, µ) be a complete, weighted Riemannian manifold. If µ satisfies
(D)ηR, if for any x ∈M , X \B

(

x, 34R
)

6= ∅ and if there is some constant B such the heat kernel
satisfies :

pt(x, x) ≤
B

µ
(

B
(

x,
√
t
)) , (3.5)

for all x ∈M , and for all 0 < t ≤ R2, then there is some constant κ ∈ (0, 1), which depends
only on the doubling and reverse doubling constants, such that M admits a relative Faber-Krahn
inequality at scale κR, with η being the doubling order and b depending only on A,B, and κ
depends only on the doubling constants and on B.

3.2 An estimate on the heat kernel

Proposition 3.2. Let (M, g, µ) be a weighted manifold satisfying (RFK)ηR for R > 0, then for
any c > 4 and γ ∈ (0, 1) there exists constants C > 0, ĉ > 1 such that for any λ > 0 with Rλ > ĉ,
we have :

pt(x, y) ≤
C

µ
(

B
(

x,
√
t
))e−

d(x,y)2

ct ,
√
t ≤ λ−1

pt(x, y) ≤
C

µ (B (x, λ−1))
e(1−γ)λ

2te−
d(x,y)2

ct ,
√
t > λ−1.

(3.6)

With C depending only on b, η and c, and ĉ depending on b, η, c and γ.

Proof. Let c > 4, γ ∈ (0, 1). If t ≤ λ−1 < R2, then applying theorem 3.2, we have, for any κ > 1
such that c/κ > 4 :

pt(x, y) ≤
C

µ
(

B
(

x,
√
t
))1/2

µ
(

B
(

y,
√
t
))1/2

e−
κd(x,y)2

ct

≤ C

µ
(

B
(

x,
√
t
))e

D
2

d(x,y)√
t

−κ
c

d(x,y)2

t

22



≤ C

µ
(

B
(

x,
√
t
))e−

d(x,y)2

ct ,

using proposition 2.6. If t ≥ λ−1, then similarly :

pt(x, y) ≤
C

µ (B (x, λ−1))
e

Dd(x,y)
2R −κd(x,y)2

ct .

Then we have Dd(x,y)
2R − (κ−1)d(x,y)2

ct − (1 − γ)λ2t ≤
(

cD2

16(κ−1)R2 − (1− γ)λ2
)

t, for all t > 0,

x, y ∈M . Thus for ĉ =
√

c
(1−γ)(κ−1)

D
4 , the for all λ such that λR ≥ ĉ, we have:

pt(x, y) ≤
C

µ (B (x, λ−1))
e(1−γ)λ

2te−
d(x,y)2

ct (3.7)

Remark. If d(x, y) ≤ R then we can actually do better, then eDd(x,y)/2R ≤ C for a constant
which doesn’t depends on d(x, y). Then we have :

pt(x, y) ≤
C

µ
(

B
(

x,min(
√
t, λ−1)

))e−
d(x,y)2

ct (3.8)

3.3 Estimation of the Riesz potential

Let s > 0. Define the Riesz potential to be the operator Is = ∆−s/2 on L2(M,µ). We have by
the spectral theorem, for f positive, measurable :

Isf(x) =
1

Γ
(

s
2

)

ˆ ∞

0

ts/2−1e−t∆f(x) dt

=
1

Γ
(

s
2

)

ˆ

M

f(y)

ˆ ∞

0

ts/2−1pt(x, y) dt dµ(y)

=

ˆ

M

is(x, y)f(y) dµ

With the "kernel" is defined by :

is(x, y) =
1

Γ
(

s
2

)

ˆ ∞

0

ts/2−1pt(x, y) dt. (3.9)

Proposition 3.3. Let (M, g, µ) be a manifold satisfying (RFK)η and (RD)ν , ν > 0. Then
for any s < ν, there is a constant C, depending only on the Faber-Krahn and reverse doubling
constants, such that :

is(x, y) ≤ C
d(x, y)s

µ (B (x, d(x, y)))
(3.10)

Proof. If M admits a relative Faber-Krahn inequality, then there are constants C > 0, c > 4

such that pt(x, y) ≤ C

µ(B(x,
√
t))
e−

d(x,y)2

ct , for all x, y ∈M , t > 0.

Thus :
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is(x, y) ≤ Cs

ˆ ∞

0

ts/2−1

µ
(

B
(

x,
√
t
))e−

d(x,y)2

ct dt

We integrate separately between 0 and d2 and d2 and +∞, and using the doubling and reverse
doubling properties of the measure we get :

is(x, y) ≤ C
dη

µ (B (x, d(x, y)))

ˆ d2

0

ts/2−η/2−1e−
d(x,y)2

ct dt+

C
dν

µ (B (x, d(x, y)))

ˆ ∞

d2
ts/2−ν/2−1e−

d(x,y)2

ct dt

When ν > s, the second integral is convergent and less than 2
ν−sd

s−ν .
For the first integral, through the change of variables t = d2/cu there is some constant cs

such that it is equal to csd
s−η ´∞

1
uη/2−s/2−1e−u du, and this new integral is convergent if η > s,

which it is since we must have η ≥ ν, and equal to a constant depending only on η, s.
Thus putting all of this together we have :

is(x, y) ≤ C
d(x, y)s

µ (B (x, d(x, y)))

With the constant depending only on s, η, ν as well as the constants of the relative Faber
Krahn inequality.

