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of self-exciting jump-diffusion

Chiara Amorino(1), Charlotte Dion(2), Arnaud Gloter(3), Sarah Lemler(4)

November 24, 2020

Abstract

In this paper, we consider a one-dimensional diffusion process with jumps driven by a
Hawkes process. We are interested in the estimations of the volatility function and of the
jump function from discrete high-frequency observations in long time horizon. We first pro-
pose to estimate the volatility coefficient. For that, we introduce in our estimation procedure
a truncation function that allows to take into account the jumps of the process and we es-
timate the volatility function on a linear subspace of L2(A) where A is a compact interval
of R. We obtain a bound for the empirical risk of the volatility estimator and establish an
oracle inequality for the adaptive estimator to measure the performance of the procedure.
Then, we propose an estimator of a sum between the volatility and the jump coefficient
modified with the conditional expectation of the intensity of the jumps. The idea behind
this is to recover the jump function. We also establish a bound for the empirical risk for the
non-adaptive estimator of this sum and an oracle inequality for the final adaptive estimator.
We conduct a simulation study to measure the accuracy of our estimators in practice and
we discuss the possibility of recovering the jump function from our estimation procedure.

Jump diffusion, Hawkes process, Volatility estimation, Nonparametric, Adaptation
AMS: 62G05, 60G55

1 Introduction

The present work focuses on the jump-diffusion process introduced in [18]. It is defined as the
solution of the following equation

dXt = b(Xt)dt+ σ(Xt)dWt + a(Xt−)
M∑
j=1

dN
(j)
t , (1)

where Xt− denotes the process of left limits, N = (N (1), . . . , N (M)) is a M -dimensional Hawkes
process with intensity function λ and W is the standard Brownian motion independent of N .
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Some probabilistic results have been established for this model in [18], such as the ergodicity
and the β−mixing. A second work has then been conducted to estimate the drift function of
the model using a model selection procedure and upper bounds on the risk of this adaptive
estimator have been established in [17] in the high frequency observations context.

In this work, we are interested in estimating the volatility function σ2 and the jump function
a. The jumps in this process make estimating these two functions difficult. We assume that
discrete observations of a path of X are available, at high frequency and on a large time interval.

1.1 Motivation and state of the art

Let us notice first that this model has practical relevance thinking of continuous phenomenon
impacted by exterior event, with auto-excitation structure. For example one can think of interest
rate model (see [22]) in insurance; then, in neurosciences of the evolution of the membrane po-
tential impacted by the signals of the other neurons around it (see [17]). Indeed, it is common to
describe the spike train of a neuron through a Hawkes process which models the auto-excitation
of the phenomenon: for a certain type of neurons, when it spikes once, the probability that it
will spike again increases. Finally, referring to [7] for a complete review on Hawkes process in
finance, the reader can see the considered model as a generalisation of the so called mutually-
exciting-jump diffusion proposed in [5] to study an asset price evolution. This process generalises
Poisson jumps (or Lévy jumps which have independent increments) with auto-exciting jumps
and is more tractable than jumps driven by Lévy process.

Nonparametric estimation of coefficients of a stochastic differential equations from the obser-
vation of a discrete path is a challenge that has been studied a lot in literature. From frequentist
point of view in the high frequency context one can cite [23, 12] and in bayesian one recently in
[1].

Nevertheless, the purpose of this article fall more under the scope of statistic for stochastic
processes with jumps. The literature for the diffusion with jumps from a pure centred Lévy
process is large. For example one can refer to [29] and [31].

The first goal of this work is to estimate the volatility coefficient σ2. As is it well known, in
presence of jumps the approximate quadratic variation based on the squared increments of X
no longer converges to the integrated volatility. As in [28], we base the approach on truncated
quadratic variation to estimate the coefficient σ2. Particularly, instead of truncation, we use a
smooth function to filter the jumps as it is done in [4] in the classical jump-diffusion context.
The structure of the jumps here is very different from the one induced by the pure-jump Lévy-
process. Indeed, the increments are not independent and this implies the necessity to develop a
proper methodology as the one presented hereafter.

Secondly, we want to recover coefficient a. It is important to note that, as presented in
[31], in classical jump-diffusion framework (where a Lévy process is used instead of the Hawkes
process for M = 1) it is possible to obtain an estimator for the function σ2+ a2 by considering
the quadratic increments (without truncation) of the process. This is no longer the case here,
due to the form of the intensity function of the Hawkes process. Indeed, we recover a more
complicated function to be estimated as explained in the following.

1.2 Main contribution

The estimations of the volatility function and of the jump function in Model (1) are challenging in
the sense that we have to take into account the jumps of the Hawkes process. Statistical inference
for the volatility and for the jump function in a jump diffusion model with jumps driven by a
Hawkes process has never been studied before. As for the estimation of the drift in [17], we
assume that the coupled process (X,λ) is ergodic, stationary and exponentially β−mixing. In
order to estimate the volatility in a non-parametric way, we consider as in [4] a truncation of
the increments of the quadratic variation of X that allows to judge if a jump occurred on not
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in a time interval. We estimate σ2 on a collection of subspaces of L2 by minimizing a least
squares contrast over each model and we establish for the obtained estimators a bound on the
risk. Then, we propose an adaptive selection of the model and we obtain non-asymptotic oracle
inequalities for the adaptive estimator that guarantees its theoretical performance.

In the second part of this work, we are interested in the estimation of the jump function.
As it has been said before, it is not possible to recover directly the jump function a from the
quadratic increments of X, and what appears naturally is the sum of the volatility and of the
product of the square of the jump function and the jump intensity. The jump intensity is hard to
control properly and it is unobserved. To overcome such a problem we introduce the conditional
expectation of the intensity given the observation of X, which leads us to estimate the sum of the
volatility and of the product between a2 and the conditional expectation of the jump intensity
given X. We lead again a penalized minimum contrast estimation procedure and we establish a
non-asymptotic oracle inequality for the final adaptive estimator. Both adaptive estimator are
studied using Talagrand’s concentration inequalities.

We then discuss the estimation of a, obtained as a quotient in which we plug the estimators
of σ2 and g := σ2 + a2 × f , where f is the conditional expectation of the jump intensity that
we do not know in practice. We propose to estimate f using a Nadaraya-Watson estimator. We
show that the risk of the estimator of a cumulates the errors coming from the estimation of the
three functions σ2, g and the conditional expectation of the jump intensity, which shows how
hard it is to estimate correctly a.

Finally we have conducted a simulation study to observe the behavior of our estimators in
practice. We compare the empirical risks of our estimators to the risks of the oracle estimator to
which we have access in a simulation study (they correspond to the estimator in the collection
of models which minimises the empirical error). We show that we can recover rather well the
volatility σ2 and g from our procedure but it is harder to recover the jump function a.

1.3 Plan of the paper

The model is described in Section 2, some assumptions on the model are discussed and we
give some ergodic and β−mixing properties on the process (Xt, λt). In Section 3 we detail the
estimation procedure to estimate the volatility σ2, we establish a bound for the risk of the non-
adaptive estimator, then we propose an adaptive procedure to choose the best estimator among
the collection of estimators and give the oracle inequality for this final estimator. Section 4 is
devoted to the estimation of σ2 +a2×f , where f is the expectation of the jump intensity λ given
X. In this section, we explain why we have to estimate this function, we detail the estimation
procedure and establish bounds for the risks of the non-adaptive estimator and of the adaptive
estimator. The estimation of the jump coefficient a is discussed in Section 5. In Section 6 we
have conducted a simulation study and give a little conclusion and some perspective to this work
in Section 7. Finally, the proofs of the main results are detailed in Section 8 and the technical
results are proved in Appendix A.

2 Framework and Assumptions

2.1 The Hawkes process

Let (Ω,F ,P) be a probability space. We define the Hawkes process for t ≥ 0 through stochastic

intensity representation. We introduce the M -dimensional point process Nt := (N
(1)
t , . . . , N

(M)
t )

and its intensity λ is a vector of non-negative stochastic intensity functions given by a collection
of baseline intensities. It consists in positive constants ζj , for j ∈ {1, . . . ,M}, and in M ×M
interaction functions hi,j : R+ → R+, which are measurable functions (i, j ∈ {1, . . . ,M}). For
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i ∈ {1, . . . ,M} we also introduce n(i), a discrete point measure on R− satisfying∫
R−

hi,j(t− s)n(i)(ds) <∞ for all t ≥ 0.

They can be interpreted as initial condition of the process. The linear Hawkes process with
initial condition n(i) and with parameters (ζi, hi,j)1≤i,j≤M is a multivariate counting process
(Nt)t≥0. It is such that for all i 6= j, P - almost surely, N (i) and N (j) never jump simultaneously.

Moreover, for any i ∈ {1, . . . ,M}, the compensator of N (i) is given by Λ
(i)
t :=

∫ t
0 λ

(i)
s ds, where λ

is the intensity process of the counting process N and satisfies the following equation:

λ
(i)
t = ζi +

M∑
j=1

∫ t−

0
hi,j(t− u)dN (j)

u +
M∑
j=1

∫ 0

−∞
hi,j(t− u)dn(j)

u .

We remark that N
(j)
t is the cumulative number of events in the j-th component at time t while

dN
(j)
t represents the number of points in the time increment [t, t+ dt]. We define Ñt := Nt−Λt

and F̄t := σ(Ns, 0 ≤ s ≤ t) the history of the counting process N (see Daley and Vere - Jones
[15]). The intensity process λ = (λ(1), . . . , λ(M)) of the counting process N is the F̄t-predictable
process that makes Ñt a F̄t-local martingale.

Requiring that the functions hi,j are locally integrable, it is possible to show with standard

arguments the existence of a process (N
(j)
t )t≥0 (see for example [16]). We denote as ζj the

exogenous intensity of the process and as (T
(j)
k )k≥1 the non-decreasing jump times of the process

N (j).
We interpret the interaction functions hi,j (also called kernel function or transfer function)

as the influence of the past activity of subject i on the subject j, while the parameter ζj > 0 is
the spontaneous rate and is used to take into account all the unobserved signals. In the sequel
we focus on the exponential kernel functions defined by

hi,j : R+ → R+, hi,j(t) = cije
−αt, α > 0, cij > 0, 1 ≤ i, j ≤M.

With this choice of hi,j the conditional intensity process (λt) is then Markovian. In this case we
can introduce the auxiliary Markov process Y = Y (ij):

Y
(ij)
t = ci,j

∫ t

0
e−α(t−s)dN (j)

s + ci,j

∫ 0

−∞
e−α(t−s)dn(j)

s , 1 ≤ i, j ≤M.

The intensity can be expressed in terms of sums of these Markovian processes that is, for all
1 ≤ i ≤M

λ
(i)
t = fi

 M∑
j=1

Y
(ij)
t−

 , with fi(x) = ζi + x.

We remark that all the point processes N (j) behave as homogeneous Poisson processes with
constant intensity ζj , before the first occurrence. Then, as soon as the first occurrence appears
for a particular N (i), it affects all the process increasing the conditional intensity through the
interaction functions hi,j .

Let us emphasized that from the work [18], it is possible to not assume the positiveness of the
coefficients ci,j , taking then fi(x) = (ζi + x)+. This is particularly important for the neuronal
applications where the neurons can be have excitatory or inhibitory behavior.
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2.2 Model Assumptions

In this work we consider the following jump-diffusion model. We write the process as M + 1
stochastic differential equations:{

dλ
(i)
t = −α(λ

(i)
t − ζi)dt+

∑M
j=1 ci,jdN

(j)
t , i = 1, . . . ,M

dXt = b(Xt)dt+ σ(Xt)dWt + a(Xt−)
∑M

j=1 dN
(j)
t ,

(2)

with λ
(j)
0 andX0 random variables independent from the others. In particular, (λ

(1)
t , . . . , λ

(M)
t , Xt)

is a Markovian process for the general filtration

Ft := σ(Ws, N
(j)
s , j = 1, . . . ,M, 0 ≤ s ≤ t).

We aim at estimating, in a non-parametric way, the volatility σ and the jump coefficient a
starting from a discrete observation of the process X. The process X is indeed observed at high
frequency on the time interval [0, T ]. For 0 = t0 ≤ t1 ≤ . . . ≤ tn = T , the observations are
denoted as Xti . We define ∆n,i := ti+1 − ti and ∆n := supi=0,...,n ∆n,i. We are here assuming
that ∆n → 0 and n∆n → ∞, for n → ∞. We suppose that there exists c1, c2 such that,
∀i ∈ {0, . . . , n− 1}, c1∆min ≤ ∆n,i ≤ c2∆n. Furthermore we require that there exists ε > 0
arbitrarily small such that

nε log n = o(
√
n∆n). (3)

The size parameter M is fixed and finite all along and asymptotic properties are obtained when
T →∞.
Requiring that the size of the discretization step is always the same, as we do asking that the
maximal and minimal discretization steps differ only on a constant, is a pretty classical assump-
tion in our framework. On the other side, the step conditions gathered in (3) is more technical
and yet essential to show our main results.

Assumption 1 (Assumptions on the coefficients of X).

1. The coefficients a, b and σ are globally Lipschitz.

2. There exist positive constants a1 and σ1 such that |a(x)| < a1 and 0 < σ2(x) < σ2
1 for all

x ∈ R.

3. The coefficients b and σ are of class C2 and there exist positive constants c, c′, q such that,
for all x ∈ R, |b′(x)|+ |σ′(x)|+ |a′(x)| ≤ c and |b′′(x)|+ |σ′′(x)| ≤ c′(1 + |x|q).

4. There exist d ≥ 0 and r > 0 such that, for all x satisfying |x| > r, we have xb(x) ≤ −dx2.

The first three assumptions ensure the existence of a strong solution X of the considered
stochastic differential equation (the proof can be adapted from [27], under the Lipschitz condition
on the jump coefficient a). The last assumption is introduced in order to study the longtime
behavior of X and to ensure its ergodicity (see [18]). Note that the assumption on a can be
relaxed (see [18]).

Assumption 2 (Assumptions on the kernels).

1. Let H be a matrix such that Hi,j :=
∫∞

0 hi,j(t)dt =
cij
α , for 1 ≤ i, j ≤ M . The matrix H

has a spectral radius smaller than 1.

2. We suppose that
∑M

j=1 ζj > 0 and that the matrix H is invertible.
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3. For all i, j such that 1 ≤ i, j ≤M , cij ≤ α.

The first point of the Assumption 2 here above implies that the process (Nt) admits a version
with stationary increments (see [10]). In the sequel we always will consider such an assumption
satisfied. The process (Nt) corresponds to the asymptotic limit and (λt) is a stationary process.
The second point of A2 is needed in order to ensure the positive Harris recurrence of the couple
(Xt, λt). A discussion about it can be found in Section 2.3 of [17].

2.3 Ergodicity and moments

In the sequel, we repeatedly use the ergodic properties of the process Zt := (Xt, λt). From
Theorem 3.6 in [18] we know that, under Assumptions 1 and 2, the process (Xt, λt)t≥0 is positive
Harris recurrent with unique invariant measure π(dx). Moreover, in [18], the Foster-Lyapunov
condition in the exponential frame implies that, for all t ≥ 0, E[X4

t ] <∞ (see Proposition 3.4).
In the sequel we need X to have arbitrarily big moments and, therefore, we propose a modified
Lyapunov function. In particular, following the ideas in [18], we take V : R× RM×M such that

V (x, y) := |x|m + e
∑
i,j mij |y(ij)|, (4)

where m ≥ 2 is a constant arbitrarily big and mij := ki
α , being k ∈ RM+ a left eigenvector

of H, which exists and has non-negative components under our Assumption 2 (see [18] below
Assumption 3.3).
We now introduce the generator of the process Z̃t := (Xt, Yt), defined for sufficiently smooth
test function g by

AZ̃g(x, y) = −α
M∑
i,j=1

y(ij)∂y(ij)g(x, y) + ∂xg(x, y)b(x) +
1

2
σ2(x)∂2

xg(x, y) (5)

+
M∑
j=1

fj

(
M∑
k=1

y(jk)

)
[g(x+ a(x), y + ∆j)− g(x, y)],

with (∆j)
(il) = ci,j1j=l, for all 1 ≤ i, l ≤M . Then, the following proposition holds true.

Proposition 1. Suppose that A1 and A2 hold true. Let V be as in (4). Then, there exist
positive constants d1 and d2 such that the following Foster-Lyapunov type drift condition holds:

AZ̃V ≤ d1 − d2V.

