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COMPLEX-ANALYTIC INTERMEDIATE HYPERBOLICITY, AND

FINITENESS PROPERTIES

ANTOINE ETESSE

Abstract. Motivated by the finiteness of the set of automorphisms Aut(X) of a projective man-
ifold X, and by Kobayashi-Ochiai’s conjecture that a projective manifold dim(X)-analytically hy-
perbolic (also known as strongly measure hyperbolic) should be of general type, we investigate
the finiteness properties of Aut(X) for a complex manifold satisfying a (pseudo-) intermediate hy-
perbolicity property. We first show that a complex manifold X which is (dim(X)− 1)-analytically
hyperbolic has indeed finite automorphisms group. We then obtain a similar statement for a pseudo-
(dim(X) − 1)-analytically hyperbolic, strongly measure hyperbolic projective manifold X, under
an additional hypothesis on the size of the degeneracy set. Some of the properties used during the
proofs lead us to introduce a notion of intermediate Picard hyperbolicity, which we last discuss.

Acknowledgements. I would like to thank my supervisor Erwan Rousseau as well as Ariyan Ja-
vanpeykar for their useful remarks, advices, and corrections. Specifically, the notion of intermediate
Picard hyperbolicity emerged from various discussions we had together.

1. Introduction

It is a standard result that a hyperbolic (in any sense of the term) compact manifold X satisfies
the following strong finiteness result: for any compact manifold Y , the set of surjective holomorphic
maps Sur(Y,X) is finite. (See [Kob98][Chapter 6, Section 6]; the result is actually true for X,Y
complex spaces). In particular, the set of automorphisms Aut(X) is finite. In a different direction, a
compact complex hyperbolic manifold X satisfies the following remarkable extension property: for
any compact complex manifold Y , and any A ( Y closed complex subspace of Y , every holomorphic
map

f : Y \A→ X

extends holomorphically through A. (See [Kob98][Chapter 6, Section 3]; the result is actually valid
for X a complex space).

In [Eis70], Eisenmann introduced the so-called Kobayashi-Einsenmann pseudo-metrics, leading
to weaker forms of hyperbolicity, namely ℓ- analytic hyperbolicity, 1 ≤ ℓ ≤ dim(X), that we
sometimes refer to as “intermediate hyperbolicity“. The case ℓ = 1 leads to the usual notion of
hyperbolicity, and a special focus was first given to the weakest form (i.e. for ℓ = dim(X)), often
called (strong)-measure hyperbolicity (see Section 2.1 for definitions). Restricting ourselves to the
realm of projective manifolds, it was proved by Kobayashi and Ochiai that a projective manifold
X of general type is (strongly-)measure hyperbolic (see e.g. [Kob98][Chapter 7, Section 4]), and
they further conjectured that the converse should be true.

The finiteness property that we described above, valid for hyperbolic manifolds, turns out to be
satisfied by projective manifolds of general type as well (See [Kob98][Chapter 7, Section 6]); as for
the property of extension, the following weaker form is valid for projective manifolds of general
type:
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(*) if dim(Y ) ≥ dim(X), then any non-degenerate holomorphic map f : Y \ A→ X extends
meromorphically through A,

where f is said to be non-degenerate if its differential is of a maximal rank at some point (see
Section 2.4 where we recall the definition of a meromorphic map).

In light of the conjecture we mentioned above, it is natural to expect that such finiteness and
extension properties should be satisfied by measure hyperbolic projective manifold. As such kind
of properties are actually satisfied by hyperbolic manifold, not necessarily projective, we may even
be tempted to drop the projective hypothesis. In any case, this leads naturally to the following two
conjectures. (See also [GW85]).

Conjecture 1.1 (Finiteness property). Let X be a projective manifold dim(X)-analytically hyper-
bolic. Then Aut(X) is finite.

Conjecture 1.2 (Extension property). Let X be a projective dim(X)-analytically hyperbolic man-
ifold, let Y be a projective manifold of dimension dim(Y ) ≥ dim(X), and let H ⊂ Y be an hyper-
surface. Then any non-degenerate holomorphic map

f : Y \H → X

extends to a meromorphic map f : Y 99K X.

It is worth noting here that the usual notion of (pseudo-)hyperbolicity, defined for complex
spaces, has its analogues in the algebraic and arithmetic worlds, and that such finiteness properties
were investigated in these settings: see [BKV17] and [JK] for algebraic hyperbolicity, and [Java, JX]
for pseudo algebraic hyperbolicity and arithmetic hyperbolicity.

In this paper, we investigate the finiteness properties for intermediate (analytic) hyperbolicities,
and prove first the following theorem.

Theorem 1.3. Let X be a compact complex manifold which is (dim(X)−1)-analytically hyperbolic.
Then Aut(X) is finite.

Note that X is not supposed projective, and that unfortunately we were not able to obtain the
suspected optimal hypothesis, i.e. dim(X)-analytic hyperbolicity.

Following Lang’s terminology, each intermediate hyperbolicity has its pseudo-version, where a
closed degeneracy set is allowed for the Kobayashi-Eisenmann (pseudo-)metrics (see Section 2.1
for definitions). Depending on whether we want the degeneracy set to be analytically closed, or
simply topologically closed, we will write pseudoan or pseudotop. In view of Lang’s conjecture that
a projective manifold of general type should be pseudoan-hyperbolic, it is expected that, in the
realm of projective manifolds, the intermediate pseudoan-hyperbolicities should be equivalent. For
more details on Lang’s conjectures, and their analogues in the algebraic and arithmetic settings,
see e.g. [Javb].

We were then naturally lead to investigate the question of finiteness of Aut(X) under the weaker
assumptions of dim(X)-analytic hyperbolicity and pseudotop / pseudoan-(dim(X)− 1)-analytic hy-
perbolicity, and were able to prove the following

Theorem 1.4. Let X be projective manifold, dim(X)-analytically hyperbolic and (dim(X) − 1)-
analytically hyperbolic modulo a topologically closed subset ∆ = ∆X,ℓ of zero (2 dim(X)−3) Hauss-
dorf dimension. Then Aut(X) is finite.