3.4 Estimation of the Bessel potential

Define the Bessel potential for λ > 0, s > 0 to be the operator Gs,λ =
(

∆+ λ2
)−s/2

on L2(M,µ).
We have, by the spectral theorem :

Gs,λ =
1

Γ
(

s
2

)

ˆ ∞

0

ts/2−1e−λ
2te−t∆ dt (3.11)

Similar to the previous section, we have for positive f :

Gs,λf(x) =

ˆ

M

gs,λ(x, y)f(y) dµ(y), (3.12)

with gs,λ defined by :

gs,λ(x, y) =
1

Γ
(

s
2

)

ˆ ∞

0

ts/2−1e−λ
2tpt(x, y) dt (3.13)

Proposition 3.4. There is a constant ĉ such that if (M, g, µ) is a weighted manifold that satisfy
(RFK)ηR and (RD)νR for R > 0, ν > 1, then for any λ such that λR > ĉ, then for any s < ν,
there are constants C > 0, and γ ∈ (0, 1), depending only on the Faber Krahn and reverse
doubling constants, such that :

gs,λ(x, y) ≤ C

(

d(x, y)s

µ (B (x, d(x, y)))
χ{λd(x,y)≤1} +

λ−s

µ (B (x, λ−1))

(

χ{λd(x,y)>1}
)

)

e−γλd(x,y)

(3.14)
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Proof. It is enough to show the proposition for λ = 1, R > ĉ.

Indeed, Gs,λ = λ−s
(

∆
λ2 + 1

)−s/2
. ∆/λ2 is the Laplacian ∆′ for (M, g′, µ′) with g′ = λ2g and

dµ′ = λn dµ. The geodesic distance d′ associated with the metric g′ is simply d′ = λd, and if
(M, g, µ) admits a relative Faber Krahn inequality at scale R, then (M, g′, µ′) admits a relative
Faber Krahn inequality, with the same constants, at scale λR.

Then using that gs,λ(x, y) = λ−sg′s,1(x, y), with g′s,1 the kernel of (∆′ + 1)
−s/2

, it follows that
(3.14) being true for λ = 1 and all R > ĉ implies (3.14) for all (λ,R) such that Rλ > ĉ.

We have :

gs,1(x, y) =
1

Γ
(

s
2

)

(
ˆ 1

0

ts/2−1e−tpt(x, y) dt+

ˆ ∞

1

ts/2−1e−tpt(x, y) dt

)

Let J0 =
´ 1

0 t
s/2−1e−tpt(x, y) dt and J∞ =

´∞
1 ts/2−1e−tpt(x, y) dt.

To simplify the notations we will write d = d(x, y) until the end of this section.

Lemma 3.1. There is some constant ĉ > 1 such that for R ≥ ĉ, there is some γ > 0, such that
for any s < ν we have :

ˆ 1

0

ts/2−1e−tpt(x, y) dt ≤ c

(

ds

µ (B (x, d))
χ{d≤1} +

1

µ (B (x, 1))
χ{d>1}

)

e−γd. (3.15)

Proof. We treat the cases d ≤ 1 and d > 1 separately. When d(x, y) ≤ 1 we have : J0 = J0,1+J0,2
with

J0,2 =

ˆ 1

d2
ts/2−1e−tpt(x, y) dt.

We have, by proposition 3.2, that , there is a constant ĉ such that if R ≥ ĉ, then for all t ≤ 1

we have pt(x, y) ≤ C

µ(B(x,
√
t))
e−

d(x,y)2

ct . For such R ≥ ĉ > 1, using the R-reverse doubling, we

have that for any t ∈ (d2, 1),
√
t ≤ 1 < R, and thus we have µ (B (x, d)) ≤ a

(

d√
t

)ν

µ
(

B
(

x,
√
t
))

.

Using all this we get :

J0,2 ≤ C

ˆ 1

d2

ts/2−1e−te−
d2

ct

µ
(

B
(

x,
√
t
)) dt,

≤ Ca−1 dν

µ (B (x, d))

ˆ 1

d2
ts/2−ν/2−1e−te−

d2

ct dt,

≤ Ce1/4
dνe−d

µ (B (x, d))

ˆ 1

d2
ts/2−ν/2−1 dt; since e−t ≤ e−d

2

, e−d
2 ≤ e1/4e−d,

≤ C
dνe−d

µ (B (x, d))

2

ν − s

(

ds−ν − 1
)

,

≤ C
ds

µ (B (x, d))
e−d,

since we have ν > s. Now we estimate J0,1 :

J0,1 ≤ C

ˆ d2

0

ts/2−1e−te−
d2

ct

µ
(

B
(

x,
√
t
)) dt,
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≤ AC
dη

µ (B (x, d))

ˆ d2

0

ts/2−η/2−1e−te−
d2

ct dt,

≤ C
ds

µ (B (x, d))

ˆ ∞

1

uη/2−s/2−1e−d
2/cue−u du, change of variable t = d2/cu,

≤ C
ds

µ (B (x, d))

ˆ ∞

1

uη/2−s/2−1e−d
2/cu−u/2e−u/2 du

We use that e−d
2/cu−u/2 ≤ Ce−γ1d for some constant γ1 which depends on c. Then,

´∞
1
uη/2−s/2−1e−u/2 du converges to a constant and :

J0,1 ≤ C
ds

µ (B (x, d))
e−γ1d

Thus, for a constant C depending only on s, c and the doubling and reverse doubling constants,
we have :

J0χ{d(x,y)≤1} ≤ C
ds

µ (B (x, d))
e−γ1dχ{d(x,y)≤1}.