Proposition 1 is proven in the Appendix. As the process λ is included in Y , and so we
can recover it starting from Y , the ergodicity of Z̃ implies the ergodicity of Z as well. As a
consequence, both X and λ have bounded moments of any order. Let us now add the third
assumption

Assumption 3. (X0, λ0) has probability π.

Then, the process (Xt, λt)t≥0 is in its stationary regime.
We recall that the process Z is called β - mixing if βZ(t) = o(1) for t→∞ and exponentially

β - mixing if there exists a constant γ1 > 0 such that βZ(t) = O(e−γ1t) for t → ∞, where βZ
is the β - mixing coefficient of the process Z as defined for a Markov process Z with transition
semigroup (Pt)t∈R+ , by

βZ(t) :=

∫
R×RM

‖Pt(z, .)− π‖π(dz), (6)

6



where ‖λ‖ stands for the total variation norm of a signed measure λ.
Moreover, it is

βX(t) :=

∫
R×RM

∥∥P 1
t (z, .)− πX

∥∥π(dz),

where P 1
t (z, .) is the projection on X of Pt(z, .) such that P 1

t (z, dx) := Pt(z, dx × RM ) and
πX(dx) := π(dx×RM ) is the projection of π on the coordinate X. Then, according to Theorem
4.9 in [18], under A1-A3 the process Zt := (Xt, λt) is exponentially β-mixing and there exist
some constant K, γ > 0 such that

βX(t) ≤ βZ(t) ≤ Ke−γt.

3 Estimation procedure of the volatility function

With the background introduced in the previous sections, we are now ready to deal with the
estimation of the volatility function, to whom this section is dedicated. We remind the reader
that the procedure is based on the observations (Xti)i=1,...,n.

First of all, in Subsection 3.1, we propose a non-adaptive estimator based on the squared
increments of the process X. To do that, we decompose such increments in several terms, aimed
to isolate the volatility function. Regarding the other terms, we can recognize a bias term (which
we will show being small), the contribution of the brownian part (which is centered) and the
contribution of the jumps. To make the latter small as well we introduce a truncation function
(see Lemma 2 below). Thus, we can define a contrast function, based on the truncated squared
increments of X, and the associated estimator of the volatility. In Proposition 3, which is the
main result of this subsection, we prove a bound for the empirical risk of the volatility estimator
we propose.

As the presented estimator depends on the model, in Subsection 3.2 we introduce a fully
data driven procedure to select automatically the best model in the sense of the empirical risk.
We choose the model such that it minimizes the sum between the contrast and a penalization
function, as explained in (13). In Theorem 1 we show that the estimator associated to the
selected model realizes automatically the best compromise between the bias term and the penalty
term.

3.1 Non-adaptive estimator

Let us consider the increments of the process X as follows:

Xti+1 −Xti =

∫ ti+1

ti

b(Xs)ds+

∫ ti+1

ti

σ(Xs)dWs +

∫ ti+1

ti

a(Xs−)
M∑
j=1

dN (j)
s

=

∫ ti+1

ti

b(Xs)ds+ Zti + Jti (7)

where Z, J are given in Equation (8):

Zti :=

∫ ti+1

ti

σ(Xs)dWs, Jti :=

∫ ti+1

ti

a(Xs−)

M∑
j=1

dN (j)
s . (8)

To estimate σ2 for a diffusion process (without jumps), the idea is to consider the random
variables Tti := 1

∆n
(Xti+1 −Xti)

2. Following this idea, we decompose Tti , in order to isolate the
contribution of the volatility computed in Xti . In particular, Equation (7) yields

Tti =
1

∆n
(Xti+1 −Xti)

2 = σ2(Xti) +Ati +Bti + Eti , (9)
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where A,B,E are functions of Z, J :

Ati :=
1

∆n

(∫ ti+1

ti

b(Xs)ds

)2

+
2

∆n
(Zti + Jti)

∫ ti+1

ti

(b(Xs)− b(Xti))ds

+
1

∆n

∫ ti+1

ti

(σ2(Xs)− σ2(Xti))ds+ 2b(Xti)Zti ,

Bti :=
1

∆n
[Z2
ti −

∫ ti+1

ti

σ2(Xs)ds];

Eti := 2b(Xti)Jti +
2

∆n
ZtiJti +

1

∆n
J2
ti .

The term Ati is small, whereas Bti is centered. In order to make Eti small as well, we introduce
the truncation function ϕ

∆β
n,i

(Xti+1 −Xti), for β ∈ (0, 1
2). It is a smooth version of the indicator

function, such that ϕ(ζ) = 0 for each ζ, with |ζ| ≥ 2 and ϕ(ζ) = 1 for each ζ, with |ζ| ≤ 1. The
idea is to use the size of the increment of the process Xti+1 − Xti in order to judge if a jump
occurred or not in the interval [ti, ti+1). As it is hard for the increment of X with continuous

transition to overcome the threshold ∆β
n,i for β ≤ 1

2 , we can assert the presence of a jump in

[ti, ti+1) if |Xti+1 −Xti | > ∆β
n,i. Hence, we consider the random variables

Ttiϕ∆β
n,i

(∆iX) = σ2(Xti) + Ãti +Bti + Etiϕ∆β
n,i

(∆iX),

with
Ãti := σ2(Xti)(ϕ∆β

n,i
(∆iX)− 1) +Atiϕ∆β

n,i
(∆iX) +Bti(ϕ∆β

n,i
(∆iX)− 1).

Now, the just introduced Ãti is once again a small term, because so Ati was and because of
the fact that the truncation function does not differ a lot from the indicator function, as better
justified in Lemma 1 below.

In the sequel, the constant c may change value from line to line.

Lemma 1. Suppose that A1-A3 hold. Then, for any k ≥ 1,

E[|ϕ
∆β
n,i

(∆iX)− 1|k] ≤ c∆n,i.

The proof of Lemma 1 can be found in the Appendix. The same is for the proof of Lemma
2 below, which illustrates the reason why we have introduced a truncation function. Indeed,
without the presence of ϕ, the same Lemma would have held true with just a c∆n,i in the right

hand side. Filtering the contribution of the jumps we can gain an extra ∆βq
n,i which, as we will

see in Proposition 2, will make the contribution of Eti small.

Lemma 2. Suppose that A1-A3 hold. Then, for q ≥ 1 and for any k ≥ 1

E
[
|Jti |qϕk∆β

n,i

(∆iX)

]
≤ c∆1+βq

n,i .

From Lemmas 1 and 2 here above, it is possible to show the following proposition. Also its
proof can be found in the Appendix.

Proposition 2. Suppose that A1-A3 hold. Then, for β ∈ (1
4 ,

1
2),
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1. ∀ε̃ > 0, E[Ã2
ti ] ≤ c∆

1−ε̃
n,i , E[Ã4

ti ] ≤ c∆
1−ε̃
n,i ;

2. E[Bti |Fti ] = 0, E[B2
ti |Fti ] ≤ cσ

4
1, E[B4

ti ] ≤ c;

3. E[|Eti |ϕ∆β
n,i

(∆iX)] = c∆2β
n,i, E[E2

tiϕ∆β
n,i

(∆iX)] ≤ c∆4β−1
n,i , E[E4

tiϕ∆β
n,i

(∆iX)] ≤ c∆8β−3
n,i .

In the Proposition here above it’s possible to see in detail in what terms the contribution of
Ãti and of the truncation of Eti are small. Moreover, an analysis of the centered Brownian term
Bti and its powers is proposed.

Based on these variables, we propose a nonparametric estimation procedure for the function
σ2(·) on a closed interval A of R. We consider Sm a linear subspace of L2(A) such that Sm =
span(ϕ1, . . . , ϕDm) of dimension Dm, where (ϕi)i is an orthonormal basis of L2(A). We denote
S̃n := ∪m∈MnSm, where Mn ⊂ N is a set of indexes for the model collection. The contrast
function is defined by

γn,M (t) :=
1

n

n−1∑
i=0

(t(Xti)− Ttiϕ∆β
n,i

(∆iX))2 (10)

with the Tti given in Equation (9). The associated mean squares contrast estimator is

σ̂2
m := arg min

t∈Sm
γn,M (t). (11)

We observe that, as σ̂2
m achieves the minimum, it represents the projection of our estimator on

the space Sm. The approximation spaces Sm have to satisfy the following properties

Assumption 4 (Assumptions on the subspaces).

1. There exists φ1 such that, for any t ∈ Sm, ‖t‖2∞ ≤ φ1Dm ‖t‖2.

2. The spaces Sm have finite dimension Dm and are nested: for all m < m′ ∈Mn, Sm ⊂ Sm′.

3. For any positive d there exists ε̃ > 0 such that, for any ε < ε̃,
∑

m∈Mn
e−dD

1−ε
m ≤ Σ(d),

where Σ(d) denotes a finite constant depending only on d.

We now introduce the empirical norm

‖t‖2n :=
1

n

n−1∑
i=0

t2(Xti).

The main result of this section consists in a bound for E[
∥∥σ̂2

m − σ2
∥∥2

n
], which is gathered in the

following proposition. Its proof can be found in Section 8.1.

Proposition 3. Suppose that A1-A4 hold and that β ∈ (1
4 ,

1
2). If ∆n → 0 and for some ε > 0

nε log n = o(
√
n∆n) for n → ∞ and Dn ≤ C

√
n∆n

log(n)nε for a constant C > 0, then the estimator

σ̂2
m of σ2 on A given by equation (11) satisfies

E
[∥∥σ̂2

m − σ2
∥∥2

n

]
≤ 13 inf

t∈Sm

∥∥t− σ2
∥∥2

πX
+
C1σ

4
1Dm

n
+ C2∆4β−1

n +
C3∆

0∧4β− 3
2

n

n2
, (12)

with C1, C2 and C3 positive constants.
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This inequality measures the performance of our estimator σ̂2
m for the empirical norm. The

right hand side of the Equation (12) is decomposed into different types of error. The first
term corresponds to the bias term which decreases with the dimension Dm of the space of
approximation Sm. The second term corresponds to the variance term, i.e. the estimation error,
and contrary to the bias, it increases with Dm. The third term comes from the discretization
error and the controls obtained in Proposition 2, taking into account the jumps. Then, the
fourth term arise evaluating the norm ‖σ̂2

m−σ2‖2n when ‖.‖n are ‖.‖πX are not equivalent. This
inequality ensures that our estimator σ̂2

m does almost as well as the best approximation of the
true function by a function of Sm.

Finally, it should be noted that the variance term is the same as for a diffusion without
jumps. Nevertheless, the remainder terms are larger because of the jumps.

3.2 Adaption procedure

We want define a criterion in order to select automatically the best dimension Dm (and so the
best model) in the sense of the empirical risk. This procedure should be adaptive, meaning
independent of σ2 and dependent only on the observations. The final chosen model minimizes
the following criterion:

m̂ := arg min
m∈Mn

{γn,M (σ̂2
m) + penσ(m)}, (13)

with penσ(·) the increasing function on Dm given by

penσ(m) := κ1
Dm

n
(14)

where κ1 is a constant which has to be calibrated.

Next theorem is proven in Section 8.1.

Theorem 1. Suppose that A1-A4 hold and that β ∈ (1
4 ,

1
2). If ∆n → 0 and for some ε > 0

nε log n = o(
√
n∆n) for n→∞ and Dn ≤ C

√
n∆n

log(n)nε for C > 0, then the estimator σ̂2
m̂ of σ2 on

A given by equations (11) and (13) satisfies

E
[∥∥σ̂2

m̂ − σ
2
∥∥2

n

]
≤ C1 inf

m∈Mn

{
inf
t∈Sm

‖t− σ2‖2πX + penσ(m)

}
+ C2∆4β−1

n +
C3∆

4β− 3
2

n

n2
+
C4

n

where C1 > 1 is a numerical constant and C2, C3, C4 are positive constants depending on ∆n, σ1

in particular.

This inequality ensures that the final estimator σ̂2
m̂ realizes automatically the best compro-

mise between the bias term and the penalty term which is of the same order than the variance
term.

4 Estimation procedure for both coefficients

In addition to the estimation of the volatility, our goal is to estimate, once again in a nonpara-
metric way, the jump coefficient a. The idea is to study the sum between the volatility and the
jump coefficient and to recover consequently a way to estimate a (see Section 5 below). However,
what turns out naturally is the volatility plus the product between the jump coefficient and the
jump intensity which, as we will see in the sequel, leads to some difficulties. To overcome such
difficulties, we must bring ourselves to consider the conditional expectation of the intensity of
the jumps with respect to Xti . In this way we analyze differently the squared increments of the

10



process X, to highlight the role of the conditional expectation. In particular in the following we
use, for the decomposition of the squared increments, ideally the same notation as before: we
denote the small bias term as Ati , the Brownian contribution as Bti and the jump contribution
as Eti , even if the forms of such terms are no longer the same as in Section 3. In particular,
Ati and Eti are no longer the same as before and their new definition can be found below, while
the Brownian contribution Bti remains exactly the same. To these, as previously anticipated, a
term Cti deriving from the conditional expectation of the intensity is added.

Besides, as in the previous section, we show that Ati is small and Bti is centered. Moreover,
in this case we also need the jump part to be centered. Therefore, we consider the compensated
measure dÑt instead of dNt, relocating the difference in the drift.

Let us rewrite the process of interest as:{
dλ

(j)
t = −α(λ

(j)
t − ζt)dt+

∑M
i=1 ci,jdN

(i)
t

dXt = (b(Xt) + a(Xt−)
∑M

i=1 λ
(i)
t )dt+ σ(Xt)dWt + a(Xt−)

∑M
i=1 dÑ

(i)
t .

(15)

We set now

Jti :=

∫ ti+1

ti

a(Xs−)

M∑
i=1

dÑ (i)
s . (16)

The increments of the process X are such that

Xti+1 −Xti =

∫ ti+1

ti

b(Xs) + a(Xs−)
M∑
j=1

λ(j)
s

 ds+ Zti + Jti (17)

where J is given in Equation (16) and Z has not changed and is given in Equation (8). Let us
define this time:

Ati :=
1

∆n

∫ ti+1

ti

(b(Xs) + a(Xs−)
M∑
j=1

λ(j)
s )ds

2

+
1

∆n

∫ ti+1

ti

(σ2(Xs)− σ2(Xti))ds

+
2

∆n
(Zti + Jti)

∫ ti+1

ti

(b(Xs)− b(Xti)) + (a(Xs−)

M∑
j=1

λ(j)
s − a(Xti)

M∑
j=1

λ
(j)
ti

)ds


+

1

∆n

∫ ti+1

ti

(a2(Xs)− a2(Xti))
M∑
j=1

λ(j)
s ds+

a2(Xti)

∆n

∫ ti+1

ti

M∑
j=1

(λ(j)
s − λ

(j)
ti

)ds

+2

b(Xti) + a(Xti)
M∑
j=1

λ
(j)
ti

Zti + 2

b(Xti) + a(Xti)
M∑
j=1

λ
(j)
ti

 Jti , (18)

Eti :=
2

∆n
ZtiJti +

1

∆n

J2
ti −

∫ ti+1

ti

a2(Xs)

M∑
j=1

λ(j)
s ds

 . (19)

The term Ati is small, whereas Bti (which is the same as in the previous section) and Eti are
centered. Moreover, let us define the quantity

M∑
j=1

E[λ
(j)
ti
|Xti ] =

M∑
j=1

∫
RM zjπ(Xti , z1, . . . , zM )dz1, . . . , dzM∫
RM π(Xti , z1, . . . , zM )dz1, . . . , dzM

,

where π is the invariant density of the process (X,λ), whose existence has been discussed in
Section 2.3; and

Cti := a2(Xti)

M∑
j=1

(λ
(j)
ti
− E[λ

(j)
ti
|Xti ]).

11



It comes the following decomposition:

Tti =
1

∆n
(Xti+1 −Xti)

2 = σ2(Xti) + a2(Xti)
M∑
j=1

E[λ
(j)
ti
|Xti ] +Ati +Bti + Cti + Eti . (20)

In the last decomposition of the squared increments we have isolated the sum of the volatility
plus the jump coefficient times the conditional expectation of the intensity with respect to Xti ,
which is an object on which we can finally use the same approach as before. Thus, as previously,
the other terms need to be evaluate. The term Ati is small and Bti and Eti are centered. More-
over the just added term Cti is clearly centered, by construction, if conditioned with respect to
the random variable Xti and, as we will see in the sequel, it is enough to get our main results.
As explained above Assumption 3, the Foster-Lyapunov condition in the exponential frames

implies the existence of bounded moments for λ and so we also get E[λ
(j)
ti
|Xti ] < ∞, for any

j ∈ {1, . . . ,M}.