Note that this time, the manifold is supposed to be projective, and that any Zariski closed
proper subset ∆ of codimension ≥ 2 satisfies the assumptions of the theorem. The hypothesis on
the degeneracy set may seem odd: this is a technical hypothesis necessary to apply a very general
extension theorem due to Siu [Siu75].
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In the case of pseudoan-(dim(X) − 1)-analytic hyperbolicity, i.e. when ∆ is algebraic, the ex-
tension property needed in the course of the proof is in fact exactly the extension property (*) we
saw above. Accordingly, and interestingly enough, the questions on finiteness are connected to the
ones on extension. Whereas this seemed to us to be a much harder task to relate intermediate
hyperbolicities to this extension property, in view of the recent papers [JK20] and [Den20], we real-
ized that there is a natural notion of intermediate Picard hyperbolicity that precisely encapsulates
these extension properties. In this framework, the scheme of proof of 1.4 allowed us to obtain the
following theorem (see Section 3 for the intermediate notions of ℓ-Picard hyperbolicity)

Theorem 1.5. Let X be a projective manifold, dim(X)-Picard hyperbolic, dim(X)-analytically
hyperbolic and pseudoan-(dim(X) − 1)-analytically hyperbolic. Then Aut(X) is finite.

The paper is organized as follows. In the first part, we recall the notions of pseudotop/an-
intermediate hyperbolicities, and prove some basic results regarding them. In the second part,
we start by proving the finiteness result of Aut(X) in the absolute case (Theorem 1.3), and then
move onto the proof in the pseudo case (Theorem 1.4). In the third and last part, we introduce
the notions of intermediate Picard hyperbolicities, give some of their basic properties, and prove
Theorem 1.5.

2. Automorphisms of ℓ-analytically hyperbolic manifolds

This section, motivated by Conjecture 1.1, is devoted to the proof of Theorem 1.3 and its pseudo-
version Theorem 1.4. We start by proving some basic properties on intermediate hyperbolicity, in
particular that ℓ-analytic hyperbolicity modulo ∆ implies (ℓ+ 1)-analytic hyperbolicity modulo ∆
(See also [GW85], where it is proved in the absolute case), and then move to the two proofs in
question. We end this section by some conditions ensuring intermediate hyperbolicity, and hence
the finiteness of Aut(X) in suitable cases.

2.1. Basics on ℓ-analytic hyperbolicity. Throughout this section, we let X be a compact com-
plex manifold of dimension p and 1 ≤ ℓ ≤ p be an integer. Following [Dem97] and [GW85],

define the Kobayashi-Eisenmann pseudo-metric eℓ on pure multi-vectors of
∧ℓ TX by setting for

ξ = v1 ∧ . . . ∧ vℓ ∈
∧ℓ TxX,x ∈ X:

eℓ(x, ξ) = {inf
1

R
| ∃ f : Bℓ → X holomorphic, f(0) = x, f∗

( ∂

∂z1
∧ . . . ∧

∂

∂zℓ

)

= Rξ}.

For ∆ ( X a closed subset of X (of empty interior), the compact complex manifold X is said
ℓ-analytically hyperbolic modulo ∆ if and only if there exists a continuous Finsler pseudo-metric

ω defined on pure multi-vectors of
∧ℓ TX, which is a metric on X \∆ and such that eℓ ≥ ω on X.

We will denote ∆X,ℓ the smallest closed subset satisfying such a property, commonly referred to as
the exceptional locus (with respect to the pseudo-metric eℓ).

Remark 2.1. Such a set is well defined since if X is ℓ-hyperbolic modulo ∆1 and ℓ-hyperbolic
modulo ∆2, then X is ℓ-hyperbolic modulo ∆1 ∩ ∆2: for i = 1, 2, take ωi a continuous Finsler

pseudo-metric on (pure multi-vectors of)
∧ℓ TX, which is a metric on X \ ∆i, and such that

eℓ ≥ ωi on X, and consider

ω =
ω1 + ω2

2
,

which is a continuous Finsler pseudo-metric on (pure multi-vectors of)
∧ℓ TX, a metric on X \

(∆1 ∩∆2), and satisfies eℓ ≥ ω on X.

We will say thatX pseudotop (resp. pseudoan) ℓ-analytically hyperbolic if ∆X,ℓ is of empty interior
(resp. if ∆X,ℓ is a proper analytically closed subset). Note that if ℓ = dimX and ∆ := ∅, such
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a manifold is called strongly measure hyperbolic in [Kob98] and more generally strongly ℓ-measure
hyperbolic in [GW85] for 1 ≤ ℓ ≤ dimX and ∆ := ∅.

A first basic observation is that, for f : C × Bℓ−1 → X a holomorphic map, the pseudo-metric
eℓ degenerates along the image of every non-degenerate point of f . Note that we say that f is
non-degenerate if there exists at least one point (and thus a non-empty Zariski open subset as
being degenerate for an holomorphic map is an analytically closed condition) at which f is non-
degenerate. If ℓ = 1, by Brody’s reparametrization lemma (see e.g. [Kob98][Lemma 3.6.2]), the
existence of a degeneracy locus for e1 implies the existence of a non-constant holomorphic map
f : C → X, commonly referred to as an entire curve in X. Let us make two comments on that.
First, the degeneracy locus of e1 need not be equal to the union of the closure of the image of
all entire curves. The reason for this lies in the way one constructs an entire curve via Brody’s
lemma: we have no control on the image of the entire curve, and in particular, we can not ensure
that there exists an entire curve passing arbitrarly close to a point where e1 degenerates. Second,
we see that it implies that a compact complex manifold X is 1-analytically hyperbolic if and only
if X contains no entire curves (X is commonly called Brody-hyperbolic). However, in the case
where we allow a degeneracy set for e1, there is to our knowledge no clean relationship between the
geometry of entire curve and 1-analytic hyperbolicity modulo ∆. Even worse, in the case p > 1,
the non-existence of non-degenerate holomorphic maps f : C×Bℓ−1 → X does not imply, a priori,
that X is ℓ-analytically hyperbolic. Also, note that, in the case where p = 1, the notion of 1-
analytic hyperbolicity modulo ∆ is the same as the notion of hyperbolicity modulo ∆ (in the sense
of Kobayashi), where we recall that X is hyperbolic modulo ∆ if and only if the Kobayashi metric
dX satisfies

dX(p, q) = 0 ⇐⇒ p = q, or p, q ∈ ∆.

Indeed, one implication follows from a result of Royden ([Roy71]), stating the Kobayashi pseudo-
distance dX is obtained as the integration of the infinitesimal pseudo-metric e1, whereas the reverse
implication follows for instance from [Kob98][Cor. (3.5.41)].

2.2. From ℓ to ℓ + 1. Equip X with any smooth hermitian metric with its induced Riemaniann

metric on X. Moreover, for 1 ≤ ℓ ≤ p, equip the vector bundles
∧ℓ TX with smooth (Finsler)

metrics defined on pure multi-vectors that we denote Fℓ. Here, F1 is the hermitian metric.