If d(x, y) > 1, then we have :

J0 ≤ C

ˆ 1

0

ts/2−1e−te−
d2

ct

µ
(

B
(

x,
√
t
)) dt,

≤ AC
1

µ (B (x, 1))

ˆ 1

0

ts/2−η/2−1e−te−
d2

ct dt, since d > 1 we have :

≤ C
1

µ (B (x, 1))
e−d

2/2c

ˆ 1

0

ts/2−η/2−1e−
1

2ct dt,

≤ C
1

µ (B (x, 1))
e−γ2d.

Since the integral converge and is a constant depending on only s, η, c, and using that e−ax
2 ≤

Ce−ax

Then for γ = min(γ1, γ2) and a constant C which depends only on s, c and the doubling and
reverse doubling constants, we have :

J0 ≤ c

(

ds

µ (B (x, d))
χ{d≤1} +

1

µ (B (x, 1))
χ{d>1}

)

e−γd

Lemma 3.2. There is some ĉ such that if R ≥ ĉ, there is some constant γ > 0, such that for
any s we have :

ˆ ∞

1

ts/2−1e−tpt(x, y) dt ≤ C

(

ds

µ (B (x, d))
χ{d≤1} +

1

µ (B (x, 1))
χ{d>1}

)

e−γd (3.16)

Proof. From Proposition 3.2, it follows that, since R ≥ ĉ, then :

J∞ ≤ C

µ (B (x, 1))

ˆ ∞

1

ts/2−1e−
d2

ct e−γ0t dt
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For any α ∈ (0, 1) e−αt−
d2

ct admits a maximum when αt = d2

ct , and so is less than e−2
√

α
c
d.

Take γ1 ∈ (0, 1) such that : α = c
4γ

2
1 < γ0, then we have :

J∞ ≤ C

(
ˆ ∞

1

ts/2−1e(α−γ0)t dt

)

1

µ (B (x, 1))
e−γ1d

Thus there is γ ∈ (0, 1) depending on γ0, c, and a constant C depending only on s, c, γ0 and
the doubling constants such that

J∞ ≤ C
1

µ (B (x, 1))
e−γd

But we also have, when d ≤ 1, we have: 1
µ(B(x,1)) ≤ a−1 dν

µ(B(x,d)) ≤ a−1 ds

µ(B(x,d)) using (RD)νR
and s < ν. Hence, for d(x, y) ≤ 1 we have :

J∞ ≤ C
ds

µ (B (x, d))
e−γ1d.

Thus there is a constant C such that :

J∞ ≤ C

(

ds

µ (B (x, d))
χ{d≤1} +

1

µ (B (x, 1))
χ{d>1}

)

e−γd.

And so there is c0 > 0 which depends on s, γ0, c and the doubling and reverse doubling
constants, and γ ∈ (0, 1) depending on c and γ0, such that :

gs,1(x, y) ≤ c0

(

d(x, y)s

µ (B (x, d(x, y)))
χ{d(x,y)≤1} +

1

µ (B (x, 1))

(

χ{d(x,y)>1}
)

)

e−γd (3.17)

4 Proof of the main results

Let (M, g, µ) be a weighted Riemannian manifold. Let V ∈ L1
loc(M, dµ), V ≥ 0, for any R > 0

and p ≥ 1, we define Np(V ) and Np,R(V ) as in (1.7) and (1.8). Notice that Np(V ) =M2p(V
p)1/p.

Though we can deduce theorem 1.1 as a special case of 1.2, we start by giving a separate,
simpler proof of it. The general idea behind the proof of both theorems remains the same, but
in the case of theorem 1.2, much more care will be required in establishing the bounds on the
norm of certain operators.

4.1 Proof of Theorem 1.1

We first make the technical hypothesis that µ satisfy the reverse doubling property (RD)ν , with
a reverse doubling order ν > 1.

We assume that M admits (RFK)η and (RD)ν . Let ψ ∈ C∞
0 (M), define ϕ = ∆1/2ψ, or

ψ = ∆−1/2ϕ. We have, using that ∆−1/2
(

V 1/2·
)

is the adjoint of V 1/2∆−1/2 :

〈V ψ, ψ〉 =
∥

∥

∥V 1/2∆−1/2ϕ
∥

∥

∥

2
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≤
∥

∥

∥V 1/2∆−1/2
∥

∥

∥

2

L2→L2
‖ϕ‖2

≤
∥

∥

∥∆−1/2
(

V 1/2·
)∥

∥

∥

2

L2→L2

∥

∥

∥∆1/2ψ
∥

∥

∥

2

≤
∥

∥

∥∆−1/2
(

V 1/2·
)∥

∥

∥

2

L2→L2
‖∇ψ‖2

But, by proposition 3.3 and theorem 2.3, we have that ‖∆−1/2f‖2 ≤ C‖M1f‖2. Moreover
for q = 2p, we have :

(something wrong here with Np)

M1

(

V 1/2f
)

(x) ≤Mq

(

V q/2
)

(x)1/qM0(|f |q
′
)(x)1/q

′

≤ Np(V )1/2M0(|f |q
′
)(x)1/q

′
,

using that Np(V ) =M2p (V
p)

1/p
. Then, using the fact that for any r > 1, M0 is bounded on

Lr we have :

∥

∥

∥M1

(

V 1/2f
)∥

∥

∥

2
≤ Np(V )1/2

∥

∥

∥M0(|f |q
′
)
∥

∥

∥

1/q′

2/q′

≤ CNp(V )1/2
∥

∥

∥|f |q′
∥

∥

∥

1/q′

2/q′

≤ CNp(V )1/2 ‖f‖2

Thus we can estimate the operator norm of ∆−1/2
(

V 1/2·
)

, and we get :

ˆ

M

V ψ2 dµ ≤ CNp(V ) ‖∇ψ‖2 (4.1)

4.2 Proof of Theorem 1.2

We first prove the following weaker version of theorem 1.2. The more general result will follows
by removing the technical hypothesis of (RD)νR, ν > 1.