The properties here above listed are stated in Proposition 4 below, whose proof can be found
in the appendix.

Proposition 4. Suppose that A1 -A3 hold. Then,

1. ∀ε̃ > 0, E[A2
ti ] ≤ c∆

1−ε̃
n,i , E[A4

ti ] ≤ c∆
1−ε̃
n,i ;

2. E[Bti |Fti ] = 0, E[B2
ti |Fti ] ≤ cσ

4
1, E[B4

ti ] ≤ c;

3. E[Eti |Fti ] = 0, E[E2
ti |Fti ] ≤

ca4
1

∆n,i

∑M
j=1 λ

(j)
ti
, E[E4

ti ] ≤
c

∆3
n,i

;

4. E[Cti |Xti ] = 0, E[C2
ti ] ≤ c, E[C4

ti ] ≤ c.

From Proposition 4 one can see in detail how small the bias term Ati is. Moreover, it sheds
light to the fact that the Brownian term and the jump term are centered with respect to the
filtration (Ft) while C is centered with respect to the σ-algebra generated by the process X.

4.1 Non-adaptive estimator

Based on variables we have just introduced, we propose a nonparametric estimation procedure
for the function

g(x) := σ2(x) + a2(x)f(x) (21)

with

f(x) =

∑M
j=1

∫
RM zjπ(x, z1, . . . , zM )dz1, . . . , dzM∫

RM π(x, z1, . . . , zM )dz1, . . . , dzM
(22)

on a closed interval A. We consider Sm the linear subspace of L2(A) defined in the previous
section for m ∈ Mn and satisfying Assumption 4. The contrast function is defined almost as
before, since this time we no longer need to truncate the contribution of the jumps. It is, for
t ∈ S̃n,

γn,M (t) :=
1

n

n−1∑
i=0

(t(Xti)− Tti)2

and the Tti are given in Equation (20) this time. The associated mean squares contrast estimator
is

ĝm := arg min
t∈Sm

γn,M (t). (23)

We want to bound the empirical risk E[‖ĝm − g‖2n]. We state it in next proposition, whose proof
can be found in Section 8.2.
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Proposition 5. Suppose that A1-A4 hold. If for some ε > 0 ∆n → 0, nε log n = o(
√
n∆n) and

Dn ≤ C
√
n∆n

lognnε , for C > 0, then the estimator ĝm of g on A satisfies, for any ε̃ > 0,

E
[
‖ĝm − g‖2n

]
≤ 13 inf

t∈Sm
‖t− g‖2πX +

C1(σ4
1 + a4

1 + 1)Dm

n∆n
+ C2∆1−ε̃

n +
C3

n2∆
3
2
n

, (24)

with C1, C2 and C3 positive constants.

As in the previous section, this inequality measures the performance of our estimator ĝ2
m

for the empirical norm. The right hand side of Equation (24) is decomposed into four different
types of error. The first term corresponds to the bias term which decreases with the dimension
Dm of the space of approximation Sm. The second term corresponds to the variance term, i.e.
the estimation error, and contrary to the bias, it increases with Dm. The third term comes
from the discretization error and the controls obtained in Proposition 4. Then, the fourth term
appears when evaluating the norm ‖ĝm − g‖2n when ‖.‖n are ‖.‖πX are not equivalent.

Finally, let us compare this result with the bound (12) obtained for the estimator σ̂2
m. The

main difference is that the second term is of order Dm/(n∆) here, instead of Dm/n as it was
previously. As a consequence, in practice the risks will depend mainly on n∆ for the estimation
of g and on n for the estimation of σ2.

4.2 Adaption procedure

Also for the estimation of g we define a criterion in order to select the best dimension Dm in the
sense of the empirical risk. This procedure should be adaptive, meaning independent of g and
dependent only on the observations. The final chosen model minimizes the following criterion:

m̂ := arg min
m∈Mn

{γn,M (ĝm) + peng(m)}, (25)

with peng(·) the increasing function on Dm given by

peng(m) := κ2
Dm

n∆n
, (26)

where κ2 is a constant which has to be calibrated. We remark that m̂ here above introduced
is not the same as in Equation (13). The model which minimizes the right hand side of (13)
is actually m̂1 while the one introduced in Equation (25) is m̂2, but when it does not cause
confusion we denote both as m̂ in order to lighten the notation.

We analyse the quantity E[‖ĝm̂ − g‖2n] in the following theorem, whose proof will be in Section
8.2.

Theorem 2. Suppose that A1-A4 hold. If for some ε > 0 ∆n → 0, nε log n = o(
√
n∆n) and

Dn ≤ C
√
n∆n

lognnε for C > 0, then the estimator ĝm̂ of g on A satisfies, for any ε̃ > 0,

E
[
‖ĝm̂ − g‖2n

]
≤ C1 inf

m∈Mn

{
inf
t∈Sm

‖t− g‖2πX + peng(m)

}
+ C2∆1−ε̃

n +
C3

n2∆
3
2
n

+
C4

n∆n

where C1 > 1 is a numerical constants and C2, C3, C4 are positive constants depending on
∆n, a1, σ1 in particular.

This oracle inequality guarantees that our final estimator ĝm̂ realizes automatically the best
compromise between the bias term and the penalty term which is of the same order than the
variance term. Since it is more difficult to estimate g because we have to deal with the conditional
expectation of the intensity f , the last two error terms are larger than the ones obtained in
Theorem 1 for the estimation of σ2.
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5 Estimation of the jump coefficient

The challenge is to get an estimator of the coefficient a2(·). A natural idea is to replace the
conditional expectation in the definition of g given in Equation (21) by an estimator. Let us

remind the reader the notation f(x) :=
∑M

j=1 E[λ
(j)
ti
|Xti = x] (see Equation (22)) and

g(x) = σ2(x) + a2(x)f(x).

The function f can be estimated through a classical estimator for example the Nadaraya-Watson
estimator. This is only possible if the intensity of the Hawkes process is known and the jump
times observed. We make this assumption in this section and we denote this estimator f̂h where
h > 0 denotes the bandwidth parameter.

Then, to study an estimator of a(·) of the form
ĝm2(x)− σ̂2

m1
(x)

f̂h(x)
we also assume that f > f0

on A. We then set:

â2
z :=

ĝm2(x)− σ̂2
m1

(x)

f̂h(x)
1
f̂h(x)>f0/2

with z = (m1,m2, h). Let us study this estimator, for the empirical norm.
Due to the disjoint support of the two terms and together with Cauchy-Schwarz inequality,

we obtain

‖â2
z − a2‖2n =

∥∥∥∥∥
(

(ĝm2 − g)

f̂h
+

(σ2 − σ̂2
m1

)

f̂h
+

(g − σ2)

f

f − f̂h
f̂h

)
1
f̂h>f0/2

∥∥∥∥∥
2

n

+

∥∥∥∥g − σ2

f
1
f̂h<f0/2

∥∥∥∥2

n

≤ 12

f2
0

‖ĝm2 − g‖2n +
12

f2
0

‖σ2 − σ̂2
m1
‖2n + 3

∥∥∥∥∥a2

(
f − f̂h
f̂h

)
1
f̂h>f0/2

∥∥∥∥∥
2

n

+
1

n

n−1∑
i=0

a4(Xti)1f̂h(Xti )<f0/2
.

Besides, if f̂h ≤ f0/2 then |f̂h − f | > f0/2 and as a2(·) < a2
1 finally:

E[‖â2
z − a2‖2n] ≤ 12

f2
0

E[‖ĝm2 − g‖2n] +
12

f2
0

E[‖σ2 − σ̂2
m1
‖2n] +

12a4
1

f2
0

E
[∥∥∥f − f̂h∥∥∥2

n

]
+
a4

1

n

n−1∑
i=0

P(|f̂h(Xti)− f(Xti)| > f0/2).

And by Markov’s inequality, we obtain:

E[‖â2
z − a2‖2n] ≤ 12

f2
0

(
E[‖ĝm2 − g‖2n] + E[‖σ2 − σ̂2

m1
‖2n] + 2a4

1E
[∥∥∥f − f̂h∥∥∥2

n

])
. (27)

This equation teaches us that the empirical risk of the estimator âz is upper bound by
the sum of the three empirical risks of the estimators of the functions g, σ2, f . The first two
are controlled in Theorem 1 and 2. The last one is more classic. The Nadaraya-Watson can
be studied with one or two bandwidth parameters. The upper bound of the L2-risk for two
bandwidth is for example done in [13].

Remark 1. Let us note here that f can be lower bounded by construction. Indeed, its definition

jointly with the fact that λ
(j)
ti

> ζj because of the positiveness of hi,j, provides us the wanted
lower bound. For â2

z to be an estimator, f0 must be known or estimated.
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6 Numerical results

In this section we present our numerical study on synthetic data.

6.1 Simulated data

We simulate the Hawkes process N with M = 1 for simplicity and here we denote (Tk)k the
sequence of jump times. In fact, the multidimensional structure of the Hawkes process allows
to consider a lot of kind of data, but what is impacting the dynamic of X is the cumulative
Hawkes process, thus in that sense we do not loose generality taking M = 1. In this case, the
intensity process is written as

λt = ξ + (λ0 − ξ)e−αt +
∑
Tk<t

ce−α(t−Tk).

The initial conditions X0, λ0 should be simulated according to the invariant distribution (and
λ0 should be larger than ξ > 0). This measure of probability is not explicit. Thus we choose:
λ0 = ξ and X0 = 2 in the examples. Also, the exogenous intensities ξ is chosen equal to 0.5, the
coefficient c is equal to 0.4 and α = 5.

Then we simulate (X∆, . . . X(n+1)∆) from an Euler scheme with a constant time step ∆i = ∆.
Because of the additional jump term (when a 6= 0), to the best of our knowledge it is not possible
to use classical more sophisticated scheme. A simulation algorithm is also detailed in [18] Section
2.3.

In order to challenge the proposed methodology, we investigate different kind of models. In
this section we present the results for four models which are the following

(a) b(x) = −4x, σ(x) = 1, a(x) =
√

2 + 0.5 sin(x),

(b) b(x) = −2x+ sin(x), σ(x) =
√

(3 + x2)/(1 + x2), a(x) = 1,

(c) b(x) = −2x, σ(x) =
√

1 + x2, a(x) = 1,

(d) b(x) = −2x, σ(x) =
√

1 + x2, a(x) = x1[−5,5] + 51(−∞,−5) − 51(5,+∞).

The drift is chosen linear in order to satisfy the assumptions and as it is not of interest to
study the estimation of b here, keeping the same drift coefficient let us focuses on the differences
observed due to the coefficients σ, a. For example in models c) and d), σ does not satisfy
assumption 1. Let us now detail the numerical estimation strategy.

6.2 Computation of nonparametric estimators

It is important to remind the reader that the estimation procedures are only based on the
observations (Xk∆)k=0,...,n. Indeed, the estimators σ̂2

m̂ and ĝm̂ of σ2 and g respectively defined
by (11) and (23), are based on the statistics:

Tk∆ =
(X(k+1)∆ −Xk∆)2

∆
, k = 0, . . . , n− 1.

Estimation of σ2. To compute σ̂2
m we use a version of the truncated quadratic variation,

through a function ϕ that vanishes when the increments of the data are too large compared to
the typical increments of a continuous diffusion process. Precisely, we choose

Tϕk∆ := Tk∆ × ϕ
(
X(k+1)∆ −Xk∆

∆β

)
; ϕ(x) =


1 |x| < 1

e1/3+1/(|x|2−4)

0 |x| ≥ 2

. (28)

This choice for the smooth function ϕ is discussed in [4].
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Estimation of g. As far as the estimation of g := σ2 + a2 × f is concerned, we do not know
the true conditional expectations f(xtk) = E[λtk |Xtk = xtk ] for all k. Thus we compare the
estimations of g to the approximate function g̃(x) = σ2(x)+a2(x)×NW

ĥ
(x) where the function

f(x) =

∫
zπ(x, z)dz

πX(x)
, which corresponds to E[λ|X = x], is estimated with the classical Nadaraya-

Watson estimator NWh, where h is the bandwidth parameter. To do so we use the R-package
ksmooth. Then, ĥ is chosen through a cross-validation leave-one-out procedure. We are aware
of the fact that the NW estimator can be defined with two bandwidths (one for the numerator
and one for the denominator) as it is presented in [13], but we choose the simplest way here.

Choice of the subspaces of L2(A) The spaces Sm are generated by the Fourier basis.
The maximal dimension Dn is chosen equal to 20 for this study. The theoretical dimension
b
√
n∆/nε log(n)c is often too small in practice since we have to consider higher dimension to

estimate non-regular functions.
In the theoretical part, the estimation is done on a fixed compact interval A. Here it is

slightly different. We consider for each model the random data range as the estimation interval.
This is more adapted to a real life data set situation.

6.3 Details on the calibration of the constants

Let us remind the reader that the two penalty functions, penσ given in Equation (14) and peng
given in Equation (26), depend on constants named κ1, κ2. These constants need to be chosen
one for all for each estimator in order to compute the final adaptive estimators σ̂2

m̂ and ĝm̂. We
explain now how these choices are made.

Choice for the universal constants. In order to chose the universal constants κ1 and κ2

we investigate models varying b, a, σ2 (different from those used to validate the procedure later
on) for n ∈ {100, 1000, 10000} and ∆ ∈ {0.1, 0.01}. We compute Monte-Carlo estimators of the
risks E[‖σ̂2

m̂−σ
2‖2n] and E[‖ĝm̂− g̃‖2n]. We choose to do Nrep = 1000 repetitions to estimate this

expectation by the average:

1

Nrep

Nrep∑
k=1

‖σ̂2,(k)
m̂ − σ2‖2n and

1

Nrep

Nrep∑
k=1

‖ĝ(k)
m̂ − g̃‖

2
n.

Finally comparing the risks as functions of κ1, κ2 leads to select values making a good compromise
over all experiences. Applying this procedure we finally choose κ1 = 100 and κ2 = 100.

Choice for the threshold β. The parameter β appears in Equation (28). This parameter
helps the algorithm to decide if the process has jumped or not. The theoretical range of values
is (1/4, 1/2). We choose to work with β = 1/4 + 0.01.

Choice for the bandwidth h. The bandwidth h in the Nadaraya-Watson estimator of the
conditional expectation is chosen through a leave-one-out cross-validation procedure. Since
the true conditional expectation is unknown we focus of the estimation of g̃ which depends
on this estimator anyway. Indeed it is the estimation procedure of g that is evaluated. Other
choices for the best bandwidth exist as the Goldenshluger and Lepski method [21] or a Penalized
Comparison to Overfitting [26].

6.4 Results: estimation of the empirical risk

As for the calibration phase, we compute Monte-Carlo estimators of the empirical risks. We
choose to do Nrep = 1000 repetitions to estimate this expectation by the average on the simula-
tions. In the risk tables 1 and 2, we present for the three models and different values of (∆, n):
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Figure 1: Models (a),(b),(c) with n = 10000, ∆ = 0.01. Three final estimators are plain green
(plain line), true σ2 plain black (dotted line)

∆, n ∆ = 0.1 n = 1000 ∆ = 0.1 n = 10000 ∆ = 0.01 n = 10000
Model σ̂m̂ σ̂m∗ σ̂m̂ σ̂m∗ σ̂m̂ σ̂m∗

(a) 0.410 (0.280) 0.361 (0.285) 0.385 (0.122) 0.278 ( 0.088) 0.015 (0.028) 0.010 (0.023)
(b) 0.187 (1.678) 0.107 (0.989) 0.046 (1.162) 0.027 (1.014) 0.005 (0.015) 0.005 (0.008)
(c) 1.201 (0.216) 0.798 (0.208) 0.452 (0.062) 0.366 (0.042) 0.015 (0.012) 0.008 (0.007)

Table 1: Estimation on a compact interval. Average and standard deviation of the estimated
risks ‖σ̂2

m̂ − σ
2‖2n and ‖σ̂2

m∗ − σ2‖2n computed over 1000 repetitions.

the average of the estimated risk over 1000 simulations (MISE) and the standard deviation in
the brackets.

Also, we print the result for the oracle function in both cases. Indeed, as on simulations
we know functions σ2, g̃, we can compute the estimator in the collection Mn = {1, . . . , Dn}
which minimises in m the errors ‖σ̂2

m−σ2‖2n and ‖ĝm− g̃‖2n. Let us denote the oracle estimators
σ̂2
m∗ and ĝm∗ respectively. These are not true estimators as they are not available in practice.

Nevertheless it is the benchmark. The goal of this numerical study is thus to see how close to
the risk results of σ̂2

m̂, ĝ
2
m̂ are to the risks of these two oracle functions.