Let U
ϕ
≃ Bp be any trivializing open set, and denote ( ∂

∂zi
)1≤i≤p the standard vector fields on Bp.

Let 1 ≤ ℓ ≤ p be an integer. For v1 ∧ . . . ∧ vℓ ∈
∧ℓ TxX and x ∈ U , denote

A(x; v1, . . . , vℓ)

the (ℓ × p)-matrix which represents
(

(ϕ)∗(v1), . . . , (ϕ)∗(vℓ)
)

in the basis ( ∂
∂z1

, . . . , ∂
∂zp

). We define

a smooth Finsler metric on pure multi-vectors of
∧ℓ TX|U by setting

hℓ,U (x; v1 ∧ . . . ∧ vℓ) := max{|det(M)| | M is a ℓ× ℓ extracted matrix of A(x; v1, . . . , vℓ)}.

Note that this metric is well-defined. Indeed, if v′1 ∧ . . . ∧ v
′
ℓ = v1 ∧ . . . ∧ vℓ, then there exists a

matrix Q in GLℓ(C) with det(Q) = 1 such that

QA(x; v′1, . . . , v
′
ℓ) = A(x; v1, . . . , vℓ).

Since both Fℓ and hℓ,U are continuous on U , for any compact subset K ⊂ U , there exist real

numbers 0 < c ≤ C such that, for all x ∈ K and all ξ ∈
∧ℓ TxX pure multi-vector, the inequalities

c ·
∣

∣ξ
∣

∣

hℓ,U (x)
≤

∣

∣ξ
∣

∣

Fℓ(x)
≤ C ·

∣

∣ξ
∣

∣

hℓ,U (x)

hold. Accordingly, when dealing with questions of convergence towards 0 or divergence to ∞ with
respect to the metric Fℓ of sequences of pure multi-vectors, we can always use the local metric hℓ,U .
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To prove Proposition 2.4 below, we will use the following basic lemma, which is merely a refor-
mulation of what ℓ-analytic hyperbolicity modulo ∆ means.

Lemma 2.2. Let ∆ ( X be a closed set and let 1 ≤ ℓ ≤ p. If X is not ℓ-analytically hyperbolic
modulo ∆, then there exists hn : Bℓ → X holomorphic maps such that

∣

∣(hn)∗(
∂

∂z1
∧ . . . ∧

∂

∂zℓ
)
∣

∣

Fℓ(xn)
→ ∞,

with xn = hn(0) → x /∈ ∆.
Reciprocally, if there exists hn : Bℓ → X holomorphic maps, and zn → 0 such that

∣

∣(hn)∗(
∂

∂z1
∧ . . . ∧

∂

∂zℓ
)
∣

∣

Fℓ(xn)
→ ∞,

with xn = hn(zn) → x /∈ ∆, then X is not ℓ-analytically hyperbolic modulo ∆.

Proof. Suppose first that X is not ℓ-analytically hyperbolic modulo ∆. Consider (Un)n∈N an ex-
haustion of relatively compact domains of X \ ∆, i.e. Un ⊂ Un+1 ⊂ X \ ∆ for all n ∈ N, and
⋃

n∈N Un = X \∆. Observe then that the following property is not satisfied

(2.1) ∀n ∈ N, ∃δn > 0 such that eℓ ≥ δnFℓ on Un.

Indeed, otherwise by constructing a nonnegative continuous function ϕ on X, which is equal to 0
on ∆, and satisfies 0 < ϕ ≤ δn on Un, we deduce that

ϕFℓ ≤ el

on X. As ϕFℓ is a continuous Finsler pseudo-metric on (pure multi-vectors of)
∧ℓ TX, which is

a metric on X \ ∆, this contradicts the fact is not ℓ-analytically hyperbolic modulo ∆. Now, as
(2.1) is not satisfied, we deduce in particular the existence of a sequence of points xn → x ∈ X \∆,

aswell as a sequence of pure multi-vectors ξn ∈
∧ℓ TxnX, |ξn|Fℓ(xn) = 1, such that eℓ(xn; ξn) → 0.

By definition of eℓ, this in turn gives a sequence of holomorphic maps hn : Bℓ → X, hn(0) = xn,
satisfying

(hn)∗(
∂

∂z1
∧ . . . ∧

∂

∂zℓ
) = Rnξn,

with Rn → ∞, so that the first implication is proved.
In the other direction, observe first that we can always suppose that zn = 0 for all n ∈ N: indeed,

for all n, pick τn ∈ Aut(Bℓ) such that τn(0) = zn, and consider instead h̃n = hn ◦ τn; the announced
fact then follows from the equality

∣

∣(h̃n)∗(
∂

∂z1
∧ . . . ∧

∂

∂zℓ
)
∣

∣

Fℓ(xn)
=

∣

∣ det(dτn)0
∣

∣ ·
∣

∣(hn)∗(
∂

∂z1
∧ . . . ∧

∂

∂zℓ
)
∣

∣

Fℓ(xn)
,

and the fact that
∣

∣det(dτn)0
∣

∣ remains bounded (as zn stays away of ∂Bℓ).
If X were ℓ-analytically hyperbolic modulo ∆, then by definition there would exist a continuous

Finsler metric ω on (pure multi-vectors of)
∧l TX, which is a metric on X \∆, such that

eℓ ≥ ω

on X. In particular, letting U be a relatively compact neighborhood of x in X \ ∆, there exists

δ > 0 such that for any x ∈ U and ξ = v1 ∧ . . . ∧ vℓ ∈
∧ℓ TxX, we have the inequality

(2.2) |ξ|eℓ(x) ≥ |ξ|ω(x) ≥ δ|ξ|Fℓ(x).

Now, the sequence

ξn =
(hn)∗(

∂
∂z1

∧ . . . ∧ ∂
∂zℓ

)
∣

∣(hn)∗(
∂
∂z1

∧ . . . ∧ ∂
∂zℓ

)
∣

∣

Fℓ(xn)

∈
ℓ
∧

TxnX
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satisfies |ξn|Fℓ(zn) = 1 by construction, and by the very definition of the metric eℓ, we have:

∣

∣ξn
∣

∣

eℓ(xn)
≤

1
∣

∣(hn)∗(
∂
∂z1

∧ . . . ∧ ∂
∂zℓ

)
∣

∣

Fℓ(xn)

−→ 0,

which contradicts the inequality (2.2), as for all n large enough, xn lies in U . Therefore X is not
ℓ-analytically hyperbolic modulo ∆. �

We will also use the following elementary lemma in linear algebra.