Theorem 4.1. Let (M, g, µ) be a weighted Riemannian manifold, satisfying (RFK)ηR for some
R > 0, and (RD)νR for some ν > 1.

Then for any p > 1, there are positive constants ĉ, Cp, with ĉ > 1, depending only on the
Faber-Krahn and doubling constants (and, for Cp, on p) such that for any λ > ĉR−1, for any
V ∈ L1

loc(M, dµ), V ≥ 0 and ψ ∈ C∞
0 (M) :

ˆ

M

V ψ2 dµ ≤ CpNp,λ−1(V )

(
ˆ

M

|∇ψ|2 dµ+ λ2
ˆ

M

ψ2 dµ

)

(4.2)

4.2.1 Proof of Theorem 4.1

Let (M, g, µ) be a weighted manifold satisfying (RFK)ηR and (RD)νR, with R > 0 and ν > 1.
For ĉ the constant given in proposition 3.2, take λ > 2 ĉR . For s > 1, δ > 0 we recall that Ms,δ is
the maximal function defined by :
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Ms,δf(x) = sup
r<δ

rs
 

B(x,r)

f dµ (4.3)

For a given λ > 0, and p ≥ 1 we will note Kp = Np,λ−1(V ) = supxM2p,λ−1 (V p) (x)1/p.
If Kp is infinite, then the previous inequality is obviously true. Then, if we suppose that have

Kp <∞, we have :

Lemma 4.1. Let (M, g, µ) be a weighted manifold. Then for V ≥ 0 locally integrable, λ ≥ 0 we
have :

〈V ψ, ψ〉 ≤
∥

∥

∥
G1,λ

(

V 1/2·
)∥

∥

∥

2

L2→L2

(

‖∇ψ‖2 + λ2‖ψ‖2
)

(4.4)

Proof. Let ψ ∈ C∞
0 (M), and define ϕ =

(

∆+ λ2
)1/2

ψ. Then ψ = G1,λϕ and, using the fact that

G1,λ

(

V 1/2·
)

is the adjoint of V 1/2G1,λ :

〈V ψ, ψ〉 =
〈

V 1/2G1,λϕ, V
1/2G1,λϕ

〉

=
∥

∥

∥V 1/2G1,λϕ
∥

∥

∥

2

2

≤
∥

∥

∥V 1/2G1,λ

∥

∥

∥

2

L2→L2
‖ϕ‖22

≤
∥

∥

∥G1,λ

(

V 1/2·
)∥

∥

∥

2

L2→L2

∥

∥

∥

(

∆+ λ2
)1/2

ψ
∥

∥

∥

2

2

≤
∥

∥

∥G1,λ

(

V 1/2·
)∥

∥

∥

2

L2→L2

(

‖∇ψ‖22 + λ2‖ψ‖22
)

,

which is what we wanted to show.

Now, since M satisfy (RFK)ηR and (RD)νR, with ν > 1, we can apply the proposition 3.4,
thus for Rλ > ĉ, we have G1,λ ≤ c0(T1 + T2), with

T1f(x) =

ˆ

λd(x,y)≤1

d(x, y)s

µ (B (x, d(x, y)))
e−γλd(x,y)f(y) dµ(y)

T2f(x) =
λ−s

µ (B (x, λ−1))

ˆ

λd(x,y)>1

e−γλd(x,y)f(y) dµ(y)

(4.5)

Thus, we have
∥

∥G1,λ

(

V 1/2·
)∥

∥

2
≤ c0

(∥

∥T1
(

V 1/2·
)∥

∥

2
+
∥

∥T2
(

V 1/2·
)∥

∥

2

)

. Then all we need to
do is to evaluate those two operator norms.

Lemma 4.2. Let (M, g, µ) be a weighted Riemannian manifold, let λ > 0. Assume (D)ηR and
(RD)νR, for R ≥ λ−1. Then for T1 defined as in (4.5), and V ≥ 0 locally integrable, there is
some constant C1,p which depends only on p, γ and the reverse doubling and doubling constants,
such that :

∥

∥

∥T1

(

V 1/2·
)∥

∥

∥

2
≤ C1,pK

1/2
p (4.6)

Proof. We can apply corollary 2.1 : for any p ≥ 1, and any locally integrable f , we have
‖T1f‖p ≤ cp‖M1,λ−1f‖p. Then, for any ψ ∈ C∞

0 (M), for q = 2p, q′ = q/(q − 1) :
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M1,λ

(

V 1/2ψ
)

(x) ≤
(

M2p,λ−1 (V p) (x)
)1/2p

(

M0,λ−1

(

ψq
′
)

(x)
)1/q′

≤ K1/2
p M0,λ−1

(

ψq
′
)

(x)1/q
′

∥

∥

∥T1

(

V 1/2ψ
)∥

∥

∥

2
≤ cpK

1/2
p

∥

∥

∥M0,λ−1

(

ψq
′
)∥

∥

∥

1/q′

2/q′

≤ cpc̃2/q′K
1/2
p ‖ψ‖2

With ‖M0,λ−1f‖r ≤ c̃r‖f‖r for any f ∈ Lr, r ∈ (1,∞]. Thus :
∥

∥

∥T1

(

V 1/2 ·
)∥

∥

∥

L2→L2
≤ C0,pK

1/2
p (4.7)