Let us detail the result for each estimator.

Estimation of σ2. Figure 1 shows for models (a),(b),(c), three estimators σ̂2
m̂ in green (light

grey) and the true function σ2 in black (dotted line). We can appreciate here the good recon-
struction of the function σ2 by our estimator.

Table 1 sums up the results of the estimator σ̂2
m̂ for the different models and different

parameter choices. We present also the results for the oracle estimator σ̂2
m∗ as it has been

said previously.
The estimations of the MISE and the standard deviation are really close to the oracle ones.

As it has been shown in the theoretical part, we can notice that the MISE decreases when n
increases. Besides, as the variance term is proportional to 1/n, when n is fixed and large enough,
we can see the clear influence of ∆ from 0.1 to 0.01, the MISE are divided at least by 10. The
model (c) seems to be the more challenging for the procedure.

Estimation of g̃. Figure 2 shows for each of the three models (a),(b),(c), three estimators
ĝm̂ of g̃ in green (light grey) and function g̃ in black (dotted line). The beams of the three
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Figure 2: Models (a),(b),(c) with n = 10000, ∆ = 0.01. Three final estimators of g̃ are plain
green (plain line) and g̃ plain black (dotted line).

∆, n ∆ = 0.1 n = 1000 ∆ = 0.1 n = 10000 ∆ = 0.01 n = 10000

Model ĝm̂ ĝm∗ ĝm̂ ĝm∗ ĝm̂ ĝm∗

(a) 1.363 (0.715) 0.895 (0.606) 0.948 (0.193) 0.735 (0.195) 0.129 (0.141) 0.109 (0.120)

(b) 0.915 (0.520) 0.474 (0.393) 0.313 (0.174) 0.198 (0.079) 0.240 (0.100) 0.098 (0.072)

(c) 0.707 (0.964) 0.311 (0.320) 0.236 (0.202) 0.099 (0.056) 0.073 (0.130) 0.035 (0.035)

Table 2: Estimation on a compact interval. Average and standard deviation of the estimated
risks ‖ĝm̂ − g̃‖2n and ‖ĝm∗ − g̃‖2n computed over 1000 repetitions.

realisations of the estimator are satisfying.
We observe that the procedure has difficulties in Model (a) and we confirm that impression

in Table 2 below with the estimation of the risk. But for the two other models, the estimators
seem closer from the true function. The estimation seems to work better in Model (c) than in
Model (b) and this is also corroborate by the estimation of the risk given in Table 2.

Table 2 gives the Mean Integrated Squared Errors (MISEs) of the estimator ĝm̂ obtained
from our procedure and of the oracle estimator ĝm∗ , which is the best one in the collection for
the three different models with different values of ∆ and n.

As expected, we observe that the MISEs are smaller when n increases and ∆ decreases.
The different Models (a), (b), (c) gives relatively good results even if as already said, it seems
a little bit more difficult to estimate correctly g in Model (a), probably because the volatility
σ2 is constant in this case. For the two other models, the estimators seems to be better. As
comparison with the results on the estimation of σ2, here the variance in proportional to 1/(n∆)
and thus the risks are greater in general.

6.5 Estimation of a2

As explained is Section 5 the challenge is to get an approximation of the coefficient a from
the two previous estimators. A main numerical issue is that, according to the theoretical and
numerical results, the best setting for the estimation of σ2 and g are not the same. Indeed, the
smallest ∆ is, the best the estimation of σ2 is, as only large n is important, and on the contrary,
n∆ needs to be large to estimate g properly.

To overcome this difficulty, we choose a thin discretization of the trajectories of X. We
simulate here discrete path of the process X at first with ∆ = 10−3, n = 105. Then, we
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Figure 3: Model (d). Final estimators ĝm̂2
, σ̂2

m̂1
and â are plain green (plain line), and true

parameters g̃, σ2 and a2 in plain black (dotted line) from left to right respectively.

first compute ĝm̂2
the estimator of g̃ on all the observations. Secondly, we compute σ̂2

m̂1
the

estimator of σ2 from a subsample of the discretized observations (one over ten observations thus
∆ = 0.01, n = 10000).

We finally compute the estimator

â2(x) =
ĝm̂2

(x)− σ̂2
m̂1

(x)

NW
ĥ
(x)

.

This procedure is slightly different than the one presented in Section 5. Indeed, here we have
plugged-in â2 the final estimators of σ2, g and not computed the all collection âz with z =
(m1,m2, h) the parameter to be chosen. Nevertheless, as two procedures to select m1 and
m2 have been intensively studied before, and the cross-validation method to select h is also
well known, this way of doing seems more natural. Besides, the risk bound obtained on âz in
Equation (27) suggests that the better the three functions σ2, g, f are estimated, the better the
estimation of a will be. Nevertheless, one could set up a selection procedure of z in order to
minimize the estimation risk on a.

We present on Figure 3 the results obtained on model (d) in which neither σ2 nor a are
constant. Indeed, for the three other models, our procedure has difficulties to estimate properly
g, σ2 and a2, when one of the parameter of the diffusion jump process is constant. We see that
the final estimator â2

ẑ is not so far from the true function a2 even if there are some fluctuations
around the true function. This is understandable because we add the errors coming from the
estimations of σ2 and g as we can see on Inequality (27). Moreover, it should not be forgotten
that we do not know exactly g and that we already make an error by estimating g̃ instead of g,
this error is then reflected in the estimate of a2.

7 Discussion

This paper investigates the jump diffusion model with jumps driven by a Hawkes process. This
model is interesting to complete the collection of jump diffusion models and take into account
dependency in the jump process. The dynamic of the trajectories obtained from this model is
impacted by the Hawkes process which acts independently of the diffusion process.

This work focuses on the estimation of the unknown coefficients σ2 and a. We propose a
classical adaptive estimator of σ2 based on the truncated increments of the observed discrete

19



trajectory. this allows to estimate the diffusion coefficient when no jump is detected.
Then, we estimate the sum g := σ2 + a2 × f . Indeed, it is this function and not σ2 + a2

that can be estimated. The multiplicative term f is the sum of the conditional expectations of
the jump process. This function is estimated separately through a Nadaraya-Watson estimator.
The proposed estimator of g is built using all increments of the quadratic variation this time.

Furthermore, a main issue is to reach the jump coefficient a from the two first estimators
σ̂2
m̂ and ĝm̂ for which the theoretical and numerical results are convincing. The last section of

this article answered this question partially. In fact it is simple to build an estimator of a from
the two previous ones, and the estimator of the unknown conditional intensity function f .

Nevertheless, this is possible only if the jumps of the Hawkes process are observed, which
is the case of the simulation study. Then, when a real life data arises, the jump times of the
counting process must be known to be able to reach a with our methodology. Otherwise, the
issue remain an open question.

Then, the proposed estimator âz, with z = (m1,m2, h), is a quotient of estimators and the
denominator must be lower bounded to insure the proper definition of the estimator. This could
be theoretically and numerically carefully studied and be the object for further works.

Moreover, the choice of the 3−dimensional parameter z could be investigated. Indeed, instead
of choosing the triplet (m̂1, m̂2, ĥ) proposed in simulation (where the two first are given in (13)
and (25) respectively and the third is the cross-validation bandwidth) one could propose an
adaptive estimator of a choosing the triplet, minimizing an estimator of the risk. This is an
interesting mathematical question which requires more attention and is beyond the primary
purpose of this work.

Finally, our analysis sheds light on the importance to further investigate the conditional
intensity function f , dependent on the invariant density π. A future perspective would be to
propose a kernel estimator for the invariant density π and to deeply study its behaviour and its
asymptotic properties, following the same approach as in [32] and [3]. A projection method is
instead considered in [25] in order to estimate the invariant density associated to a piecewise
deterministic Markov process (PDMP) process. As a consequence, it will be possible to discuss
the properties of the related estimator of f .

To conclude, the innovative procedure that we have presented, could be used to investigate
real life data set. For example, some neuronal data as explained in [17] should be interpreted
through this model as both X and the jumps times of N are observed. This is a work in progress.

8 Proofs

8.1 Proof of volatility estimation

This section is devoted to the proof of the results stated in Section 3. We start proving Propo-
sition 3.

8.1.1 Proof of Proposition 3

Proof. We want to show an upper bound for the empirical risk E[
∥∥σ̂2

m − σ2
∥∥2

n
]. First of all

we remark that, if t is a deterministic function, then it is E[‖t‖2n] = ‖t‖2πX , where ‖t‖2πX :=∫
A t

2(x)πX(dx) and πX(dx) = π(dx × RM ) is the projection on the coordinate X of π, which
exists for Theorem 2.3 in [17] (proof in [18]).
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By the definition of Tti we have that

γn,M (t) :=
1

n

n−1∑
i=0

(
t(Xti)− Ttiϕ∆β

n,i
(∆iX)

)2

=
1

n

n−1∑
i=0

(
t(Xti)− σ2(Xti)− (Ãti +Bti + Etiϕ∆β

n,i
(∆iX))

)2

=
∥∥t− σ2

∥∥2

n
+

1

n

n−1∑
i=0

(Ãti +Bti + Etiϕ∆β
n,i

(∆iX))2

− 2

n

n−1∑
i=0

(
Ãti +Bti + Etiϕ∆β

n,i
(∆iX)

) (
t(Xti)− σ2(Xti)

)
.

As σ̂2
m minimizes γn,M (t), for any σ2

m ∈ Sm it is γn,M (σ̂2
m) ≤ γn,M (σ2

m) and therefore

∥∥σ̂2
m − σ2

∥∥2

n
≤
∥∥σ2

m − σ2
∥∥2

n
+

2

n

n−1∑
i=0

(Ãti +Bti + Etiϕ∆β
n,i

(∆iX))(σ̂2
m(Xti)− σ2

m(Xti)).

Let us denote the contrast function

νn(t) :=
1

n

n−1∑
i=0

Btit(Xti). (29)

It follows

∥∥σ̂2
m − σ2

∥∥2

n
≤

∥∥σ2
m − σ2

∥∥2

n
+
d

n

n−1∑
i=0

(
Ãti + Etiϕ∆β

n,i
(∆iX)

)2
+

1

d

∥∥σ̂2
m − σ2

m

∥∥2

n

+2νn(σ2
m − σ̂2

m).

The linearity of the function νn in t implies that

2νn(σ̂2
m − σ2

m) = 2‖σ̂2
m − σ2

m‖πXνn((σ̂2
m − σ2

m)/‖σ̂2
m − σ2

m‖πX ) ≤ 2‖σ̂2
m − σ2

m‖πX sup
t∈Bm

νn(t),

then, using that when d > 0, we have 2xy ≤ x2

d + dy2, we obtain the upper bound

2νn(σ̂2
m − σ2

m) ≤ 1

d
‖σ̂2

m − σ2
m‖2πX + d sup

t∈Bm
ν2
n(t)

where Bm =
{
t ∈ Sm : ‖t‖2πX ≤ 1

}
. Finally, using Cauchy-Schwarz’s inequality leads to

∥∥σ̂2
m − σ2

∥∥2

n
≤

∥∥σ2
m − σ2

∥∥2

n
+

2d

n

n−1∑
i=0

Ã2
ti +

2d

n

n−1∑
i=0

E2
tiϕ

2
∆β
n,i

(∆iX) +
1

d

∥∥σ̂2
m − σ2

m

∥∥2

n

+d sup
Bm

ν2
n(t) +

1

d

∥∥σ̂2
m − σ2

m

∥∥2

πX
. (30)

Let us set

Ωn :=

{
ω,∀t ∈ S̃n\{0}, |

‖t‖2n
‖t‖2πX

− 1| ≤ 1

2

}
, (31)

on which the norms ‖·‖πX and ‖·‖n are equivalent. We now act differently to bound the risk on
Ωn and Ωc

n.
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Bound of the risk on Ωn On Ωn, it is∥∥σ̂2
m − σ2

m

∥∥2

πX
≤ 2

∥∥σ̂2
m − σ2

m

∥∥2

n
≤ 4

∥∥σ̂2
m − σ2

∥∥2

n
+ 4

∥∥σ2 − σ2
m

∥∥2

n
,

where in the last estimation we have used triangular inequality. In the same way we get∥∥σ̂2
m − σ2

m

∥∥2

n
≤ 2

∥∥σ̂2
m − σ2

∥∥2

n
+ 2

∥∥σ2 − σ2
m

∥∥2

n
.

Replacing them in (30) we obtain

∥∥σ̂2
m − σ2

∥∥2

n
≤

∥∥σ2
m − σ2

∥∥2

n
+

2d

n

n−1∑
i=0

Ã2
ti +

2d

n

n−1∑
i=0

(Etiϕ∆β
n,i

(∆iX))2 + d sup
t∈Bm

ν2
n(t)

+
6

d

∥∥σ̂2
m − σ2

∥∥2

n
+

6

d

∥∥σ2 − σ2
m

∥∥2

n
.

We need d to be more than 6, we take d = 7 obtaining

∥∥σ̂2
m − σ2

∥∥2

n
≤ 13

∥∥σ2
m − σ2

∥∥2

n
+

98

n

n−1∑
i=0

Ã2
ti +

98

n

n−1∑
i=0

(Etiϕ∆β
n,i

(∆iX))2 + 49 sup
t∈Bm

ν2
n(t). (32)

We denote as (ψl)l an orthonormal basis of Sm for the L2
πX

norm (thus
∫
R ψ

2
l (x)πX(x)dx = 1).

Each t ∈ Bm can be written

t =

Dm∑
l=1

αlψl, with

Dm∑
l=1

α2
l ≤ 1.

Then

sup
t∈Bm

ν2
n(t) = sup∑Dm

l=1 α
2
l≤1

ν2
n

(
Dm∑
l=1

αlψl

)
≤ sup∑Dm

l=1 α
2
l≤1

(
Dm∑
l=1

α2
l

)(
Dm∑
l=1

ν2
n(ψl)

)
=

Dm∑
l=1

ν2
n(ψl). (33)

To study the risk we need to evaluate the expected value. From (32), (33) and using the first
and the third points of Proposition 2, we get

E
[∥∥σ̂2

m − σ2
∥∥2

n
1Ωn

]
≤ 13E

[∥∥σ2
m − σ2

∥∥2

n

]
+ c∆1−ε̃

n + c∆4β−1
n + 49

Dm∑
l=1

E[ν2
n(ψl)]. (34)

By the definition (29) of νn it is

νn(ψl) =
1

n

n−1∑
i=0

Btiψl(Xti).

As Bti is conditionally centered, using the second point of Proposition 2, it is

Dm∑
l=1

E[ν2
n(ψl)] ≤

c

n2

n−1∑
i=0

Dm∑
l=1

E[ψ2
l (Xti)E[B2

ti |Fti ]] ≤
c

n2

n−1∑
i=0

Dm∑
l=1

σ4
1E[ψ2

l (Xti)] ≤
cσ4

1Dm

n
.

Replacing the inequality here above in (34) it yields

E
[∥∥σ̂2

m − σ2
∥∥2

n
1Ωn

]
≤ 13E

[∥∥σ2
m − σ2

∥∥2

n

]
+ c∆4β−1

n +
cσ4

1Dm

n
.
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As on Ωn the empiric norm and the norm on πX are equivalent and the reasoning here above
applies for no matter what σ2

m ∈ Sm, it clearly follows

E[
∥∥σ̂2

m − σ2
∥∥2

n
1Ωn ] ≤ 13 inf

t∈Sm

∥∥t− σ2
∥∥2

πX
+ c∆4β−1

n +
cσ4

1Dm

n
. (35)

Bound of the risk on Ωc
n

The complementary space Ωc
n of Ωn given in Equation (31) is defined as:

Ωc
n =

{
ω ∈ Ω, ∃t∗ ∈ S̃n\{0},

∣∣∣∣∣ ‖t∗‖2n‖t∗‖2
πX
− 1

∣∣∣∣∣ > 1/2

}
.

Let us set e = (et0 , . . . , etn−1), where eti := Ttiϕ∆β
n,i

(∆iX)−σ2(Xti) = Ãti+Bti+Etiϕ∆β
n,i

(∆iX).

Moreover

ΠmTϕ = Πm(Tt0ϕ∆β
n,0

(∆0X), . . . , Ttn−1ϕ∆β
n,n−1

(∆n−1X)) = (σ̂2
m(Xt0), . . . , σ̂2

m(Xtn−1)),

where Πm is the Euclidean orthogonal projection over Sm. Then, according to the projection
definition, ∥∥σ̂2

m − σ2
∥∥2

n
=

∥∥ΠmTϕ− σ2
∥∥2

n
=
∥∥ΠmTϕ−Πmσ

2
∥∥2

n
+
∥∥Πmσ

2 − σ2
∥∥2

n

≤
∥∥Tϕ− σ2

∥∥2

n
+
∥∥σ2

∥∥2

n
= ‖e‖2n +

∥∥σ2
∥∥2

n
.