Lemma 2.3. Let A1, A2, . . . be a sequence of matrices in GLℓ(C) with |det(An)| −→
n→∞

∞. Then,

the sequence (An) has a subsequence (Aϕ(n)) such that the norm of some fixed minor of (Aϕ(n))
tends to infinity.

Proof. This follows immediately from the equality

|det(An)|
ℓ−1 = |det(Com(An))| → ∞,

where Com(An) is the co-matrix of An, i.e., the matrix whose entries are the minors of An. �

We now come to the following proposition (see also [GW85], Proposition 2.17)

Proposition 2.4. If X is ℓ-analytically hyperbolic modulo ∆, then X is (ℓ+1)-analytically hyper-
bolic modulo at least ∆.

Proof. Assume that X is not (ℓ + 1)-analytically hyperbolic modulo ∆. We show that it is not
ℓ-analytically hyperbolic modulo ∆. By our assumption and the Lemma 2.2, we can find a sequence
of points xn ∈ X, with xn → x ∈ X \ ∆, a sequence of holomorphic maps fn : Bℓ+1 → X with

fn(0) = xn, and a sequence of pure multi-vectors ξn ∈
∧ℓ+1 TxnX with |ξn|Fℓ+1(xn) = 1 such that

(fn)∗(
∂

∂z1
∧ . . . ∧

∂

∂zℓ+1
) = Rnξn,

where Rn is a sequence of real numbers such that Rn → ∞.
Let U ≃ Bp be a trivializing open set around x, relatively compact in X\∆. We now use the local

Finsler metrics hi,U for 1 ≤ i ≤ p. For 1 ≤ j ≤ ℓ+ 1, define vj,n := (dfn)0(
∂
∂zj

); using the notations

introduced earlier, we deduce (up to passing to a subsequence) that the determinant of a fixed
extracted square matrix of maximal size, i.e. size (ℓ + 1), of A(xn; v1,n, . . . , vℓ+1,n) ∈ Mp,ℓ+1(C),
tends to infinity in norm. By Lemma 2.3, we deduce (up to passing to a subsequence) that the
determinant of a fixed square matrix of size ℓ of A(xn; v1,n, . . . , vℓ+1,n) also tends to infinity in norm;
we can always suppose (up to re-ordering the variables) that this matrix is obtained by keeping the
first ℓ columns fixed. Now, consider the sequence of maps

hn : Bℓ → X, (z1, . . . , zℓ) 7→ fn(z1, . . . , zℓ, 0).

Note that, by construction, this sequence satisfies

∣

∣(hn)∗(
∂

∂z1
∧ . . . ∧

∂

∂zℓ
)
∣

∣

hℓ,U (xn)
→ ∞.

In particular, it follows that

∣

∣(hn)∗(
∂

∂z1
∧ . . . ∧

∂

∂zℓ
)
∣

∣

Fℓ(xn)
→ ∞.

It now follows from Lemma 2.2 that X is not ℓ-analytically hyperbolic modulo ∆. This concludes
the proof. �
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2.3. Finiteness of automorphism groups. In this section we prove that, if X is a compact
complex manifold which is (dim(X) − 1)-analytically hyperbolic, then the automorphism group
Aut(X) of X is finite. As before, we start with a basic lemma in linear algebra.

Lemma 2.5. Let |.| be a norm on Cp, let ε > 0 be a real number, and let A ∈Mp(C) be such that

inf
|v|=1

|Av| ≥ ε.

Then, there exists a real number K > 0 independant of A such that

Kεp−1 ||A|| ≤ |det(A)|,

where the norm ||A|| is computed with respect to |.|.

Proof. Let us first consider the case of the usual hermitian norm on Cp. Note that, by our assump-
tion, the matrix A is invertible. Now, consider the polar decomposition

A = US

of A, where U is a unitary matrix and S is a positive definite hermitian matrix. As |det(A)| =
|det(S)|, and |Av| = |USv| = |Sv| for any v ∈ CN , it suffices to prove the lemma for S, i.e., we
may and do assume that A is a positive-definite hermitian matrix.

Let ε ≤ λ1 ≤ . . . ≤ λp be the (real) eigen values of A, where the first inequality comes from the
hypothesis inf

|v|=1
|Av| ≥ ε. Let (v1, . . . , vp) be an orthonormal basis of Cp such that A is diagonal

with respect to this basis, and let v ∈ Cp with |v| = 1. Then, we may write

v =

p
∑

k=1

αkvk,

where αk ∈ C and
p
∑

k=1

|αk|
2 = 1. Therefore, we have that

|Sv| =

√

√

√

√

p
∑

k=1

|αk|2λ
2
k ≤ λp ≤ λp

λp−1

ε
. . .

λ1
ε

=
1

εp−1
det(S).

This shows that the statement of the lemma holds when |.| is the usual hermitian norm on Cp with
K = 1.

To conclude the proof, let |.| be a norm on Cp. Then, there exist real numbers 0 < c ≤ C such
that

c.|.|eucl ≤ |.| ≤ C|.|eucl,

where |.|eucl is the usual hermitian norm. Then, by the above, it follows readily that the lemma
holds with K := ( cC )

p. �

To prove the desired finiteness of Aut(X) when X is (dimX−1)-analytically hyperbolic, we will
show that Aut(X) is discrete and compact. The discreteness is well-known, and we record it in the
following lemma.

Lemma 2.6. Let X be a compact complex manifold. If X is pseudotop-dimX-analytically hyper-
bolic, then Aut(X) is discrete.

Proof. As X is a compact complex variety (of dimension p), it is known that Aut(X) is a complex
Lie-group by a theorem of Bochner-Montgomery ([BM47]). Accordingly, it must be discrete since
otherwise, by considering a non-zero complex vector field on X, one can construct a non-degenerate
holomorphic map

F : C× Bp−1 → X.
7



But this contradicts the pseudo dim(X)-analytic hyperbolicity of X as the image of such a map
would have a non-empty interior and would be included in the degeneracy set of ep. �

We now prove the finiteness of Aut(X), assuming X is (dimX − 1)-analytically hyperbolic, by
showing that it is compact.