Lemma 4.3. Let (M, g, µ) be a weighted Riemannian manifold, let λ > 0. Assume (D)ηR,
(RD)νR for R ≥ λ−1. Then for T2 defined as in (4.5), and V ≥ 0 locally integrable, there is some
constant C2,p which depends only on p, γ and the doubling and reverse doubling constants, such
that :

∥

∥

∥T2

(

V 1/2·
)∥

∥

∥

2
≤ C2,pK

1/2
p (4.8)

Proof. We majorate T2(V
1/2) by an operator for which we can use the Schur Test. We have :

T2f(x) =
λ−1

µ (B (x, λ−1))

ˆ

λd>1

e−γλd(x,y)f(y) dµ(y)

= γ
1

µ (B (x, λ−1))

ˆ ∞

λ−1

e−γλr
ˆ

λ−1<d<r

f(y) dµ(y) dr

Then, for ψ ∈ C∞
0 (M), q = 2p, q′ = q/(q − 1), by Hölder’s inequality :

T2

(

V 1/2ψ
)

(x) ≤ γ

µ (B (x, λ−1))

ˆ ∞

λ−1

e−γλr
(
ˆ

λ−1<d<r

V p dµ

)1/2p (ˆ

λ−1<d<r

ψq
′
dµ

)1/q′

dr

(4.9)
Then we cover the annulus B(x, r) \ B(x, λ−1) by balls Bi = B(xi, λ

−1), xi ∈ B(x, r), such
that for i 6= j, 1

2Bi ∩ 1
2Bj = ∅. We have :

ˆ

λ−1<d<r

V p dµ ≤
∑

i

ˆ

Bi

V p dµ ≤
∑

i

λ2pKp
pµ(Bi)

≤ A2λ2pKp
p

∑

i

µ

(

1

2
Bi

)

≤ Cλ2pKp
pµ

(

B

(

x, r +
1

2λ

))

Then :
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T2

(

V 1/2ψ
)

(x) ≤ γK1/2
p λ

ˆ ∞

λ−1

e−γλr
µ
(

B
(

x, r + 1
2λ

))1/2p

µ (B (x, λ−1))

(
ˆ

λ−1<d<r

ψq
′
dµ

)1/q′

dr (4.10)

Since the measure is R-doubling, with R > 2ĉλ−1, it is also R’-doubling for all R′ ≤ R and
with the same constants. Then for 1 < ρ < 2, let R′ = ρĉλ−1, we have λ−1 < R′ ≤ R, then by
the propositions 2.4 and 2.5 :

µ
(

B
(

x, r + 1
2λ

))

µ (B (x, λ−1))
≤ C

µ (B (x, r))

µ (B (x, λ−1))

≤ C
µ (B (x, r))

µ (B (x,R′))

µ (B (x,R′))

µ (B (x, λ−1))

≤ CeD
r
R′

With C depending only on ρ, ĉ and the doubling constant. Thus :

T2

(

V 1/2ψ
)

(x) ≤ CK1/2
p λ

ˆ ∞

λ−1

e

((

D
2pR′ −γλ

)

r
)
(

1

µ (B (x, λ−1))

ˆ

λ−1<d<r

ψq
′
dµ

)1/q′

dr (4.11)

And the constant C depends on p, b, η and on the chosen arbitrary parameters.

Finally for ρ = D
(1−θ)2pγĉ with θ ∈ (0, 1) we get

(

D
2pR′ − γλ

)

=
(

D
2pρĉ − γ

)

λ = −θγλ, thus

we have :

T2

(

V 1/2ψ
)

(x) ≤ CK1/2
p λ

ˆ ∞

λ−1

e−θγλr
(

1

µ (B (x, λ−1))

ˆ

λ−1<d<r

ψq
′
dµ

)1/q′

dr (4.12)

Note that we can indeed suppose ρ = D
(1−θ)2pγĉ : by the proof of proposition 3.2, we have

D
ĉ = 4

√

(1−γ)(κ−1)
c , with 1 < κ < 1

4c, and so ρ =

√
(1−γ)(κ−1)

γ
2

(1−θ)p√c . Since the choice of c > 4

in the estimate on the heat kernel is arbitrary, and since γ can always be taken arbitrarily small,
we can choose them so that D

(1−θ)2pγĉ is equal to the chosen ρ.

Then we have by Hölder’s inequality :

T2

(

V 1/2ψ
)

≤ CK1/2
p λ

(
ˆ ∞

λ−1

e−θγλr dr

)1/q (ˆ ∞

λ−1

e−θγλr

µ (B (x, λ−1))

ˆ

λ−1<d<r

ψq
′
dµ dr

)1/q′

≤ CK1/2
p λ

(

1

θγλ
e−θγ

)1/q
(

1

θγλ

ˆ

λd>1

e−θγλd(x,y)
ψq

′
(y)

µ (B (x, λ−1))
dµ(y)

)1/q′

≤ CK
1/2
p

θγ
e−θγ/q

(

ˆ

λd>1

e−θγλd(x,y)
ψq

′
(y)

µ (B (x, λ−1))
dµ(y)

)1/q′

We will now show that there is a θ ∈ (0, 1) such that the operator S defined by :

Sψ =

ˆ

λd>1

e−θγλd(x,y)
ψ(y)

µ (B (x, λ−1))
dµ(y), (4.13)
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is bounded on every Lp for p ∈ [1,∞]. We use the Schur test : S is given by the kernel

K(x, y) = e−θγλd(x,y)

µ(B(x,λ−1))χ{λd(x,y)>1}, then if for some constant L > 0,
´

M K(x, y) dµ(y) < L for

almost every x ∈ M , and
´

M
K(x, y) dµ(x) < L for almost every y ∈ M , S is bounded on all

Lp, 1 ≤ p ≤ +∞, with all the operator norms being less than L. We have :