Therefore, from Cauchy -Schwarz inequality and the boundedness of σ2(x),

E
[∥∥σ̂2

m − σ2
∥∥2

n
1Ωcn

]
≤ E

[
‖e‖2n 1Ωcn

]
+ E

[∥∥σ2
∥∥2

n
1Ωcn

]
=

1

n

n−1∑
i=0

E[e2
ti1Ωcn ] +

1

n

n−1∑
i=0

E[σ4(Xti)1Ωcn ]

≤ 1

n

n−1∑
i=0

E[e4
ti ]

1
2P(Ωc

n)
1
2 + σ4

1P(Ωc
n).

From Lemma 6.4 in [17], if n∆n
(logn)2 →∞ and D2

n ≤ n∆n
(logn)2 , then

P(Ωc
n) ≤ c0

n4
. (36)

In the hypothesis of our proposition we have requested that nε log n = o(
√
n∆n). As for n

going to ∞ we have (logn)2

n∆n
< nε logn√

n∆n
→ 0, the first condition in Lemma 6.4 in [17] hold true.

Regarding the bound on Dn, we have assumed Dn ≤
√
n∆n

lognnε ≤
√
n∆n

logn and so we can apply the
here above mentioned lemma, which yields (36).
We are left to evaluate E[e4

ti ]. From Proposition 2 it follows

E
[
e4
ti

]
≤ E

[
Ã4
ti +B4

ti + E4
tiϕ

4
∆β
n,i

(∆iX)

]
≤ c∆1−ε̃

n + c+ c∆8β−3
n ≤ c∆0∧8β−3

n .

Putting the pieces together it yields

E
[∥∥σ̂2

m − σ2
∥∥2

n
1Ωcn

]
≤ c∆

0∧4β− 3
2

n

n2
+

c

n4
≤ c∆

0∧4β− 3
2

n

n2
. (37)

From (35) and (37) it follows

E
[∥∥σ̂2

m − σ2
∥∥2

n

]
≤ 13 inf

t∈Sm

∥∥t− σ2
∥∥2

πX
+
C1σ

4
1Dm

n
+ C2∆4β−1

n +
C3∆

0∧4β− 3
2

n

n2
.
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8.1.2 Proof of Theorem 1

Proof. We analyse the quantity E[
∥∥σ̂2

m̂ − σ
2
∥∥2

n
], acting again in different way depending on

whether or not we are on Ωn. On Ωc
n the proof can be led as before, getting

E
[∥∥σ̂2

m̂ − σ
2
∥∥2

n
1Ωcn

]
≤ c∆

0∧4β− 3
2

n

n2
. (38)

Now we investigate what happens on Ωn. By the definition of m̂ it is

γn,M (σ̂m̂) + pen(m̂) ≤ γn,M (σ̂m) + pen(m) ≤ γn,M (σm) + pen(m)

and so, acting as before (32), we get

E
[∥∥σ2

m̂ − σ
2
∥∥2

n
1Ωn

]
≤ 13E[

∥∥σ2
m − σ2

∥∥2

n
] +

98

n

n−1∑
i=0

E[Ã2
ti ] +

98

n

n−1∑
i=0

E[(Etiϕ∆β
n,i

(∆iX))2]

+49E

[
sup

t∈Bm,m̂
ν2
n(t)

]
+ 7pen(m)− 7E[pen(m̂)], (39)

where νn has been defined in (29) and

Bm,m′ := {h ∈ Sm + Sm′ : ‖h‖πX ≤ 1} .

We want to control the term E[supt∈Bm,m̂(νn(t))2] and, to do that, we introduce the function

p(m,m′) which is such that

p(m,m′) =
1

49
(pen(m) + pen(m′)). (40)

It is

E

[
sup

t∈Bm,m̂
νn(t)2

]
≤ E [p(m, m̂)] +

∑
m′∈Mn

E

[(
sup

t∈Bm,m′
(νn(t))2 − p(m,m′)

)
+

]
.

In order to bound the second term in the right hand side here above we want to use Lemma 7 in
[30]. We can remark that, for any p ≥ 2, E[|Bti |p] ≤ c

∆p
n
E[Z2p

ti
] + cσ2p

1 . According to Proposition

4.2 in Barlow and Yor [8] (B.D.G. inequality with optimal constants) there exists a constant c
such that, for any p > 0,

E
[
Z2p
ti

]
≤ c2p(2p)p∆p

nσ
2p
1 .

It follows
E[|Bti |p] ≤ (c2p(2p)pσ2p

1 + cσ2p
1 ) ≤ 2c2p(2p)pσ2p

1 .

By Lemma 7 in [30] there exists a constant k such that, for any m,m′ ∈Mn,

E

[(
sup

t∈Bm,m′
ν2
n(t)− kcσ1p(m,m

′)

)
+

]
≤ ce

−(Dm+Dm′ )

n
. (41)

We have said, in the definition of the penalization function penσ given in Subsection 3.2,
that the constant k1 has to be calibrated. In particular, we need it to be such that k1

49 ≥ kcσ1,
where σ1 is the upper bound for the volatility provided in the second point of Assumption 1
and k and c are as in Lemma 7 of [30]. We underline that Lemma 7 in [30] has been proved
for a noisy diffusion. However, the same reasoning applies for a jump diffusion (see the proof of
Theorem 13 in [31]) and for our framework as well, as it is based on a projection argument and
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on algebraic computations which still hold true.
From (41) and the fourth point of Assumption 4 we get

∑
m′∈Mn

E

[(
sup

t∈Bm,m′
ν2
n(t)− p(m,m′)

)
+

]
≤ c

n

∑
m′∈Mn

e−(Dm+Dm′ ) ≤ c

n
.

It provides us, using also (37) and Proposition 2,

E
[∥∥σ̂2

m̂ − σ
2
∥∥2

n

]
≤ 13E

[∥∥σ2
m − σ2

∥∥2

n

]
+ c∆4β−1

n +
c

n4
+ 8pen(m) +

c∆
0∧(4β− 3

2
)

n

n2
+
c

n

≤ C1 inf
m∈Mn

{
inf
t∈Sm

‖t− σ2‖2πX + pen(m)

}
+ C2∆4β−1

n +
C3∆

4β− 3
2

n

n2
+
C4

n
.

8.2 Proof of results on estimation of g

In this section we prove the results stated in Section 4.

8.2.1 Proof of Proposition 5

Proof. The proof follows the same scheme than the proof of Proposition 3. We want to upper
bound the empirical risk E[‖ĝm − g‖2n]. By the definition of Tti we have that

γn,M (t) :=
1

n

n−1∑
i=0

(t(Xti)− Tti)2 =
1

n

n−1∑
i=0

(t(Xti)− g(Xti)− (Ati +Bti + Cti + Eti))
2

γn,M (t) = ‖t− g‖2n +
1

n

n−1∑
i=0

(Ati +Bti + Cti + Eti)
2

− 2

n

n−1∑
i=0

(Ati +Bti + Cti + Eti)(t(Xti)− g(Xti)).

As ĝm minimizes γn,M (t), for any gm ∈ Sm it is γn,M (ĝm) ≤ γn,M (gm) and therefore

‖ĝm − g‖2n ≤ ‖gm − g‖
2
n +

2

n

n−1∑
i=0

(Ati +Bti + Cti + Eti)(ĝm(Xti)− gm(Xti)).

Using Cauchy-Schwarz inequality and the fact that, for d > 0, 2xy ≤ x2

d + dy2, we get

‖ĝm − g‖2n ≤ ‖gm − g‖2n +
2d

n

n−1∑
i=0

A2
ti +

1

d
‖ĝm − gm‖2n + 2d sup

Bm
ν2
n,1(t)

+
1

d
‖ĝm − gm‖2πX + 2d sup

Bm
ν2
n,2(t), (42)

where Bm =
{
t ∈ Sm : ‖t‖2πX ≤ 1

}
and

νn,1(t) :=
1

n

n−1∑
i=0

(Bti + Eti)t(Xti), νn,2(t) :=
1

n

n−1∑
i=0

Ctit(Xti). (43)
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We still denote Ωn the space on which the norms ‖·‖πX and ‖·‖n are equivalent given by Equation
(31). We now act differently to bound the risk on Ωn and Ωc

n.
Bound of the risk on Ωn

On Ωn, it is
‖ĝm − gm‖2πX ≤ 2 ‖ĝm − gm‖2n ≤ 4 ‖ĝm − g‖2n + 4 ‖g − gm‖2n ,

where in the last estimation we have used triangular inequality. Replacing it in (42) we get

‖ĝm − g‖2n ≤ ‖gm − g‖2n +
2d

n

n−1∑
i=0

A2
ti + 2d sup

Bm
ν2
n,1(t) + 2d sup

Bm
ν2
n,2(t)

+
6

d
‖ĝm − g‖2n +

6

d
‖g − gm‖2n .

We need d to be more than 6, we take d = 7 obtaining

‖ĝm − g‖2n ≤ 13 ‖gm − g‖2n +
98

n

n−1∑
i=0

A2
ti + 98 sup

t∈Bm
ν2
n,1(t) + 98 sup

t∈Bm
ν2
n,2(t). (44)

We now need to introduce a different orthonormal basis of Sm, compared to the one we proposed
in Section 8.1, for the estimation of volatility. The reason why it is necessary to change it is
that in E[E2

ti |Fti ] we now get a term that depends on λti , which is an extra difficulty compared

with the reasoning we applied below (34). Hence, we consider (ψ̃k)k an orthonormal basis of Sm
for which

E
[
ψ̃2
k(Xti , l)|λti = l

]
= 1, (45)

where λti = (λ
(1)
ti
, . . . , λ

(M)
ti

). It is possible to build such a basis starting from the one we have
introduced in the proof of Proposition 3, through Gram-Schmidt process, for the scalar product
in L2(π(dx|λti = l)), for l ∈ Rm. Each t ∈ Bm can be written

t =

Dm∑
l=1

αlψ̃l, with

Dm∑
l=1

α2
l (λti) ≤ 1.

We underline that this time, unlike it was in the estimation of the volatility, the coefficients αl
depend on λti . We omit it in the sequel to lighten the notation. Then, for j = 1 and j = 2,

sup
t∈Bm

ν2
n,j(t) = sup∑Dm

l=1 α
2
l≤1

ν2
n,j

(
Dm∑
l=1

αlψ̃l

)
≤ sup∑Dm

l=1 α
2
l≤1

(
Dm∑
l=1

α2
l

)(
Dm∑
l=1

ν2
n,j(ψ̃l)

)
=

Dm∑
l=1

ν2
n,j(ψ̃l).

(46)
To study the risk we need to evaluate the expected value. From (44), (46) and using the first
point of Proposition 4, we get

E
[
‖ĝm − g‖2n 1Ωn

]
≤ 13E

[
‖gm − g‖2n

]
+ c∆1−ε̃

n + 98

Dm∑
l=1

E[ν2
n,1(ψ̃l)] + 98

Dm∑
l=1

E
[
ν2
n,2(ψ̃l)

]
. (47)

By the definition (43) of νn,1 and the points 2 and 3 of Proposition 4, it is

Dm∑
l=1

E[ν2
n,1(ψ̃l)] ≤

c

n2

n−1∑
i=0

Dm∑
l=1

E
[
ψ̃2
l (Xti , λti)E[B2

ti + E2
ti |Fti ]

]

≤ c

n2

n−1∑
i=0

Dm∑
l=1

E

ψ̃2
l (Xti , λti)(cσ

4
1 +

ca4
1

∆n,i

M∑
j=1

|λ(j)
ti
|)


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We observe that the first term in the right hand side here above is

cσ4
1

n2

n−1∑
i=0

Dm∑
l=1

E[ψ̃2
l (Xti , λti)] ≤

cDm

n
,

where we moved to the conditional expectation with respect to λti = (λ
(1)
ti
, . . . , λ

(M)
ti

). Regarding
the second term, we remark it is

E

ψ̃2
l (Xti , λti)

ca4
1

∆n,i

M∑
j=1

|λ(j)
ti
|

 = E[E[ψ̃2
l (Xti , λti)|λti ]

ca4
1

∆n,i

M∑
j=1

|λ(j)
ti
|]

=
ca4

1

∆n,i

M∑
j=1

E[|λ(j)
ti
|] ≤ ca4

1

∆n,i
,

where in the last inequality we have used the boundedness of the moments of λ and (45). It
follows

c

n2

n−1∑
i=0

Dm∑
l=1

E[ψ̃2
l (Xti , λti)

ca4
1

∆n,i

M∑
j=1

|λ(j)
ti
|] ≤ cDma

4
1

n∆n,i
.

Hence,
Dm∑
l=1

E
[
ν2
n,1(ψ̃l)

]
≤ c(σ4

1 + a4
1)Dm

n∆n,i
. (48)

In order to evaluate E[ν2
n,2(ψ̃l)], the following lemma will be useful:

Lemma 3. Suppose that A1-A3 hold true. Then,

Var

(
1

n

n−1∑
i=0

Ctiψ̃l(Xti , λti)

)
≤ c

n∆n
.

The proof of Lemma 3 is in the appendix. Lemma 3 yields

Dm∑
l=1

E
[
ν2
n,2(ψ̃l)

]
≤ cDm

n∆n
.

Replacing the inequality here above and (48) in (47) we get, using also that ∆n,i ≥ c∆min and
the fact that there exist c1 and c2 for which c1 ≤ ∆n

∆min
≤ c2,

E
[
‖ĝm − g‖2n 1Ωn

]
≤ 13E

[
‖gm − g‖2n

]
+ c∆1−ε̃

n +
c(σ4

1 + a4
1 + 1)Dm

n∆n
.

As the choice gm ∈ Sm is arbitrary, we obtain

E
[
‖ĝm − g‖2n 1Ωn

]
≤ 13 inf

t∈Sm
‖t− g‖2πX + c∆1−ε̃

n +
c(σ4

1 + a4
1 + 1)Dm

n∆n
. (49)

Bound of the risk on Ωc
n

Let us set e = (et0 , . . . , etn−1), where eti := Tti − g(Xti) = Ati +Bti + Cti + Eti . Moreover

ΠmT = Πm(Tt0 , . . . , Ttn−1) = (ĝm(Xt0), . . . , ĝm(Xtn−1)),
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where Πm is the Euclidean orthogonal projection over Sm. Then, according to the projection
definition,

‖ĝm − g‖2n = ‖ΠmT − g‖2n = ‖ΠmT −Πmg‖2n + ‖Πmg − g‖2n
≤ ‖T − g‖2n + ‖g‖2n = ‖e‖2n + ‖g‖2n .

Therefore, from Cauchy -Schwarz inequality,

E[‖ĝm − g‖2n 1Ωcn ] ≤ E[‖e‖2n 1Ωcn ] + E[‖g‖2n 1Ωcn ] =
1

n

n−1∑
i=0

E[e2
ti1Ωcn ] +

1

n

n−1∑
i=0

E[g(Xti)
21Ωcn ] ≤

1

n

n−1∑
i=0

E[e4
ti ]

1
2P(Ωc

n)
1
2 +

1

n

n−1∑
i=0

E[g(Xti)
4]

1
2P(Ωc

n)
1
2

Moreover, using the boundedness of both a and σ and the fact that E[|λti |4] < ∞, we obtain
E[g(Xti)

4] <∞. We are left to evaluate E[e4
ti ]. From Proposition 4 it follows

E[e4
ti ] ≤ E[A4

ti +B4
ti + C4

ti + E4
ti ] ≤ c∆

1−ε̃
n + c+ c+

c

∆3
ni

≤ c

∆3
n

.

Putting the pieces together it yields

E[‖ĝm − g‖2n 1Ωcn ] ≤ c

∆
3
2
n

1

n2
+

c

n2
≤ c

n2∆
3
2
n

. (50)

From (49) and (50) it follows

E[‖ĝm − g‖2n] ≤ 13E[‖gm − g‖2n] +
C1(σ4

1 + a4
1 + 1)Dm

n∆n
+ C2∆1−ε̃

n +
C3

n2∆
3
2
n

.