Proof of Theorem 1.3. To prove the theorem, by Lemma 2.6, it is enough to prove that Aut(X) is
compact. To show this compactness, let (fn)n∈N be a sequence in Aut(X). By classic arguments
involving Arzela-Ascoli theorem and convergence of holomorphic maps, in order to prove that
(fn)n∈N has an adherence value in Aut(X) (i.e. a converging subsequence) it suffices to prove that

lim inf
n∈N

max
x∈X

||(dfn)x|| <∞.

Arguing by contradiction, up to passing to a suitable subsequence, we can suppose that there
exists xn → x, with yn = fn(xn) → y, satisfying ||(dfn)xn || → ∞, where the norm is computed with
respect to F1.

Let U
ϕ
≃ Bp be a trivializing open set around x with ϕ(x) = 0, and let V

ψ
≃ Bp be a trivializing

open set around y with ψ(y) = 0. Replacing xn and yn by subsequences if necessary, we may
assume that, for every n, xn ∈ U and yn ∈ V . Define zn = ϕ(xn) and define gn := ψ ◦ fn ◦ ϕ−1;
note that this function gn is well-defined in a neighborhood of zn (but maybe not on the whole set
Bp).

From now on, we are going to use the metrics hℓ,U and hℓ,V defined via the trivializations ϕ
and ψ, as described in the beginning of this section. Let us show that there exist real numbers
0 < m ≤M such that, for every n ∈ N,

m ≤
∣

∣(fn ◦ ϕ
−1)∗

( ∂

∂z1
∧ . . . ∧

∂

∂zp

)
∣

∣

hp,V (yn)
≤M.

Indeed, the upper bound follows immediately from the Lemma 2.2. To prove the lower bound, let
An ∈ GLp(C) be the matrix representing the linear map (dgn)zn with respect to the canonical basis
of Cp, and observe that, by the definition of hp,V , the equality

∣

∣(fn ◦ ϕ
−1)∗

( ∂

∂z1
∧ . . . ∧

∂

∂zp

)∣

∣

hp,V (yn)
= |det(An)|

holds. Consider f−1
n and g−1

n = ϕ ◦ f−1
n ◦ ψ−1. Now, the matrix representing the linear map

(dg−1
n )gn(zn) with respect to the canonical basis of Cp is A−1

n , and similarly we have that

∣

∣(f−1
n ◦ ψ−1)∗

( ∂

∂z1
∧ . . . ∧

∂

∂zp

)
∣

∣

hp,U (xn)
= |det(A−1

n )| =
1

|det(An)|
.

Thus, by applying once again Lemma 2.2, we obtain the desired lower bound.
Now, we show that, up to extracting and re-ordering the variables, there exists vn = (α1

n, . . . , α
p
n) →

v = (α1, . . . , αp) ∈ Cp with |vn| = |αpn| = 1 such that
∣

∣Anvn
∣

∣ → 0,

where we consider the sup norm on Cp, i.e., |(v1, . . . , vℓ)| = max
1≤i≤ℓ

|vi|. Indeed, recall that ||(dfn)xn || →

∞, so that ||An|| → ∞. Arguing by contradiction, there must exist ε > 0 such that, for every v ∈ Cp

with |v| = 1 and every n ∈ N,

|Anv| ≥ ε.

In this case, by Lemma 2.5, there is a real number K > 0 such that |det(An)| ≥ Kεp−1||An||.
However, as the latter diverges to infinity, this implies that |det(An)| → ∞. This contradicts the
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(dimX)-analytic hyperbolicity by Lemma 2.2, as

∣

∣(fn ◦ ϕ
−1)∗

( ∂

∂z1
∧ . . . ∧

∂

∂zp

)
∣

∣

hp,V (yn)
= |det(An)|.

To conclude the proof, note that

∣

∣(fn ◦ ϕ
−1)∗(

∂

∂z1
∧ . . . ∧

∂

∂zp
)
∣

∣

hp,V (yn)
=

1

|αpn|

∣

∣(fn ◦ ϕ
−1)∗(

∂

∂z1
∧ . . . ∧

∂

∂zp−1
∧ vn)

∣

∣

hp,V (yn)

= |det(Bn)|,

where Bn is defined to be the matrix An except that its last column (equal to An
∂
∂zp

) has been

replaced by Anvn. Now, developing the determinant with respect to the last column, since Anvn → 0
and |det(An)| is bounded from below by m > 0, we deduce that at least one minor of the matrix
representing

(

An
∂
∂z1
, . . . , An

∂
∂zp−1

)

has its determinant tending to infinity in norm. This shows that

∣

∣(fn ◦ ϕ
−1)∗(

∂

∂z1
∧ . . . ∧

∂

∂zp−1
)
∣

∣

hp−1,V (yn)
→ ∞.

By Lemma 2.2, we conclude that X is not (p − 1)-analytically hyperbolic. This contradiction
concludes the proof. �

2.4. Pseudo version. This goal of this section is to obtain the same finiteness result as in the
previous part, but by allowing an exceptional locus ∆ = ∆X,ℓ for the (dim(X) − 1) analytic
hyperbolicity assumption, and adding accordingly the dim(X)-analytic hyperbolicity condition.
Some technical assumptions are to be added on the exceptional locus ∆, and we aim at proving
the following slightly more general theorem than Theorem 1.4.

Theorem 2.7. Let X be a compact Kähler manifold of dimension dim(X) = p, which is p-
analytically hyperbolic, and (p− 1)-analytically hyperbolic modulo ∆ = ∆X,ℓ. Suppose furthermore
that

• the (2p − 3)-Haussdorf measure of ∆ is zero,
• ∆ has a projective neighborhood in X (e.g. X, if X is supposed projective).

Then Aut(X) is finite.

For the notion of Haussdorf measure, we refer for instance to [Eis70]. Let us start with the
following elementary proposition:

Proposition 2.8. Let X,Y be compact complex manifolds of same dimension, with X ℓ-analytically
hyperbolic modulo ∆ = ∆X,ℓ. Suppose there exists a (non-degenerate) holomorphic map f : Y → X.
Then Y is ℓ-analytically hyperbolic modulo f−1(∆)∪Degen(f), where Degen(f) is the set of points
where the differential df is not an isomorphism.

Proof. By hypothesis, there exists ω a continuous pseudo-metric on (pure multi-vectors of)
∧ℓ TX,

which is a metric on X \∆ and such that eℓ,X ≥ ω on X. It is straightforward to check that, as f
is holomorphic, almost by definition,

f∗eℓ,X ≤ eℓ,Y .