ˆ

dλ>1

e−θγλd(x,y)

µ (B (x, λ−1))
dµ(y) =

1

µ (B (x, λ−1))

ˆ

dλ>1

e−θγλd(x,y) dµ(y)

≤ 1

µ (B (x, λ−1))
θγλ

ˆ ∞

λ−1

e−θγλrµ (B (x, r)) dµ(r)

≤ θγλ
µ (B (x,R′))

µ (B (x, λ−1))

ˆ ∞

λ−1

e−θγλr
µ (B (x, r))

µ (B (x,R′))
dr

≤ CλA (ρĉ)
η
ˆ ∞

λ−1

e(
D
R′ −θγλ)r dr

≤ Cλ

ˆ ∞

λ−1

e(2(1−θ)pγ−θγ)λr dr

≤ c̃1,

this for any θ such that 2(1 − θ)pγ − θγ ≤ − γ
2 , and the constant c̃1 depends on θ, γ, b, η, ρ,

but not on λ or R. We also have

ˆ

dλ>1

e−θγλd(x,y)

µ (B (x, λ−1))
dµ(x) = θγλ

ˆ ∞

λ−1

e−θγλr
ˆ

B(y,r)

dµ(x)

µ (B (x, λ−1))
dr

≤ Cλ

ˆ ∞

λ−1

e−θγλrCeD
r
R′

µ (B (y, r))

µ (B (y, λ−1))
dr

≤ Cλ

ˆ ∞

λ−1

e−θγλre2D
r
R′ dr

≤ Cλ

ˆ ∞

λ−1

e(4(1−θ)pγ−θγ)λr dr

≤ c̃2,

where we take θ to be such that 4(1− θ)pγ − θγ = − γ
2 , i.e. θ =

1
2+4p

1+4p ∈ (0, 1). And c̃2 does

not depend on λ,R. Then we also have 2(1 − θ)pγ − θγ ≤ − γ
2 . Thus by the Schur test, S is

bounded on Lp for all 1 ≤ p ≤ ∞ with an operator norm that does not depend on λ,R.

Since T2
(

V 1/2ψ
)

≤ C
(

S
(

ψq
′
))1/q′

, then :

∥

∥

∥T2

(

V 1/2ψ
)∥

∥

∥

2

2
≤ C

∥

∥

∥S
(

ψq
′
)∥

∥

∥

1/q′

2/q′

≤ C ‖ψ‖22
Then we can conclude that there is some constant C1,p, which depends only on p, b, η and

the γ, c that we chose in the estimation of the heat kernel, such that :

∥

∥

∥T2

(

V 1/2·
)∥

∥

∥

L2→L2
≤ C1,pK

1/2
p (4.14)
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And so, applying all three lemmas, we have
∥

∥G1,λ

(

V 1/2·
)∥

∥

2

L2→L2 ≤ (C1,p + C2,p)
2
Kp.

Thus we have ĉ and Cp constants depending only on the doubling constants (and for Cp, on
p), such that for Rλ > ĉ, V ≥ 0 locally integrable,

ˆ

M

V ψ2 dµ ≤ CpNp,λ−1(V )

(
ˆ

M

|∇ψ|2 dµ+ λ2
ˆ

M

ψ2 dµ

)

We will now prove the theorems 1.2, 1.3 and 1.4 when (RD)νR, ν > 1 holds.

4.2.2 Proof of theorem 1.2

Since theorem 4.1 holds only for λ > ĉR−1, ĉ > 1, we immediately get (1.11) only for R′ ≤ 1
ĉR.

We need just a bit more work to get it for R.

Proof of Theorem 1.2. We have, by theorem 4.1, for any p > 1, and λ > 0 such that λR > ĉ :

〈V ψ, ψ〉 ≤ CpNp,λ−1(V )
(

‖∇ψ‖2 + λ2‖ψ‖2
)

.

In fact, this inequality also holds for λ = ĉ
R . We apply the previous inequality with this

lambda, and use that the function r 7→ Np,r(V ) is non-decreasing, and λ−1 < R. Thus :

〈V ψ, ψ〉 ≤ CpNp,R(V )

(

‖∇ψ‖2 + ĉ2

R2
‖ψ‖2

)

≤ Cpĉ
2Np,R(V )

(

‖∇ψ‖2 + 1

R2
‖ψ‖2

)

(4.15)

4.2.3 Proof of theorem 1.4

We now suppose that λ1(M) > 0. Then the previous results can be strenghtened to prove
theorem 1.4.

Proof. We apply theorem 1.2, and use that λ1(M)
´

M ψ2 dµ ≤
´

M |∇ψ|2 dµ. Then :

〈V ψ, ψ〉 ≤ CpNp,R(V )

(

1 +
1

λ1(M)R2

)
ˆ

M

|∇ψ|2 dµ

Then :

λ1(M)R2

CpNp,R(V )(1 + λ1(M)R2)

ˆ

M

V ψ2 dµ ≤
ˆ

M

|∇ψ|2 dµ

And :

λ1(M)R2

2CpNp,R(V )(1 + λ1(M)R2)

ˆ

M

V ψ2 dµ+
λ1(M)

2

ˆ

M

ψ2 dµ ≤
ˆ

M

|∇ψ|2 dµ

Then, for any V , we have :

〈V ψ, ψ〉 ≤ CpNp,R(V )(1 + λ1(M)R2)

λ1(M)R2

(

‖∇ψ‖2 − λ1(M)

2
‖ψ‖2

)

, (4.16)

which is (1.13).
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4.3 Proof of theorem 1.3

Let Cp be the constant of theorem 1.2. We let

L = sup
x,δ



2Cp

(

 

B(x,δ)

V p dµ

)1/p

− δ−2



 (4.17)

Then we have :

(

 

B(x,δ)

V p dµ

)1/p

≤ L+ δ−2

2Cp
,

(M2p,δ(V
p)(x))

1/p ≤ δ2L+ 1

2Cp
.