8.2.2 Proof of Theorem 2

Proof. We act again in different way depending on whether or not we are on Ωn. On Ωc
n the

proof can be led as before, getting

E
[
‖ĝm̂ − g‖2n 1Ωcn

]
≤ c

n2∆
3
2
n

. (51)

Now we investigate what happens on Ωn. In particular, we analyse what happens on O ⊂ Ωn,
a set which will be defined later (see (56)). By the definition of m̂ we have

γn,M (ĝm̂) + pen(m̂) ≤ γn,M (ĝm) + pen(m) ≤ γn,M (gm) + pen(m)

and so, following the from of Equation (44), we get

E
[
‖ĝm̂ − g‖2n 1O

]
≤ 13E[‖gm − g‖2n] +

98

n

n−1∑
i=0

E[A2
ti ] + 98E

[
sup

t∈Bm,m̂
ν2
n(t)1O

]
+7pen(m)− 7E[pen(m̂)],

where

νn(t) :=
1

n

n−1∑
i=0

(Bti + Cti + Eti)t(Xti),
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and
Bm,m′ := {h ∈ Sm + Sm′ : ‖h‖πX ≤ 1} .

In order to control the term E[supt∈Bm,m̂ ν
2
n(t)1O], we introduce the function p(m,m′):

p(m,m′) ≤ 1

98
(pen(m) + pen(m′)).

It is

E[ sup
t∈Bm,m̂

ν2
n(t)1O] ≤ E[p(m, m̂)] +

∑
m′∈Mn

E

[(
sup

t∈Bm,m′
ν2
n(t)− p(m,m′)

)
+

1O

]
.

Replacing it in (39) and using the first point of Proposition 4 we get

E
[
‖ĝm̂ − g‖2n 1O

]
≤ 13E

[
‖gm − g‖2n

]
+ c∆1−ε̃

n + 98E[p(m, m̂)] + 7pen(m)

−7E[pen(m̂)] + 98
∑

m′∈Mn

E

[(
sup

t∈Bm,m̂
ν2
n(t)− p(m,m′)

)
+

1O

]
.

We have introduced the function p(m,m′) with the purpose to use Talagrand inequality on the
last term in the right hand side of the equation here above. We recall the following version of
the Talagrand inequality, which has been stated in [31] and proved by Birgé and Massart (1998)
[9] (corollary 2p.354) and Comte and Merlevède (2002) [14] (p222-223).

Lemma 4. Let T1, . . . , Tn be independent random variables with values in some Polish space X
and vp : Bm,m′ → R such that

vp(r) :=
1

p

p∑
j=1

[r(Tj)− E[r(Tj)]].

Then,

E

[(
sup

r∈Bm,m′
|vp(r)|2 − 2H2

)
+

]
≤ c

(
v

p
e−c

pH2

v +
M2

p2
e−c

pH
M

)
, (52)

with c a universal constant and where

sup
r∈Bm,m′

‖r‖∞ ≤M, E[ sup
r∈Bm,m′

|vp(r)|] ≤ H, sup
r∈Bm,m′

1

p

p∑
j=1

Var(r(Tj)) ≤ v.

We observe that in Talagrand lemma here above the random variables T1,. . . , Tn are sup-
posed to be independent. Starting from our variables we can get independent variables through
Berbee’s coupling method. We recall it below, it is proved by Viennet in Proposition 5.1 of [33]
while an analogous statement in continuous time can be found in [3].

Lemma 5. Let (Mt)t≥0 be a stationary and exponentially β mixing process observed at discrete
times 0 = t0 ≤ t1 ≤ . . . ≤ tn = T . Let pn and qn be two integers such that n = 2pnqn. For any
j ∈ {0, 1} and 1 ≤ k ≤ pn we consider the random variables

Uk,j := (Mt(2(k−1)+j)qn+1
, . . . ,Mt(2k−1+j)qn

).

There exist random variables M∗t0 , . . . ,M
∗
tn such that

U∗k,j := (M∗t(2(k−1)+j)qn+1
, . . . ,M∗t(2k−1+j)qn

)

satisfy the following properties.
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• For any j ∈ {0, 1}, the random vectors U∗1,j , . . . , U
∗
pn,j

are independent.

• For any (j, k) ∈ {0, 1} × {1, . . . , pn}, Uk,j and U∗k,j have the same distribution.

• For any (j, k) ∈ {0, 1} × {1, . . . , pn}, P(Uk,j 6= U∗k,j) ≤ βM (qn∆min), where βM is the
β-mixing coefficient of the process (Mt).

We want to apply Berbee’s coupling lemma to the random vectors (Bti + Cti + Eti , Xti),
that we write as function of Zt = (Xt, λt), which is stationary and exponentially β- mixing, as
discussed in Section 2.3. We define the σ algebra

F̃ti := σ(Xs, λs, s ∈ (ti, ti+1]), (53)

completed with the null sets. Because of the exponentially β- mixing of (Xt, λt) we know it is

β(F̃ti , F̃tj ) ≤ ce−γ|tj−ti|.

From (2) and the fact we have assumed ci,j to be inversible, it is possible to write both Zti and
Jti in function of X and λ and so they are measurable with respect to F̃ti . By the definition of
Bti , Cti and Eti it follows that also Bti + Cti + Eti is measurable with respect to F̃ti . We can
therefore use Berbee’s coupling lemma on (Bti + Cti + Eti , Xti).
For t ∈ Bm,m′ , according to Berbee’s coupling lemma, we can construct

U∗k,j :=
1

qn

qn∑
l=1

(B + C + E)∗t(2(k−1)+j)qn+l
t(X∗t(2(k−1+j)qn+l

)

such that, for j ∈ {0, 1}, the random variables (U∗k,j)0≤k≤pn are independent and have the same
distribution as

Uk,j :=
1

qn

qn∑
l=1

(B + C + E)t(2(k−1)+j)qn+l
t(Xt(2(k−1+j)qn+l

).

Let us set
Ω∗ :=

{
ω,∀j,∀k, Uk,j = U∗k,j

}
,

by Berbee’s coupling lemma it is

P(Ω∗,c) ≤ 2pnβZ(qn∆min) ≤ c n
qn
e−γqn∆min .

We recall that pn and qn are two integers to be chosen such that 2pnqn = n. It is enough to take
qn := b 5

γ∆min
log nc in (54) to get

P(Ω∗,c) ≤ c

n4 log n
. (54)

We want to apply Talagrand inequality on v∗n(t) := v0,∗
n (t) + v1,∗

n (t), where

v0,∗
n (t) =

1

pn

pn∑
k=0

U∗k,0, v1,∗
n (t) =

1

pn

pn∑
k=0

U∗k,1.

To do that, we first of all observe that, as a consequence of Proposition 4, it is E[U∗k,j ] = 0 for
any j ∈ {0, 1} and any k ∈ {0, . . . , pn}. Now we want to compute the constants M , v and H as
defined in Lemma 4. To compute M we introduce the following set

ΩB :=
{
ω,∀j,∀k, ∀ε > 0 |U∗k,j | ≤ c̃nεD

1
2

}
, (55)

with D := Dm +Dm′ . The following lemma is proven in the appendix.
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Lemma 6. Suppose that A1-A3 hold. Then there exists c > 0 such that

P(Ωc
B) ≤ c

n4
.

We set
O := Ωn ∩ ΩB ∩ Ω∗. (56)

On O the random variables |U∗k,j | are replaced by |U∗k,j | ∧ c̃nεD
1
2 . As the original variables U

and the independent ones U∗ are the same on O even after truncation, the truncated random
variables are still independent and we can use Talagrand inequality on them. From (36), (54)
and Lemma 6 it follows

P(Oc) ≤ c

n4
.

We act on Oc as we did on Ωc
n, getting

E[‖ĝm̂ − g‖2n 1Oc ] ≤
c

n2∆
3
2
n

. (57)

On the other side, on O we are really going to use Talagrand’s inequality to control

∑
m′∈Mn

E

[(
sup

t∈Bm,m̂
νn(t)2 − p(m,m′)

)
+

1O

]
.

From the definition of ΩB, we clearly obtain that M := cnεD
1
2 . With the purpose of computing

v we observe that for any t ∈ Bm,m′ , by stationarity, it is

Var(U∗k,j) =
1

q2
n

qn∑
l=1

E
[
t2(X∗tl)C

∗,2
tl

El[B∗,2tl + E∗,2tl ]
]
.

By the second and the third points of Proposition 4 this variance is upper bounded

Var(U∗k,j) ≤
c

q2
n

qn∑
l=1

E

t2(X∗tl)C
∗,2
tl

(σ2
1 +

a4
1

∆n

M∑
j=1

λ
(j)
tl

)


≤ c

q2
n

qn∑
l=1

E
[
t2p(X∗tl)

] 1
p E

C∗,2qtl

σ2
1 +

a4
1

∆n

M∑
j=1

λ
(j)
ti

q
1
q

, (58)

where we have used Holder inequality with q big and p next to 1. We can see t2p(X∗tl) as

t2+(2p−2)(X∗tl) = t2(X∗tl)t
(2p−2)(X∗tl) ≤ ‖t‖

2p−2
∞ t2(X∗tl).

As p has been chosen next to 1, ‖t‖
2p−2
p
∞ ≤ ‖t‖δ∞ ≤ cD

δ
2 for any δ arbitrarily small. Using also

the boundedness of the moments of C and λ it follows that the right hand side of (58) is upper
bounded by

cD
δ
2

qn∆n
=: v.

In order to compute H2 we observe it is

E

∣∣∣∣∣∣ 1

pn

∑
j,k

U∗k,j

∣∣∣∣∣∣
 ≤√E[v2,∗

p (t)]
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To find an upper bound for the right hand side here above we act in a similar way to how we
did before (46): we introduce the orthonormal basis (ψ̄k)k for which E[ψ̄2

k(Xti , l)|λti = l] = 1,
such that each t ∈ Bm,m′ can be written as the following

t =

D∑
l=1

ᾱlψ̄l, with

D∑
l=1

ᾱ2
l (λti) ≤ 1.

The coefficients ᾱl depend on λti . We omit it in the sequel to lighten the notation. Similarly to
(46), we have

sup
t∈Bm,m′

v2,∗
p (t) = sup∑D

l=1 ᾱ
2
l≤1

v2,∗
p

(
D∑
l=1

ᾱlψ̄l

)
≤ sup∑D

l=1 ᾱ
2
l≤1

(
D∑
l=1

ᾱ2
l

)(
D∑
l=1

v2,∗
p (ψ̄l)

)
=

D∑
l=1

v2,∗
p (ψ̄l).

Acting exactly as we did in order to get (48) and Lemma 3 on v2
n,1 and v2

n,2 we obtain√
E[v2,∗

p (t)] ≤
√

D

n∆n
=: H,

We now use Talagrand inequality as in Lemma 4. It follows

E

[(
sup

t∈Bm,m̂
ν∗n(t)2 − 2H2

)
+

1O

]
≤ D

δ
2

pnqn∆n
exp

(
−cDpnqn∆n

n∆nD
δ
2

)
+
cn2εD

p2
n

exp

(
−cpnD

1
2

√
n∆nnεD

1
2

)

=
cD

δ
2

n∆n
exp(−cD1− δ

2 ) +
cn2εD

p2
n

exp

(
− c

√
n

qn
√

∆nnε

)
.

We recall that qn = c logn
∆min

. We observe that, as ∆min and ∆n differs only for a constant,
c
√
n√

∆nqnnε
= c

√
n∆n

lognnε . Moreover, it goes to ∞ for n going to infinity as we have assumed that

(log n)nε = o(
√
n∆n). Therefore, the second term here above is negligible compared to the first

one. It follows, using also the definition of p(m, m̂), the fact that for D > 1 it is D
δ
2 e−c

′D1− δ2 <

ce−c
′D1− δ2 and the fourth point of Assumption 4,

∑
m′∈Mn

E

[(
sup

t∈Bm,m̂
ν∗n(t)2 − p(m,m′)

)
+

]
≤ c

n∆n

∑
m′∈Mn

D
δ
2 e−c

′D1− δ2 ≤ cΣ(c′)

n∆n
.

Replacing it in the equivalent of (52), considering that we are now on O, it follows

E
[
‖ĝm̂ − g‖2n 1O

]
≤ 13E[‖gm − g‖2n] + c∆1−ε̃

n + 98E[p(m, m̂)]

+7pen(m)− 7E[pen(m̂)] +
c

n∆n
.

It provides us, using also (57),

E[‖ĝm̂ − g‖2n] ≤ 13E[‖ĝm − g‖2n] + c∆1−ε̃
n +

c

n2∆
3
2
n

+ cpen(m) +
c

n∆n

≤ c1 inf
m∈Mn

{
inf
t∈Sm

‖t− g‖2πX + pen(m)

}
+ C2∆1−ε̃

n +
C3

n2∆
3
2
n

+
C4

n∆n
.
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A Appendix

For the following proofs, the lemma stated and proved below is a very helpful tool. It provides
the size of the increments of both X and λ.

Lemma 7. Suppose that A1-A3 hold. Then, there exist c1 and c2 positive constants such that,
for all t > s, |t− s| < 1 the following hold true

1. For all p ≥ 2, E[|Xt −Xs|p] ≤ c1|t− s|.

2. For all p ≥ 2 and for any j ∈ {1, . . . ,M}, E[|λ(j)
t − λ

(j)
s |p] ≤ c2|t− s|.

3. E[|λt − λs||Fs] ≤ c3|t − s|(1 + |λs|), where λ = (λ(1), . . . , λ(M)) and | · | stands for the
euclidean norm.

4. For any j ∈ {1, . . . ,M}, suph∈[0,1] E[|λ(j)
s+h||Fs] ≤ |λ

(j)
s |+ c|h|(1 + |λ(j)

s |).

Proof. We start proving the first point. From the dynamic (2) of the process X we have

|Xt −Xs|p ≤ c|
∫ t

s
b(Xu)du|p + c

∣∣∣∣∫ t

s
σ(Xu)dWu

∣∣∣∣p + c

∣∣∣∣∣∣
∫ t

s
a(Xu−)

M∑
j=1

dN (j)
u

∣∣∣∣∣∣
p

= I1 + I2 + I3.

From Jensen inequality, the polynomial growth of b and the fact that X has bounded moments
it follows

E[I1] ≤ c|t− s|p−1

∫ t

s
E[|b(Xu)|p]du ≤ c|t− s|p. (59)

Using Burkholder-Davis-Gundy inequality, Jensen inequality and the boundedness of σ it is

E[I2] ≤ cE
[
(

∫ t

s
σ2(Xu)du)

p
2

]
≤ c|t− s|

p
2
−1

∫ t

s
E[|σ(Xu)|p]du ≤ cσp1 |t− s|

p
2 . (60)

To evaluate I3, Kunita inequality will be useful. We refer to the Appendix of [24] for its proof
in a general form, while below (A7) on page 52 of [2] can be found an example of its application
in a form closer to the one we are going to use. For a compensated Poisson random measure
µ̃ = µ− µ̄ and a jump coefficient l(x, z), indeed, Kunita inequality provides the following:

E
[∣∣∣∣∫ t

0

∫
R
l(Xs− , z)µ̃(ds, dz)

∣∣∣∣p] ≤ cE
[∫ t

0

∫
R
|l(Xs− , z)|pµ̄(ds, dz)

]
+cE

[∣∣∣∣∫ t

0

∫
R
l2(Xs− , z)µ̄(ds, dz)

∣∣∣∣
p
2

]
.

We remark that, up to change the constant c in the right hand side, the equation here above
holds with the measure µ instead of the compensated one µ̃. In the sequel we will apply Kunita

inequality on the measure dN
(j)
u and the compensated one dÑ

(j)
u , for j ∈ {1, ...,M}. The

compensator is in this case λ(j)(u)du.
Using on I3 Kunita inequality together with Jensen inequality and the boundedness of a we get

E[I3] ≤ c

M∑
j=1

E

[∫ t

s
|a(Xu−)|pλ(j)

u du+

(∫ t

s
a2(Xu−)λ(j)

u du

) p
2

]

≤
M∑
j=1

c|a1|p
∫ t

s
E[λ(j)

u ]du+ c|a1|p|t− s|
p
2
−1

∫ t

s
E[|λ(j)

u |
p
2 ]du

≤ c|a1|p(|t− s|+ |t− s|
p
2 ) = c|a1|p|t− s|. (61)
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From (59), (60) and (61), as |t− s| < 1, it follows E[|Xt −Xs|p] ≤ c1|t− s|.

Point 2
Concerning the second point, for any j ∈ {1, . . . ,M} it is

|λ(j)
t − λ(j)

s |p ≤ c
∣∣∣∣α ∫ t

s
(λ(j)(u)− ζj)du

∣∣∣∣p + c

∣∣∣∣∣
∫ t

s

M∑
i=1

ci,jdN
(i)
u

∣∣∣∣∣
p

.