Consider then ω′ := f∗ω, which is a continuous pseudo-metric on (pure multi-vectors of)
∧ℓ TX,

a metric on X \
(

Degen(f) ∪ f−1(∆)
)

, and satisfies

ω′ ≤ eℓ,Y

on X, so that Y is indeed ℓ-analytically hyperbolic modulo f−1(∆) ∪Degen(f). �

Applying this in particular to f and f−1 in Aut(X) yields the following corollary
9



Corollary 2.9. Let X be a compact complex variety which is ℓ-analytically hyperbolic modulo
∆ = ∆X,ℓ. Then any automorphism f ∈ Aut(X) induces an automorphism f ∈ Aut(X \∆), i.e.
f(∆) = ∆.

Proof. By the Lemma 2.8 applied to f , X is ℓ-analytically hyperbolic modulo f−1(∆), so that
necessarily ∆ ⊂ f−1(∆), as ∆ = ∆X,ℓ is the smallest closed set modulo which X is p-analytically
hyperbolic. Applying it to f−1 yields the reverse inclusion, and proves the corollary. �

Let us recall the notion of meromorphic map (in the sense of Remmert). A meromorphic map
f : X 99K Y between two complex manifolds X,Y is a correspondance satisfying the following
conditions:

• ∀ x ∈ X, f(x) is a non-empty compact complex subspace of Y ,
• the graph Gf = {(x, y) ∈ X × Y | y ∈ f(x)} is a connected complex subspace of X × Y ,
with dimGf = dimX,

• there exists a dense subset X∗ of X such that for all x ∈ X∗, f(x) is a single point.

Let π : X × Y → X be the first projection, E ⊂ Gf the set of points where π degenerates, i.e.

E := {(x, y) ∈ Gf | dim f(x) > 0},

and S = π(E), called the singular locus of f . All we need to know here is that S is a closed complex
subspace of X of codimension ≥ 2, and f : X \ S → Y is holomorphic (see e.g. [Rem57]).

Letting ∆ ( X be a closed subset (of empty interior), a key property that we will need is the
following:

(P∆) Every holomorphic map f : X \∆ → X extends to a meromorphic map f : X 99K X.

Now, an important result to prove Theorem 2.7 is the following lemma, whose idea can essentially
by found in a paper of Yau ([Yau75])

Lemma 2.10. Let X be a compact complex manifold which is dim(X)-analytically hyperbolic,
(dim(X) − 1)-analytically hyperbolic modulo ∆ = ∆X,ℓ, and satisfies the property P∆. Suppose

furthermore that ∆ has a projective neighborhood in X. Then from any sequence (fn)n ∈ Aut(X)N,
we can extract a subsequence that converges uniformly on any compact of X \∆ to an element of
Aut(X \∆), which extends to an element of Aut(X).

Proof. The reasoning of the proof of 1.3 works verbatim, and allows to show that (fn)n∈N admits
a converging subsequence to an element f of Hol(X \ ∆,X). Similarly, up to extraction, we can
suppose that (f−1

n )n∈N converges to g ∈ Hol(X \∆,X).
Observe that there exists m > 0 such that for all x ∈ X \∆, the following inequality is satisfied

|det(dfx)| ≥ m > 0,

where |.| is a fixed continuous metric on
∧pΩX (p = dim(X)). Indeed, it is enough to prove that

such an inequality is satisfied for fn for all n ∈ N and all x ∈ X. Arguing by contradiction, by
compacity of X, we can construct xnk

→ x, with ynk
= fnk

(xnk
) → y, such that

∣

∣ det
(

(dfnk
)xnk

)
∣

∣ →
0. But this implies that

∣

∣ det
(

(df−1
nk

)ynk

)∣

∣ → ∞,

which allows to contradict the dim(X)-analytic hyperbolicity via Lemma 2.2 in the same fashion
that it was done in the course of the proof of Theorem 1.3. Obviously, we can suppose that the
same inequality is satisfied for g.

By the property (P∆), f and g extends meromorphically to X. Let then If (resp. Ig) be the
singular locus of the meromorphic map f (resp. g), which is of codimension greater than 2, and
observe that (df)x (resp. (dg)x) is invertible for all x ∈ X \ If (resp. X \ Ig): indeed, this follows
from the continuity of df on X \ If combined with the density of X \∆ in X \ If and the previous
inequality we have just shown. Accordingly, f has a local inverse everywhere on X \If . But observe
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that g is inverse to f on the dense open set f(X \ ∆) ∩ (X \ ∆) so that g must actually extend
holomorphically to f(X \If ). Therefore, we deduce that f(X \If ) ⊂ X \Ig, and by doing the same
reasoning for g, we obtain aswell that g(X \ Ig) ⊂ X \ If . But as we necessarily have g ◦f = IdX\If
and f ◦ g = IdX\Ig , we actually deduce the following equalities

f(X \ If ) = X \ Ig and g(X \ Ig) = X \ If .

Recall that for S any set in X, the image of S by the meromorphic map f is defined as

π2(Gf ∩ (S ×X)),

where π2 is the projection onto the second factor. Since f(X) = X (Gf ⊂ X × X is closed and
so is its image by π2 as it is a proper map; the equality follows as this projection contains a dense
open set of X), by writing

X = f(X) = f(X \ If ) ∪ f(If ) = (X \ Ig) ∪ f(If ),

we deduce that Ig ⊂ f(If ), and similarly, we obtain that If ⊂ g(Ig).
The goal is to prove that If = Ig = ∅. Arguing by contradiction, we suppose that it is not empty.

Let then N be a projective neighborhood of ∆ (which exists by hypothesis), and H an irreducible
hypersurface of N such that N \H is Stein, and H ∩ If 6= If . Observe that f(N) is an open set,
and that f(H) is a subvariety of f(N). Furthermore, defining

A := Ig ∩
(

f(N) \ f(H)
)

,

we prove that A is not the empty set. Indeed, otherwise we have the inclusion Ig ⊂ f(H), so that,
using the above, we deduce that

If ⊂ g(Ig) ⊂ g(f(H)).

But g(f(H)) is a closed irreducible analytic set, which contains the irreducible open set H \ If , so
that necessarily g(f(H)) = H, and thus If ⊂ H, which was excluded by construction.

To conclude, observe that g maps the open set
(

f(N) \ f(H)
)

\A into the Stein manifold N \H,
with codim(A) ≥ 2, so that g extends to a holomorphic map through A 6= ∅ (see e.g.[AS60][Theorem
2, p.316]), which yields a contradiction to the very definition of Ig. Therefore, we deduce that Ig = ∅.
Similarly, we obtain that If = ∅. Accordingly, f and g are defined on X, and as

f ◦ g = IdX\Ig = IdX = IdX\If = g ◦ f,

we deduce that f is indeed in Aut(X). And by Proposition 2.8, we know that f induces aswell an
element in Aut(X \∆).