Take δ = L−1/2, then Np,δ(V ) ≤ 1
Cp

. Then by theorem 1.2 we have :

〈V ψ, ψ〉 − ‖∇ψ‖22 ≤ L‖ψ‖2, (4.18)

thus

− λ1(∆− V ) ≤ sup
x,δ



2Cp

(

 

B(x,δ)

V p dµ

)1/p

− δ−2



 . (4.19)

Meanwhile, let r < λ−1 ≤ R, and define fr : [0,∞) → [0,+∞) by f(t) = r if t ≤ r,
f(t) = 2r − t if t ∈ (r, 2r] and fr(t) = 0 if t > 2r. Then for o ∈ M , ψ = fr(d(o, x)). ψ is a
Lipschitz function with compact support, and we have, by (D)ηR :

λ1(∆− V ) ≤ ‖∇ψ‖2 −
´

M
V ψ2 dµ

‖ψ‖2

≤ µ (B (x, 2r))

r2µ (B (x, r))
−
 

B(x,r)

V dµ

≤ Ar−2 −
 

B(x,r)

V dµ

≤ (r/
√
A)−2 −A−1−η/2

 

B(x,r/
√
A)

V dµ,

this for all r > 0. Thus :

− λ1(∆− V ) ≥ sup
x,δ

(

A−1−η/2
 

B(x,δ)

V dµ− δ−2

)

. (4.20)

4.4 Removing the dependancy on reverse doubling

Let M be a manifold that satisfy (RFK)η. We consider M̃ = R ×M , (M̃, g̃, µ̃) the product
Riemannian manifold : g̃ = dx2 + g, dµ̃ = dx dµ. For V ∈ L1

loc(M) we define Ṽ (x,m) = V (m).

We write ∆̃ for the laplacian on (M̃, g̃, µ̃), and ∆ for the laplacian on (M, g, µ). The Morrey
norm in M̃ is written Ñp,R.

We have :
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Proposition 4.1. (M̃, g̃, µ̃) satisfies the following properties :

1. If µ is R-doubling, then µ̃ is R-doubling, and R-reverse doubling with order ν > 1.

2. The heat kernel of M̃ is p̃t((x,m), (y, n)) = 1√
4πt

e−
|x−y|2

4t pt(m,n).

3. If M satisfies (RFK)ηR, then there is some θ ∈ (0, 1) such that M̃ satisfies (RFK)ηθR. θ
depends only on the Faber Krahn constants.

4. λ1(∆̃− Ṽ ) = λ1(∆− V )

5. If µ is R-doubling, then there are two constants c, C which depends only on the doubling
constant, such that cNp,R(V ) ≤ Ñp,R(Ṽ ) ≤ CNp,R(V )

Proof.
1. For E ⊂ R measurable, we denote |E| the usual lebesgue measure of E. We have :

|(−r/2, r/2)|µ(B(m, r/2)) ≤ µ̃(B̃((x,m), r)) ≤ |(−r, r)|µ(B(m, r)). (4.21)

From this, with r ≤ R we immediately get µ̃(B̃((x,m), 2r)) ≤ 4A2µ̃(B̃((x,m), r)), with A
the R-doubling constant of µ. Moreover, since µ is R-doubling, it is R-reverse doubling, with
reverse doubling order ν > 0. Then, we have, for r < r′ < θR :

µ̃(B̃((x,m), r′))

µ̃(B̃((x,m), r))
≥ r′

2r

µ(B(m, r′/2))

µ(B(m, r))

≥ 1

2A

r′

r

µ (B (m, r′))

µ (B (m, r))

≥ a

2A

(

r′

r

)1+ν

Thus µ̃ is reverse doubling of order ν̃ = 1 + ν > 1.

2., 4. We have ∆̃ = − d2

dx2 + ∆. Thus p̃t((x,m), (y, n)) = 1√
4πt

e−
|x−y|2

4t pt(m,n), and the

spectrum of ∆̃− Ṽ is :

Sp(∆̃− Ṽ ) = {λ+ λ′; λ ∈ Sp(∆− V ), λ′ ≥ 0}.
Thus the infimum of the spectrum of ∆̃− Ṽ is the infimum of the spectrum of ∆− V .
3. We use proposition 3.1.
5. We use (4.21). Using that

´

B̃
Ṽ dµ̃ ≤ 2r

´

B
V dµ, we have :

r2p

µ̃(B̃((x,m), r)

ˆ

B̃

Ṽ p dµ̃ ≤ r2p

(r/2)µ (B (m, r/2))
2r

ˆ

B

V p dµ.

Then by R doubling Ñp,R(Ṽ ) ≤ 4ANp,R(V ). The other inequality is obtained in a similar
same way.