Acting as in the proof of the first point, using as main arguments Jensen inequality, Kunita
inequality and the boundedness of the moments of λ, we easily get the wanted estimation.
Point 3
We consider the dynamic of λ gathered in (2) in matrix form and so we have

λt − λs = α

∫ t

s
(λu − ζ)du+

∫ t

s
cdNu =: Ds +Gs,

where λt = (λ
(1)
t , . . . , λ

(M)
t ), c ∈ RM ×RM . We start evaluating Ds. By adding and subtracting

λs we easily get, denoting as Es[·] the quantity E[·|Fs],

Es[|Ds|] ≤ c|t− s|(1 + |λs|) + c

∫ t

s
Es[|λu − λs|]ds.

On Gs we use compensation formula and we apply the same reasoning as before, getting

Es[|Gs|] ≤ Es
[∫ t

s
c|λu|du

]
≤ c|t− s||λs|+ c

∫ t

s
Es[|λu − λs|]ds.

Putting the pieces together it follows

Es[|λt − λs|] ≤ c|t− s|(1 + |λs|) + c

∫ t

s
Es[|λu − λs|]ds.

We use Gronwall lemma, which yields

Es[|λt − λs|] ≤ c|t− s|(1 + |λs|)ec.

Point 4 We observe that, for any h ∈ [0, 1],

Es[|λ(j)
s+h|] ≤ |λ

(j)
s |+ Es[|λ(j)

s+h − λ
(j)
s |] ≤ |λ(j)

s |+ c|h|(1 + |λs|),

where we have used the just showed third point of this lemma.

A.1 Proof of Proposition 1

Proof. We write V (x, y) = V1(x) + V2(y), where V1(x) = |x|m for m arbitrarily big and V2(y) =

e
∑
i,j mij |y(ij)|. From the definition (5) of Az̃ we have

Az̃V = Az̃1V +Az̃2V,

where

Az̃1V (x, y) := ∂xV (x, y)b(x) +
1

2
σ2(x)∂2

xV (x, y) +
M∑
j=1

fj(
M∑
k=1

y(jk))[V1(x+ a(x))− V1(x)]

= m|x|m−1b(x) +
1

2
σ2(x)m(m− 1)|x|m−2 +

M∑
j=1

fj

(
M∑
k=1

y(jk)

)
[|x+ a(x)|m − |x|m]
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is the diffusion part and

Az̃2V (x, y) := Az̃V (x, y)−Az̃1V (x, y)

= −α
M∑
i,j=1

y(ij)∂y(ij)V (x, y) +
M∑
j=1

fj(
M∑
k=1

y(jk))[V2(y + ∆j)− V2(y)],

is the jump part of the generator. The arguments of the proof of Proposition 4.5 in [11] imply
that

Az̃2V (x, y) = Az̃2V2(y) ≤ −c1V2(y) + c21K1(y), (62)

with c1 and c2 some positive constants and K1 some compact of RM×M . Moreover, denoting
f̄(y) :=

∑M
j=1 fj(

∑M
k=1 y

(jk)) the total jump rate, it is

Az̃1V (x, y) = m|x|m−1b(x) +
1

2
σ2(x)m(m− 1)|x|m−2 + f̄(y)[|x+ a(x)|m − |x|m].

From the drift condition on b gathered in the fourth point of Assumption 1 and the boundedness
of both σ2 and a it follows

Az̃1V (x, y) ≤ −dm|x|m + c|x|m−2 + f̄(y)(c1|x|m−1 + . . .+ cm). (63)

We observe that, for any x such that |x| > r, |x|m−2 is negligible compared to |x|m = V1(x). To
study the last term in the right hand side of (63), we choose 1 < p < 2 and q > 2 such that
p(m− 1) < m (i e p < 1 + 1

m−1) and 1
p + 1

q = 1. Then,

f̄(y)(c1|x|m−1 + . . .+ cm) ≤ c

p
(c1|x|m + . . .+ cm)p +

c

q
f̄(y)q.

The first term is again negligible compared to |x|m = V1(x), being p(m− 1) < m. To estimate
the second one we observe that, for each y ∈ RM the total jump rate f̄(y) can be seen as∑M

i=1(ζi +
∑

j y
(ij)) (see page 12 in [18]). Therefore, it is

f̄(y) ≤ c̄+ c̃

M∑
i,j=1

|y(ij)| ≤ c̄+ c̃2 log(V2(y)),

which is negligible with respect to the negative term of (62) −c1V2(y). The same reasoning
applies for c

q f̄(y)q. It follows that

Az̃1V (x, y) ≤ −dm|x|m + o(V1(x)) + o(V2(y))

which, together with (62), conclude the proof.

A.2 Proof of Lemma 1

Proof. By the definition of ϕ, for any k ≥ 1 |ϕ
∆β
n,i

(∆iX) − 1|k is different from zero only if

|∆iX| > ∆β
n,i. Therefore,

E[|ϕ
∆β
n,i

(∆iX)− 1|k] ≤ cE[1{
|∆iX|>∆β

n,i

}]

= cE

1{
|∆iX|>∆β

n,i,|Jti |≤
∆
β
n,i
2

}
+ cE

1{
|∆iX|>∆β

n,i,|Jti |>
∆
β
n,i
2

}
 .(64)

35



We denote as ∆iX
c the increment of the continuous part of X, which is

∆iX
c := Xc

ti+1
−Xc

ti =

∫ ti+1

ti

b(Xs)ds+ Zti .

The first term in the right hand side of (64) is

cE

1{
|∆iXc|>

∆
β
n,i
2

}
 = cP(|∆iX

c| >
∆β
n,i

2
) ≤ cE [|∆iX

c|r]
∆βr
n,i

≤ c∆r( 1
2
−β)

n,i , (65)

where we have used Markov inequality and a classical estimation for the continuous increments
of X (see for example point 6 of Lemma 1 in [4]). In order to evaluate the second term in the
right hand side of (64), instead, we have to introduce the set

Ni,n :=


M∑
j=1

|∆iN
(j)| :=

M∑
j=1

|N (j)
ti+1
−N (j)

ti
| ≤

4∆β
n,i

a1

 .

We observe that, on N c
i,n, there exists j ∈ {1, . . . ,M} such that |∆iN

(j)| 6= 0. Therefore,

P(N c
i,n) ≤ P(|∆iN

(j)| ≥ 1) ≤ E[|∆iN
(j)|] ≤ c∆n,i. (66)

On Ni,n, instead, ∀j |∆iN
(j)| = 0 and so (Ni,n)∩

{
|Jti | >

∆β
n,i

2

}
= ∅. It follows that the second

term in the right hand side of (64) is

cE

1{
|∆iX|>∆β

n,i,|Jti |>
∆
β
n,i
2
,Ni,n

}
+ cE[1{

|∆iX|>∆β
n,i,|Jti |>

∆
β
n,i
2
,Nc
i,n

}] ≤ cP(N c
i,n) ≤ c∆n,i.

Putting the pieces together, as r is arbitrary, it follows

E
[
|ϕ

∆β
n,i

(∆iX)− 1|k
]
≤ c∆n,i.

A.3 Proof of Lemma 2

Proof. Again, we act differently depending on whether the jumps are big or not:

E[|Jti |qϕk∆β
n,i

(∆iX)] = E

|Jti |qϕk∆β
n,i

(∆iX)1{
|Jti |>

∆
β
n,i
2

}
+ E

|Jti |qϕk∆β
n,i

(∆iX)1{
|Jti |≤

∆
β
n,i
2

}
 .

(67)

By the definition of ϕ it is different from 0 only if |∆iX| ≤ 2∆β
n,i. As ∆iX = ∆iX

c + Jti , it is

E

|Jti |qϕk∆β
n,i

(∆iX)1{
|Jti |>

∆
β
n,i
2

}
 ≤ E

|Jti |q1{
|∆iXc|>

3∆
β
n,i
2

}
 ≤ E[|Jti |qp1 ]

1
p1 E

1{
|∆iXc|>

3∆
β
n,i
2

}


1
p2

≤ c∆
1
p1
n,i ∆

r
p2

( 1
2
−β)

n,i c∆
r( 1

2
−β)−ε

n,i ,
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where we have used first of all Holder inequality and then Kunita inequality and (65). In order
to evaluate the second term of (67), we introduce again the set Ni,n. On Ni,n the increments
∆iN

(j) are null and so |Jti | = 0. On N c
i,n instead, using also (66), we have

E

|Jti |qϕk∆β
n,i

(∆iX)1{
|Jti |≤

∆
β
n,i
2
,Nc
i,n

}
 ≤ c∆βq

n,iP(N c
i,n) ≤ c∆1+βq

n,i .

By the arbitrariness of r it follows

E[|Jti |qϕk∆β
n,i

(∆iX)] ≤ c∆1+βq
n,i ,

as we wanted.

A.4 Proof of Proposition 2

Proof. As the second point is useful in order to show the first one, we start proving point 2.
Point 2
By definition we know that Bti is centered. In the sequel we denote as Ei[·] the conditional
expected value E[·|Fti ]. Regarding the second moment, it is

Ei[B2
ti ] ≤

1

∆2
n,i

Ei
[
Z4
ti + (

∫ ti+1

ti

σ2(Xs)ds)
2

]
≤ c

∆2
n,i

Ei

[(∫ ti+1

ti

σ2(Xs)ds

)2
]
≤ cσ4

1

where we have used, sequentially, BDG inequality, Jensen inequality and the boundedness of σ.
Using the same arguments we show the following:

Ei[B4
ti ] ≤

1

∆4
n,i

Ei

[
Z8
ti +

(∫ ti+1

ti

σ2(Xs)ds

)4
]
≤ c

∆4
n,i

Ei

[(∫ ti+1

ti

σ2(Xs)ds

)4
]
≤ cσ8

1.

Point 1
We analyse the behaviour of

Ãti = σ2(Xti)(ϕ∆β
n,i

(∆iX)− 1) +Atiϕ∆β
n,i

(∆iX) +Bti(ϕ∆β
n,i

(∆iX)− 1).

From Holder inequality, the boundedness of σ and a repeated use of Lemma 2 we get

E[Ã2
ti ] ≤ cσ

4
1∆n,i + E[A2

tiϕ
2
∆β
n,i

(∆iX)] + E[B2p
ti

]
1
p c∆

1
q

n,i.

We evaluate the moments of Bti acting as in the proof of the first point and we choose p big
and q next to 1, getting

E[Ã2
ti ] ≤ cσ

4
1∆n,i + E[A2

tiϕ
2
∆β
n,i

(∆iX)] + cσ2
1∆1−ε̃

n,i , (68)

for ε̃ > 0 arbitrarily small. We are left to study A2
tiϕ

2
∆β
n,i

. From its definition, recalling that ϕ

is a bounded function, we obtain

E[A2
tiϕ

2
∆β
n,i

(∆iX)] ≤ c

∆2
n,i

E

[(∫ ti+1

ti

b(Xs)ds

)4
]

+
c

∆2
n,i

E

[
(Zti + Jti)

2

(∫ ti+1

ti

b(Xs)− b(Xti)ds

)2
]

+
c

∆2
n,i

E

[(∫ ti+1

ti

σ2(Xs)− σ2(Xti)ds

)2
]

+ 4E[b2(Xti)Z
2
ti ] =:

4∑
j=1

Ij .
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Using Jensen inequality, the polynomial growth of b and the existence of bounded moments of
X we get

I1 ≤
c

∆2
n,i

∆3
n,i

∫ ti+1

ti

E[b4(Xs)]ds ≤ c∆2
n,i. (69)

On I2 we use first of all Holder inequality. Then, on the first we use B.D.G. and Kunita inequal-
ities, as in (60) and (61), while on the second the finite increments theorem, the boundedness
of b′ and the first point of Lemma 7:

I2 ≤ c

∆2
n,i

E[(Zti + Jti)
4]

1
2E

[(∫ ti+1

ti

b(Xs)− b(Xti)ds

)4
] 1

2

≤ c

∆2
n,i

∆
1
2
n,i∆

3
2
n,iE

[∫ ti+1

ti

c|Xs −Xti |4ds
] 1

2

≤ c∆n,i. (70)

In order to study the behaviour of I3, Jensen inequality, the finite increment theorem, the
boundedness of the derivative of σ2 and the first point of Lemma 7 will be once again useful.

I3 ≤
c

∆2
n,i

∆n,iE
[∫ ti+1

ti

c|Xs −Xti |2ds
]
≤ c∆n,i. (71)

From Holder inequality, the polynomial growth of b, the boundedness of the moments of X and
BDG inequality we obtain

I4 ≤ cE[b(Xti)
4]

1
2E[Z4

ti ]
1
2 ≤ c∆n,i. (72)

Putting the pieces together it follows that, for any ε̃ > 0,

E[Ã2
ti ] ≤ c∆

1−ε̃
n,i .

We now evaluate E[Ã4
ti ]. Acting as above (68) it easily follows

E[Ã4
ti ] ≤ c∆

1−ε̃
n,i + E[A4

tiϕ∆β
n,i

(∆iX)].

Replacing the definition of Ati we get that E[A4
tiϕ

4
∆β
n,i

(∆iX)] is again the sum of 4 terms, that we

now denote as Ĩ1, . . . , Ĩ4. Using exactly the same arguments as in the study of E[A4
tiϕ

4
∆β
n,i

(∆iX)]

we easily get

Ĩ1 ≤
c

∆4
n,i

∆7
n,i

∫ ti+1

ti

E[b8(Xs)]ds ≤ c∆4
n,i,

Ĩ2 ≤ c

∆4
n,i

E[(Zti + Jti)
4]

1
2E

[(∫ ti+1

ti

b(Xs)− b(Xti)ds

)8
] 1

2

≤ c

∆4
n,i

(∆n,i + ∆
1
2
n,i)∆

7
2
n,iE

[∫ ti+1

ti

c|Xs −Xti |8ds
] 1

2

≤ c∆n,i,

Ĩ3 ≤
c

∆4
n,i

∆3
n,iE

[∫ ti+1

ti

c|Xs −Xti |4ds
]
≤ c∆n,i,

Ĩ4 ≤ E[b(Xti)
8]

1
2E[Z8

ti ]
1
2 ≤ c∆2

n,i.

The four equations here above provide the wanted result.
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Point 3
In order to show the estimations on the jumps gathered in the third point of Proposition 3
we repeatedly use Lemma 2. Using also Holder inequality with p big and q next to 1, BDG
inequality, the polynomial growth of b and the boundedness of the moments of X it is

E[|Eti |ϕ∆β
n,i

(∆iX)] ≤ cE[|b(Xti)||Jti |ϕ∆β
n,i

(∆iX)] +
c

∆n,i
E[|Zti ||Jti |ϕ∆β

n,i
(∆iX)]

+
c

∆n,i
E
[
|Jti |2ϕ∆β

n,i
(∆iX)

]
≤ cE[|b(Xti)|p]

1
pE[|Jti |qϕ

q

∆β
n,i

(∆iX)]
1
q +

c

∆n,i
E[|Zti |p]

1
pE[|Jti |qϕ

q

∆β
n,i

(∆iX)]
1
q

+
c

∆n,i
∆1+2β
n,i

thus, because, as β ∈ (0, 1
2), we can always find an ε > 0 such that 1

2 + β − ε > 2β, it comes

E[|Eti |ϕ∆β
n,i

(∆iX)] ≤≤ c∆
1
q

+β

n,i +
c

∆n,i
∆

1
2
n,i∆

1
q

+β

n,i + c∆2β
n,i = c∆1+β−ε

n,i + c∆
1
2

+β−ε
n,i + c∆2β

n,i = c∆2β
n,i.

In analogous way we obtain

E[|Eti |2ϕ∆β
n,i

(∆iX)] ≤ cE[|b(Xti)|2p]
1
pE[|Jti |2qϕ

q

∆β
n,i

(∆iX)]
1
q +

c

∆2
n,i

E[|Zti |2p]
1
pE[|Jti |2qϕ

q

∆β
n,i

(∆iX)]
1
q

+
c

∆2
n,i

E[|Jti |4ϕ∆β
n,i

(∆iX)]

≤ c∆
1
q

+2β

n,i +
c

∆2
n,i

∆n,i∆
1
q

+2β

n,i +
c

∆2
n,i

∆1+4β
n,i

= c∆1+2β−ε
n,i + c∆2β−ε

n,i + c∆4β−1
n,i = c∆4β−1

n,i ,

where the last inequality is, again, consequence of the fact that we can always find ε > 0 for
which 2β − ε > 4β − 1. Finally, acting as before,

E[|Eti |4ϕ∆β
n,i

(∆iX)] ≤ c∆1+4β−ε
n,i +

c

∆4
n,i

∆2
n,i∆

1+4β−ε
n,i +

c

∆4
n,i

∆1+8β
n,i = c∆8β−3

n,i .