�

We are now in position to prove the announced theorem.

Proof of Theorem 2.7. We equip X with an hermitian metric, with which we define the topology
of uniform convergence on C0(X), and the topology of uniform convergence on any compact of
X \ ∆ on C0(X \ ∆). Note that these two topologies are metrizable. As the closed set ∆ is of
(2p − 3)-Haussdorf measure 0, it is in particular of empty interior. Furthermore, as X is compact
and Kähler, a theorem of Siu ([Siu75], Theorem 1) ensures that the property P∆ is indeed satisfied
for X.

Now, by Lemma 2.10, there is a continuous injective restriction map

r : Aut(X) → Aut(X \∆),

whose image G = r(Aut(X)) is compact. But it is also easily seen that G is a subgroup of
Aut(X \∆), therefore acting on X \∆. By a theorem of Bochner-Montgomery [BM46], G has a
structure of a compact real Lie group. But G is at most countable (because Aut(X) is, see Lemma
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2.6), so that it must be of dimension zero, and as it is compact, it must be finite. Accordingly, we
deduce that Aut(X) is finite, which finishes the proof. �

As closed analytic subset of codimension ≥ 2 in a compact complex variety X of dimension p
has zero (2p−3)-Haussdorf measure, and as projective varieties are Kähler, we immediately deduce
the following corollary

Corollary 2.11. Let X be a complex projective manifold of dimension dim(X) = p, which is p-
analytically hyperbolic, and (p−1)-analytically hyperbolic modulo ∆, where ∆ = ∆X,ℓ is an analytic
subset of X of codimension ≥ 2. Then Aut(X) is finite.

2.5. Conditions for intermediate (analytic) hyperbolicity.

2.5.1. Algebraic condition. Starting from the classic fact that a projective manifold X, with ΩX
ample, is hyperbolic (and hence has Aut(X) finite), Demailly proved in [Dem97] the following
generalization:

Theorem 2.12 (Demailly, [Dem97]). Let X be a projective manifold of dimension p. Let 1 ≤ ℓ ≤ p,
and suppose that

ℓ
∧

ΩX

is ample. Then X is ℓ-analytically hyperbolic.

In [Ete19], the author studied complete intersections in projective spaces satisfying such a posi-
tivity property, and proved that a general complete intersection X ⊂ PN of c ≥ N

ℓ+1 hypersurfaces of

large enough degrees (with an explicit very large bound) has its ℓth exterior power of its cotangent

bundle
∧ℓΩX ample.

2.5.2. Curvature condition. It is well known that negative curvature properties imply hyperbolic
properties, which therefore should imply finiteness results. For example, a compact complex mani-
fold endowed with a smooth hermitian metric of negative holomorphic sectional curvature is known
to be hyperbolic (see [Kob98], and therefore has finite automorphisms group. A natural question
is to extend this result to the setting of a singular metric. Regarding this question, a recent work
of Guenancia [Gue] generalizing results of Wu-Yau [WY16] provides the following corollary.

Theorem 2.13 (Guenancia [Gue]). Let X be complex projective manifold endowed with a smooth
closed semipositive (1, 1)-form ω such that there exists a Zariski open subset where ω defines a
Kähler metric which has uniformly negative holomorphic sectional curvature . Then X is of general
type (and therefore has finite automorphisms group).

It is natural to try to extend these kind of results to intermediate hyperbolicity. Graham and
Wu have introduced in [GW85] curvature conditions which imply ℓ-analytic hyperbolicity. Namely,
Theorem 4.5 in [GW85] show that strongly negative ℓ-th Ricci curvature (see loc. it. for a definition)
imply ℓ-analytic hyperbolicity.

An immediate corollary of this statement and Theorem 1.3 is the following.

Corollary 2.14. Let X be complex compact hermitian manifold with strongly negative ℓ-th Ricci
curvature for some 1 ≤ ℓ ≤ dimX. Then Aut(X) is finite.

Proof. If ℓ = dimX then X is of general type and we are done.
If ℓ < dimX then Theorem 4.5 of [GW85] implies that X is ℓ-analytically hyperbolic, which

implies that X is (dimX−1)-analytically hyperbolic by Proposition 2.4. Then Theorem 1.3 implies
that Aut(X) is finite. �
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Remark 2.15. As noted by Graham and Wu ([GW85] p. 638), it is unknown if the existence
of a Hermitian metric of strongly negative ℓ-th Ricci curvature implies the existence of one with
strongly negative (ℓ+ 1)-th Ricci curvature.

Remark 2.16. It would be interesting to generalize this statement to the setting of singular metric
such as in Theorem 2.13 above. It does not seem obvious how to use Theorem 1.4 in this context.
More precisely, the following question seems interesting to us. Suppose thatX is a complex compact
hermitian manifold with pseudo-strongly negative ℓ-th Ricci curvature for some 1 ≤ ℓ ≤ dimX.
Then is it true that Aut(X) is finite?

3. Intermediate Picard hyperbolicity

Motivated by the extension property (P∆) introduced during the proof of Theorem 1.4, we
generalize the notion of Picard hyperbolicity introduced in [JK20] and [Den20] to the context of
intermediate hyperbolicity.

Definition 3.1. Let X be a compact complex manifold and ∆ a proper closed subset of empty
interior. X is said ℓ-Picard hyperbolic modulo ∆ if for every p, q ∈ N, p+q = ℓ, every non-degenerate
holomorphic map f : Bp× (B∗)q → X whose image is not contained in ∆ extends meromorphically
to a map f : Bℓ 99K X.

Remark 3.2. Note that if X is ℓ-Picard hyperbolic, then so is any compact complex manifold X ′

bimeromorphic to X, as we are interested in meromorphic extensions.

IfX is moreover supposed to beKähler, then in order to obtain the pseudo ℓ-Picard hyperbolicity,
it is enough to check the conditions only for q = 1, i.e. for non-degenerate holomorphic maps
f : Bℓ−1 × B∗ → X whose image is not contained in the exceptional locus:

Lemma 3.3. Let X is a compact Kähler manifold, and let 1 ≤ ℓ ≤ dim(X). Then X is ℓ-Picard
hyperbolic modulo ∆ if and only if any non-degenerate holomorphic map f : Bℓ−1 ×B∗ → X whose
image is not included in ∆ extends meromorphically to Bℓ.