Proof of theorem 1.2. From the points 1., 3. of the above proposition, if (M, g, µ) is a manifold
that satisfy (RFK)ηR, then there is some θ ∈ (0, 1), depending only on the Faber Krahn constants,

such that (M̃, g̃, µ̃) satisfy (RFK)ηθR and (RD)νR with ν > 1. Then we can apply 1.2 to M̃ :

there is a constant C̃p such that if Ṽ is such that C̃pÑp,R(Ṽ ) ≤ 1, then λ1(∆̃− Ṽ ) ≥ − 1
θ2R2 .
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Using 5., then there is a constant Cp > 0 such that CpNp,R(V ) ≥ C̃pÑp,R(Ṽ ). Then since

λ1(∆− V ) = λ1(∆̃− Ṽ ), if CpNp,R(V ) ≤ 1, then λ1(∆− V ) ≥ − 1
θ2R2 . For an arbitrary V ≥ 0,

locally integrable, with Np,R(V ) < +∞, we can apply the above to V/CpNp,R(V ), then for any
ψ ∈ C∞

0 (M) :

1

CpNp,R(V )

ˆ

M

V ψ2 dµ ≤ 1

θ2

ˆ

M

(

|∇ψ|2 + 1

R2
ψ2

)

dµ, (4.22)

which is (1.11).

5 Hardy inequality

For some point o ∈M , the L2 Hardy inequality :

∀ψ ∈ C∞
0 (M),

ˆ

M

ψ(x)2

d(o, x)2
dµ(x) ≤ C

ˆ

M

|∇ψ(x)|2 dµ(x) (5.1)

is equivalent to ∆− V ≥ 0, with V (x) = 1
C d(o, x)

−2. Moreover, we have :

Proposition 5.1. Let (M, g, µ) be a weighted Riemannian manifold, R ∈ (0,∞]. If µ satisfy
(D)ηR and (RD)νR with ν > 1, then for any p ∈ (1, ν/2), there is a constant Kp < ∞ such that
for all r < R we have :

r2

(

 

B(x,r)

d(o, y)−2p dµ

)1/p

≤ Kp. (5.2)

Proof. We let ρ(y) = d(o, y), B = B(x, r), for r < R.
If r ≤ ρ(x)/2, then for y ∈ B(x, r), ρ(y) ≥ ρ(x) − r ≥ ρ(x)/2 ≥ r. Then :

ˆ

B

ρ(y)−2p dµ ≤ r−2pµ(B).

If r > ρ(x)/2, then B(x, r) ⊂ B(o, 3r), and :

ˆ

B

ρ−2p dµ ≤
ˆ

B(o,3r)

ρ−2p dµ

≤
ˆ ∞

0

(2p− 1)t−2p−1µ (B (o,min(t, 3r))) dt

≤
ˆ 3r

0

a−1(2p− 1)tν−2p−1(3r)−νµ (B (o, 3r)) dt+ r−2pµ (B (o, 3r))

≤
(

1

33pa

2p− 1

ν − 2p
+ 1

)

r−2pµ (B (o, 3r))

≤ Cpr
−2pµ (B (x, r)) ,

since ν > 2p, with the constant Cp depending uniquely on p and the doubling and reverse
doubling constants.

Then applying theorems 1.2 and 1.1, we immediately obtain :
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Corollary 5.1. If (M, g, µ) satisfy (RFK)ηR and (RD)νR with ν > 2, then there is a constant C
such that for any ψ ∈ C∞

0 (M), o ∈M ,

ˆ

M

ψ(x)2

d(o, x)2
dµ(x) ≤ C

(

‖∇ψ‖22 +
1

R2
‖ψ‖22

)

. (5.3)

Corollary 5.2. If (M, g, µ) satisfy (RFK)η, (RD)ν with ν > 2 then there is a constant C such
that :

∀ψ ∈ C∞
0 (M),

ˆ

M

ψ(x)2

d(o, x)2
dµ(x) ≤ C

ˆ

M

|∇ψ|2 dµ. (5.4)

The second corollary being theorem 1.5.
This time the condition on the reverse doubling order is not merely a technical hypothesis.

It is, in fact, a necessary condition for the Hardy inequality to holds if we assume the measure
µ to be doubling :

Proposition 5.2. Let (M, g, µ) be a weighted Riemannian manifold, with µ a doubling measure,
assume that there is a constant ν > 2 such that for any o ∈ M , ψ ∈ C∞

0 (M), M admits the
Hardy inequality :

(

ν − 2

2

)2 ˆ

M

ψ(x)2

d(o, x)2
dµ(x) ≤

ˆ

M

|∇ψ|2 dµ, (5.5)

then µ satisfy (RD)ν .

Note that that we can always write a Hardy inequality (5.4) in the form (5.5) simply by
chosing ν = 2 + 2

√

1/C.
Using a method from [3, 16], we have :

Proof. Take 0 < r < R, define f(t) = r−
ν−2
2 for 0 ≤ t ≤ r, f(t) = t−

ν−2
2 for r ≤ t ≤ R,

f(t) = 2R− ν−2
2 −R− ν

2 t for R ≤ t ≤ 2R and f(t) = 0 for t ≥ 2R.

When r ≤ t ≤ R, we have f ′(t)2 =
(

ν−2
2

)2 f(t)2

t2 . Then for some point o ∈ M choose
φ(x) = f(d(o, x)), the Hardy inequality applied to ϕ leads to :

(

ν − 2

2

)2 ˆ

B(o,r)

φ(x)2

d(o, x)2
dµ(x) ≤

ˆ

B(o,2R)\B(o,R)

|∇φ|2 dµ(x), (5.6)

then :

(

ν − 2

2

)2

r−νµ (B (o, r)) ≤ R−νµ(B(o, 2R) \B(o,R)) ≤ AR−νµ (B (o,R)) , (5.7)

using that µ is doubling. Thus there is some constant a > 0 such that :

a

(

R

r

)ν

≤ µ (B (o,R))

µ (B (o, r))
, (5.8)

and µ is reverse doubling of order ν > 2.
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