A.5 Proof of Proposition 4

Proof. Point 1

Regarding the first point, we first of all introduce b̃(Xs) := b(Xs) + a(Xs−)
∑M

j=1 λ
(j)
s ds. We

observe that, as b has polynomial growth, a is bounded and both λ andX have bounded moments
of any order, then b̃ has bounded moments of any order as well. Recalling that Ati is given as
in (18) we can denote

Ati =:

7∑
j=1

Īj .

Replacing b̃ with b, we already know from (69), (70), (71) and (72) that

E[Ī2
1 + Ī2

2 + Ī2
3 + Ī2

6 ] ≤ c∆n,i. (73)

We now consider Ī4. From Assumption 1 we know the function a is Lipschitz and with bounded
derivative. Therefore, we use the finite increments theorem followed by the first point of Lemma
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7. It provides us, using also Jensen inequality and Holder inequality with q big and p next to 1,

E[Ī2
4 ] ≤ c

∆2
n,i

∆n,i

∫ ti+1

ti

E

(a2(Xs)− a2(Xti))
2

 M∑
j=1

λ(j)
s

2 ds
≤ c

∆n,i

∫ ti+1

ti

E[(a2(Xs)− a2(Xti))
2p]

1
pE

 M∑
j=1

λ(j)
s

2q
1
q

ds

≤ c

∆n,i

∫ ti+1

ti

∆
1
p

n,ids ≤ c∆
1−ε̃
n,i , (74)

where we have also used the boundedness of the moments of λ. On Ī5 we use that a(x) ≤ a1

and the second point of Lemma 7, getting

E[Ī2
5 ] ≤ c

∆2
n,i

∆n,i

∫ ti+1

ti

M∑
j=1

E[(λ(j)
s − λ

(j)
ti

)2]ds ≤ c∆n,i. (75)

To conclude the proof of the bound on E[A2
ti ] we are left to evaluate Ī7. We do that through

Holder and Kunita inequalities. It yields

E[Ī2
7 ] ≤ cE[b̄(Xti)

2J2
ti ] ≤ E[b̄(Xti)

2p]
1
pE[J2q

ti
]

1
q ≤ c∆1−ε̃

n,i , (76)

where in the last inequality we have chosen p big and q next to 1. From (73), (74), (75) and
(76) it follows

E[A2
ti ] ≤ c∆

1−ε̃
n,i .

Concerning the fourth moment of Ati , as before we know from Proposition 2 that

E[Ī4
1 + Ī4

2 + Ī4
3 + Ī4

6 ] ≤ c∆n,i. (77)

Acting as in (74) we get

E[Ī4
4 ] ≤ c

∆4
n,i

∆3
n,i

∫ ti+1

ti

E

(a2(Xs)− a2(Xti))
4

 M∑
j=1

λ(j)
s

4 ds (78)

≤ c

∆n,i

∫ ti+1

ti

E[(a2(Xs)− a2(Xti))
4p]

1
pE

 M∑
j=1

λ(j)
s

4q
1
q

ds ≤ c∆1−ε̃
n,i .

In the same way, acting as in (75) we obtain

E[Ī4
5 ] ≤ c

∆4
n,i

∆3
n,i

∫ ti+1

ti

M∑
j=1

E[(λ(j)
s − λ

(j)
ti

)4]ds ≤ c∆n,i. (79)

We conclude the proof of the point 2 by observing that

E[Ī4
7 ] ≤ cE[b̄(Xti)

4p]
1
pE[J4q

ti
]

1
q ≤ c∆1−ε̃

n,i , (80)

by the boundedness of the moments of b̃ and Kunita inequality.

Point 2
We observe that Bti is defined in the same way in Section 3 and Section 4. Therefore, the second

40



point has already been showed in point 2 of Proposition 2.

Point 3
By the definition of Eti it clearly follows Ei[Eti ] = 0. We now analyse

Ei[E2
ti ] ≤

c

∆2
n,i

Ei[Z2
tiJ

2
ti ] +

c

∆2
n,i

Ei[J4
ti +

∫ ti+1

ti

a2(Xs−)

M∑
j=1

λ(j)
s ds

2

]. (81)

We are going to show that the first term in the right hand side of the equation (81) is negligible
if compared to the second one. By a conditional version of Holder, BDG and Kunita inequalities
we get

c

∆2
n,i

Ei[Z2
tiJ

2
ti ] ≤

c

∆2
n,i

Ei[Z2p
ti

]
1
pEi[J2q

ti
]

1
q ≤ c

∆2
n,i

∆n,i∆
1
q

n,i ≤ c∆
−ε
n,i, (82)

for any ε > 0. To study the last term in the right hand side of (81) we recall it is Jti =∫ ti+1

ti
a(Xs−)

∑M
j=1 dÑ

(j)
s . Therefore, from conditional Kunita inequality, we have

c

∆2
n,i

Ei

J4
ti +

∫ ti+1

ti

a2(Xs−)

M∑
j=1

λ(j)
s ds

2 ≤ c

∆2
n,i

Ei

∫ ti+1

ti

a4(Xs−)

M∑
j=1

λ(j)
s ds

+2

∫ ti+1

ti

a2(Xs−)
M∑
j=1

λ(j)
s ds

2
≤ ca4

1

∆2
n,i

(1 + ∆n,i)

∫ ti+1

ti

Ei

 M∑
j=1

λ(j)
s

 ds,
where we have also used Jensen inequality on the last term here above, which is the reason

why we get an extra ∆n,i. From the fourth point of Lemma 7 it follows that the equation here

above is upper bounded by
ca4

1
∆n,i

∑M
j=1 λ

(j)
ti

, plus a negligible term. Replacing it and (82) in (81)

it follows

Ei[E2
ti ] ≤

ca4
1

∆n,i

M∑
j=1

λ
(j)
ti

+ c∆−εn,i ≤
ca4

1

∆n,i

M∑
j=1

λ
(j)
ti
,

where the last inequality is a consequence of the fact that λ is always strictly more than zero.
Regarding the fourth moment of Eti , from Kunita, Holder and Jensen inequality we have

E[E4
ti ] ≤

c

∆4
n,i

E[Z4p
ti

]
1
pE[J4q

ti
]

1
q +

c

∆4
n,i

Ei

J8
ti +

∫ ti+1

ti

a2(Xs−)

M∑
j=1

λ(j)
s ds

4
≤ c

∆4
n,i

(∆2
n,i∆

1−ε
n,i + ∆n,i + ∆3

n,i∆n,i) ≤
c

∆3
n,i

.

Point 4
The result follows directly from the definition of Cti and the boundedness of a and of the
moments of λ.
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A.6 Proof of Lemma 3

Proof. It is

Ctiψ̃l(Xti , λti) = a2(Xti)

M∑
j=1

(λ
(j)
ti
− E[λ

(j)
ti
|Xti ])ψ̃l(Xti , λti) =: f(Xti , λti).

Since

Var

(
1

n

n−1∑
i=0

f(Xti , λti)

)
≤ 1

n2

n−1∑
i=0

n−1∑
j=0

Cov(f(Xti , λti), f(Xtj , λtj )),

we need to estimate the covariance.
As explained in Section 2.3 we know that, under our assumptions, the process Z := (X,λ) is β-
mixing with exponential decay. It means that there exists γ > 0 such that

βX(t) ≤ βZ(t) ≤ Ce−γt.

If the process Y is β- mixing, then it is also α-mixing and so the following estimation holds (see
Theorem 3 in Section 1.2.2 of [19])

|Cov(Yti , Ytj )| ≤ c ‖Yti‖p
∥∥Ytj∥∥q α 1

r (Yti , Ytj )

with p, q and r such that 1
p + 1

q + 1
r = 1. Using that

α(Zti , Ztj ) ≤ βZ(|ti − tj |) ≤ Ce−γ|ti−tj |,

in our case the inequality here above becomes

|Cov(f(Xti , λti), f(Xtj , λtj ))| ≤ ce−
1
r
γ|ti−tj |,

where we have also used the definition of f and the boundedness of a and the existence of
moments of λ to include the two norms in the constant c.
We introduce a partition of (0, Tn] based on the sets Ak := (k Tnn , (k+ 1)Tnn ], for which (0, Tn] =
∪n−1
k=0Ak. Now each point ti in (0, Tn] can be seen as tk,h, where k identifies the particular set

Ak to which the point belongs while, defining Mk as |Ak|, h is a number in {1, . . . ,Mk} which
enumerates the points in each set. It follows

c

n2

n−1∑
i=0

n−1∑
j=0

e−
1
r
γ|ti−tj | ≤ c

n2

n−1∑
k1=0

n−1∑
k2=0

Mk1∑
h1=1

Mk2∑
h2=1

e−
1
r
γ|tk1,h1

−tk2,h2
|

≤ ce
1
r
Tn
n

n2

n−1∑
k1=0

n−1∑
k2=0

Mk1∑
h1=1

Mk2∑
h2=1

e−
1
r
γ|k1−k2|Tnn ,

where the last inequality is a consequence of the following estimation: for each k1, k2 ∈ {0, . . . , n− 1}
it is |tk1,h1 − tk2,h2 | ≥ |k1 − k2|Tnn −

Tn
n .

Now we observe that the exponent does not depend on h anymore, hence the last term here

above can be upper bounded by ce
1
r
Tn
n

n2

∑n−1
k1=0

∑n−1
k2=0Mk1Mk2e

− 1
r
γ|k1−k2|Tnn .

Moreover, remarking that the length of each interval Ak is Tn
n , it is easy to show that we can

always upper bound Mk with Tn
n

1
∆min

, with Tn =
∑n−1

i=0 ∆n,i ≤ n∆n and so Mk ≤ ∆n
∆min

, that
we have assumed bounded by a constant c1.

Furthermore, still using that Tn ≤ n∆n, we have e
1
r
Tn
n ≤ e

1
r

∆n ≤ c .
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To conclude, we have to evaluate c
n2

∑n−1
k1=0

∑n−1
k2=0 e

− 1
r
γ|k1−k2|Tnn . We define j := k1− k2 and

we apply a change of variable, getting

c

n2

n−1∑
k1=0

n−1∑
k2=0

e−
1
r
γ|k1−k2|Tnn ≤ c

n2

n−1∑
j=−(n−1)

e−
1
r
γ|j|Tn

n |n− j| ≤ c

n

n−1∑
j=−(n−1)

e−
1
r
γ|j|∆min

≤ c

n(1− e−
1
r
γ∆min)

≤ c

Tn
,

as we wanted.

A.7 Proof of Lemma 6

Proof. In order to estimate the probability of the complementary of the set ΩB, as defined in
(55), we first of all observe that, as t ∈ Bm,m′ whose dimension is D, it is

|t(Xtk)| ≤ ‖t‖∞ ≤ cD
1
2 .

Now we find an upper bound for the probability of Ωc
B focusing on what happens for j = 1 and

k = 0. It is

P(|U∗0,1| ≥ c̃nε) ≤ P

(
1

qn

qn∑
k=1

|B∗tk + C∗tk + E∗tk | ≥ c̃n
ε

)
≤

≤ P

(
1

qn

qn∑
k=1

|B∗tk | ≥
c̃

3
nε

)
+ P

(
1

qn

qn∑
k=1

|C∗tk | ≥
c̃

3
nε

)
+ P

(
1

qn

qn∑
k=1

|E∗tk | ≥
c̃

3
nε

)
. (83)

From the definition of B it is

1

qn

qn∑
k=1

|B∗tk | ≤
c

qn∆n

qn∑
k=1

Z2
tk

+ c. (84)

Moreover, using Markov inequality and the boundedness of σ,

P
(
|Ztk | ≥ cσ1∆

1
2
n log n

)
= P

(
e
|Ztk |
σ1
√

∆n ≥ nc
)
≤ 1

nc
E

[
e
|Ztk |
σ1
√

∆n

]

≤ 1

nc
E

[
e

c′

∆nσ
2
1

∫ tk+1
tk

σ2(Xs)ds

]
≤ c′

nc
. (85)

Therefore, as the constant c in (84) can be moved in the other side of the inequality in the first
probability of (83) and so it turns out not being influential, the first probability of (83) is upper
bounded by qn

nc , which is arbitrarily small. Concerning the second term of (83), we use Markov
inequality and the fact that C has bounded moments. We get, ∀r ≥ 1,

P

(
1

qn

qn∑
k=1

|C∗tk | ≥
c̃

3
nε

)
≤ qnP

(
|C∗tk | ≥

c̃

3
nε
)
≤ cqn

E[|C∗tk |
r]

nrε
≤ cqn
nrε

.

Regarding the third term of (83) we observe that, replacing the value of qn we get

P

(
1

qn

qn∑
k=1

|E∗tk | ≥
c̃

3
nε

)
= P

(
qn∑
k=1

|E∗tk | ≥
c̃

3
nε

log n

∆n

)
. (86)
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We now recall that, from the definition of Etk it is

qn∑
k=1

|E∗tk | ≤

∣∣∣∣∣ 2

∆n

qn∑
k=1

ZtkJtk

∣∣∣∣∣+

∣∣∣∣∣ 1

∆n

qn∑
k=1

J2
tk

∣∣∣∣∣+

∣∣∣∣∣∣ 1

∆n

∫ tqn

0
a(Xs−)

M∑
j=1

λ(j)(s)ds

∣∣∣∣∣∣
=: I1 + I2 + I3.

The right hand side of (86) is upper bounded by

P
(
I1 ≥

c̃

9
nε

log n

∆n

)
+ P

(
I2 ≥

c̃

9
nε

log n

∆n

)
+ P

(
I3 ≥

c̃

9
nε

log n

∆n

)
.

Concerning the first one, we observe it is

I1 ≤
1

∆n

qn∑
k=1

(Z2
tk

+ J2
tk

) = I1,1 + I1,2.

The probability that I1,1 is bigger than c̃
9n

ε logn
∆n

is arbitrarily small as a consequence of (85).
I1,2 is instead equal to I3 and so it is enough to study such a term. From Markov, Holder, BDG
and Kunita inequalities we have

P
(
I3 ≥

c̃

9
nε

log n

∆n

)
≤ E[(I3)r]

(nε log n∆−1
n )r

≤
c∆−rn trqn

(nε log n∆−1
n )r

≤ c

nεr
,

where we underline that the order of tqn is cqn∆n = c logn
∆min

∆n = c log n. It is arbitrarily small.

Concerning I2, we want to estimate P(
∑qn−1

k=0 J2
tk
≥ c

9n
ε log n). We now consider two different

possibilities, starting from the definition of the following set

A :=
{
∃k̃ ∈ {0, . . . , qn − 1} such that J2

tk̃
≥ n

ε
2

}
.

Then

P

(
qn−1∑
k=0

J2
tk
≥ c

9
nε log n

)
= P

(
qn−1∑
k=0

J2
tk
≥ c

9
nε log n,A

)
+ P

(
qn−1∑
k=0

J2
tk
≥ c

9
nε log n,Ac

)
.

We observe that Markov inequality and Kunita inequality yield

P

(
qn−1∑
k=0

J2
tk
≥ c

9
nε log n,A

)
≤ P(A) ≤ qn

E[(Jtk̃)2r]

n
εr
2

≤ ∆nqn

n
εr
2

=
c log n

n
εr
2

,

which is arbitrarily small by the arbitrariness of r. We remark that on Ac, for every k ∈
{0, . . . , qn − 1}, it is J2

tk
< n

ε
2 . Therefore, to have the sum of them bigger than c

9n
ε log n we

should have at least c
9 log nn

ε
2 jumps. Hence, denoting as ∆Nq the number of jumps in [0, tqn ],

we have

P

(
qn−1∑
k=0

J2
tk
≥ c

9
nε log n,Ac

)
≤ P

(
∆Nq >

c

9
n
ε
2 log n

)
≤ cE[(∆Nq)

r]

(n
ε
2 log n)r

≤ c tqn

(n
ε
2 log n)r

≤ c

(log n)r−1n
εr
2

,

where again we have used Markov inequality and we got a quantity arbitrarily small. We put
all the pieces together and we observe we can choose in particular r for which

P

(
1

qn

qn∑
k=1

|E∗tk | ≥
c̃

3
nε

)
≤ c

n4
.

In the same way it is possible to choose r and c̃ such that

P(Ωc
B) ≤ c

n4
.
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