Proof. This is an application of the extension theorem of Siu [Siu75][Theorem1], which implies in
particular that any meromorphic map (without any further condition) from Bℓ \ E to X extends
meromorphically as soon as E is a closed subset of codimension ≥ 2. Indeed, let q ≥ 1, and
let f : Bp × (B∗)q → X, p + q = ℓ, be a non-degenerate holomorphic map whose image is not
included in ∆. Extending f meromorphically is a local question, and observe that around a point
z0 ∈ Bp× (B∗)q−j×{0}j , 0 ≤ j ≤ q, up to a renormalization, f can be interpreted as a holomorphic
map from Bℓ−j × (B∗)j to X. If j = 1, we can extend f meromorphically by hypothesis. If j > 1,
an obvious induction shows that we can extend meromorphically f to Bℓ−j × Bj \ (0, . . . , 0). Now,
as j > 1, we can apply Siu’s extension theorem, so that f actually extends meromorphically to Bℓ,
and we are done. �

One also sees from [Siu75] that if X is 1-Picard hyperbolic then X is ℓ-Picard hyperbolic for
all 1 ≤ ℓ ≤ dimX (see [Den20][Prop. 3.4]). In fact, one has the more general property that if
X is pseudo-ℓ-Picard hyperbolic then X is pseudo-(ℓ+ 1)-Picard hyperbolic as shown in the next
proposition.

Proposition 3.4. Let X be a compact Kähler manifold. If X is ℓ-Picard hyperbolic modulo ∆ then
X is ℓ+ 1-Picard hyperbolic modulo ∆.

Proof. By Lemma 3.3, in order to prove the (ℓ+1)-Picard hyperbolicity modulo ∆, it is enough to
show that any non-degenerate holomorphic map

f : Bℓ × B∗ → X
13



whose image is not included in ∆ extends to a meromorphic map. Since f is non-degenerate,
there exists a dense Zariski open set U on which the differential df is of maximal rank. Denoting
π : B× (Bℓ−1×B∗) → B the projection on the first factor, it is easily seen that for any z in the open
set π(U), the restriction map f(z, .) : Bℓ−1 × B∗ → X remains non-degenerate. Furthermore, one
can find O ⊂ π(U) open set such that f(z, .) is not included in ∆ for every z ∈ O. In particular,
since X is ℓ-Picard hyperbolic modulo ∆, this map extends to a meromorphic map, which à fortiori
implies that for any w in the open set p(π−1(O)), where p is the projection p : Bℓ × B∗ → Bℓ, the
map f(w, .) : B∗ → X extends to a meromorphic map.

Now, by invoking the extension result of Siu [Siu75][result (*), p.442], this actually implies that
the holomorphic map f : Bℓ × B∗ → X extends to a meromorphic map, which indeed shows that
X is (ℓ+ 1)-Picard hyperbolic modulo ∆. �

Examples of Picard hyperbolic varieties are provided by projective manifolds whose cotangent
bundles satisfy some positivity properties as shown by the following result of Noguchi [Nog77] which
generalizes the classical fact that varieties of general type are dimX-Picard hyperbolic.

Theorem 3.5 (Noguchi). Let X be a smooth projective variety over C and let ∆ ⊂ X be a proper
Zariski-closed subset. If

∧pΩ1
X is ample modulo ∆, then X is p-Picard hyperbolic modulo ∆.

It is natural to try to give positivity conditions which will still ensure some intermediate Picard
hyperbolicity. In this direction, one can state the following corollary of a recent result of [CP19].

Theorem 3.6 (Campana, Păun). Let X be a smooth projective variety over C such that some
tensor power of Ω1

X is big. Then X is of general type, in particular dimX-Picard hyperbolic.

Remark 3.7. A natural question is to provide negative curvature conditions (such as negative
holomorphic sectional curvature for ℓ = 1) which will guarantee Picard hyperbolicity. Graham and
Wu have introduced in [GW85] curvature conditions which imply ℓ-analytic hyperbolicity. It seems
unknown whether such conditions guarantee ℓ-Picard hyperbolicity. In the singular setting, it is
shown recently in [DLSZ] that a projective manifold equipped with a singular metric of negative
holomorphic sectional curvature (in the sense of currents) is 1-Picard hyperbolic modulo the singular
set of the metric.

We now justify why the notion of intermediate Picard hyperbolicity is suitable for dealing with
extension problems such as Conjecture 1.2. (See also [Den20][Proposition 3.4]).

Proposition 3.8. Let X be a projective manifold which is ℓ-Picard hyperbolic, 1 ≤ ℓ ≤ dimX.
Let Y be a projective manifold of dimension dim(Y ) ≥ ℓ, and let H ⊂ Y be a proper closed subset.
Then any non-degenerate holomorphic map

f : Y \H → X

extends meromorphically through H.

Proof. As we can always take an hypersurface containing the proper closed subset H, it is enough
to prove the result when H is an hypersurface. Having in mind Remark 3.2, one sees that, by using
a resolution of singularities (see e.g. [Laz04][Theorem 4.3.1]), it is enough to prove the result when
H is a simple normal crossing divisor. But in this situation, the local picture around a point h ∈ H
is clear: there exists a neighborhood Uh ⊂ Y of h such that

Uh \ (H ∩ Uh) ≃ Bp × (B∗)q

for some p, q such that p+q = dim(Y ) ≥ ℓ. Since X is ℓ-Picard hyperbolic, we know by Proposition
3.4 that it is also dim(Y ) ≥ ℓ-Picard hyperbolic, so that any non-degenerate holomorphic map

Uh \ (H ∩ Uh) → X
14



extends meromorphically through H ∩ Uh. As this is true for any h ∈ H, this shows in particular
the announced result. �

We now end this section by proving the announced Theorem 1.5.

Proof of Theorem 1.5. In view of the scheme of proof of Theorem 1.4, it is enough to check that
under the assumption of dim(X)-Picard hyperbolicity, Conjecture 1.2 is satisfied. But this is in
particular the content of Proposition 3.8, so that the result follows. �

From all of this, it is obviously tempting to make the following conjecture:

Conjecture 3.9. A projective manifold X is ℓ-Picard hyperbolic if and only if it is ℓ-analytically
hyperbolic.

However, none of the direction seems easy at first. A first step that seems feasible would be to
prove that (ℓ− 1)-analytic hyperbolicity implies ℓ-Picard hyperbolicity.
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