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SUMMARY

Injection methods are a very efficient means to compute synthetic seismograms of short period

teleseismic body waves in 3D regional models. The principle is to inject an incident teleseis-

mic wavefield inside a regional 3D cartesian spectral-element grid. We have developed an

open source package which allows us to inject either an incident plane wave, computed with

a frequency-wavenumber method, or the complete wavefield computed in a spherically sym-

metric reference Earth model with AxiSEM. The computations inside the regional spectral-

element grid are performed with SPECFEM3D Cartesian. We compare the efficiency and re-

liability of the two injection methods for teleseismic P waves, considering a wide range of

epicentral distance and hypocentral depths. Our simulations demonstrate that in practice the

effects of wavefront and Earth curvature are negligible for moderate size regional domains

(several hundreds of kilometers) and for periods larger than 2 s. The main differences ob-

served in synthetic seismograms are related to secondary phases that have a different slowness

from the one of the reference P phase.
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1 INTRODUCTION

The computation of accurate synthetic seismograms in 3D Earth models is a major challenge

of modern seismology, with important prospects for both source and structural studies. While

numerical methods have been developed to simulate the propagation of elastic waves in 3D Earth

models (Komatitsch & Tromp 2002), these methods still suffer from a high computational cost,

which limits their applications to relatively long periods, even with modern supercomputers (e.g

Komatitsch et al. 2003).

In order to reduce the computational cost of forward modelling, a prerequisite to full waveform

inversion, different groups have developed injection techniques to compute synthetic seismograms

in regional 3D models (Bielak & Christiano 1984; Chevrot et al. 2004; Roecker et al. 2010; Mon-

teiller et al. 2013; Tong et al. 2014a,b; Masson & Romanowicz 2017a,b; Beller et al. 2018a; Lin

et al. 2019). The key idea is that if the regional domain is far from the source region, which is typ-

ically the case for a teleseismic source, then the problem can be separated into two distinct parts: a

global propagation problem and a regional propagation problem. In this case, the time-consuming

3D computations are restricted to a small regional domain, and short period 3D wave fields can

be computed efficiently with reasonable computational resources. A natural choice for the com-

putations in the regional domain is the spectral-element method, which can handle any type of

complexity that may affect the propagation of seismic waves such as the topography of the free

surface and of internal discontinuities, isotropic and anisotropic heterogeneities, and attenuation.

Note that injection techniques differ from pure coupling techniques (e.g. Capdeville et al. 2003),

which provide the complete and exact solution within the computational domain.

The first hybrid method (Monteiller et al. 2013) relied on the Direct Solution Method (DSM)

(e.g Kawai et al. 2006) to compute the incident wavefield. This approach allowed us to build a full

waveform inversion (FWI) algorithm (Monteiller et al. 2015), which was applied for the very first

time on teleseismic P waves to image the deep architecture of the western Pyrenees (Wang et al.
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2016). While these early works were important for the maturation of FWI with teleseismic body

waves, DSM involves storing and manipulating a large number of spherical harmonics coefficients,

which can be tedious and introduce serious i/o bottleneck issues. The problem is particularly severe

for shallow sources, which require computations up to very large angular orders. This motivated

the development of a new injection technique relying on AxiSEM (Nissen-Meyer et al. 2007,

2014), which both simplifies and accelerates the algorithm (Beller et al. 2018a,b).

An even more radical choice to simplify the problem is to inject a single plane wave in the

regional spectral-element domain (Tong et al. 2014a,b). In that case, most of the complexities of

the incident wave field are neglected, in addition to the curvature of the wave front and of the

Earth’s surface. For the price of these simplifications, the computations can be made extremely

efficient even at frequencies up to 10 Hz, an objective that would be extremely challenging to

reach with AxiSEM. We thus decided to also develop a new, highly optimized, injection code that

couples FK and SPECFEM3D Cartesian in order to build a versatile package able to fulfill the

needs of various demanding tasks for the computations of synthetic seismograms in 3D regional

models. The main objective of the present study is to give a brief overview of the new injection

codes that have been developed and also to explore the limitations of the FK injection approach to

model and invert short period teleseismic body waveforms.

The paper is organized as follows. After outlining the basic principles of injection techniques,

we describe the different components of the RegHyM package, a complete toolbox that allows

seismologists to compute synthetic seismograms in a 3D regional model with SPECFEM3D Cartesian,

considering an incident wave field computed either with the AxiSEM or FK method. We detail the

different steps involved in the computation of the incident wave field with both methods, empha-

sizing their specificities, and the different optimizations that have been implemented to reach a

high computational efficiency. We then compare the two methods using a subduction model with

topography of the free surface and discuss the advantages and shortcomings of FK with respect to

AxiSEM.
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Figure 1. Injection methods consist in computing the wave field u inside a finite regional domain Ω pro-

duced by an incident wavefield ui on its boundaries Γ.

2 INJECTION OF THE INCIDENT WAVEFIELD IN THE REGIONAL SEM GRID

2.1 Theory

The spectral-element method solves the weak form of the momentum equation (Komatitsch &

Tromp 1999)∫
Ω

ρ w · ∂2
t u d3x =

∫
Γ

w · (σ · n̂) d2x−
∫

Ω

∇w : σ d3x, (1)

where Ω designates the volume of the finite Earth model and Γ its boundary with unit outward

normal n̂ (Figure 1). In this equation, ρ is the density distribution, u the displacement field, w

an arbitrary test vector, and σ the stress tensor. A wavefield ui can be injected inside a regional

domain by imposing its traction wavefield Ti on Γ and absorbing the outgoing wavefield us =

u − ui produced by scattering inside the internal domain (Chevrot et al. 2004; Monteiller et al.

2013).

Imposing Stacey absorbing conditions at the model boundary Γ (Clayton & Engquist 1977;

Komatitsch & Tromp 1999) leads to the following expression for the traction T on Γ

T = Ti + ρVp
[
n̂ · (∂tu− ∂tui)

]
n̂ + ρVs (I− n̂n̂) · (∂tu− ∂tui) , (2)

which needs to be injected in (1) to compute the displacement u inside Ω. From (2), we can see

that the injection problem thus only requires to know ui and Ti = σi ·n on the grid points located
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on Γ. These two fields can be computed with any external code. In the RegHyM package, we have

implemented the injection of external wave fields computed with AxiSEM (Nissen-Meyer et al.

2014) and the frequency-wavenumber (FK) method (e.g. Takeuchi & Saito 1972; Zhu & Rivera

2002).

2.2 Injection of an incident wave field computed with AxiSEM

In order to get accurate approximations of incoming teleseismic wavefields, the solver used to

generate the external wavefield must honor global scale seismic wave propagation as effectively as

possible. To this end, one could naturally consider 3D global seismic solvers such as SPECFEM3D GLOBE

and capture the full complexity of global seismic wavefields. While such a strategy can currently

be followed to compute global synthetic seismograms down to periods of about 5 s, it is currently

still too prohibitive for multiple global seismic waves simulations at lower periods.

Fortunately, the numerical complexity of global scale simulations can be reduced with rea-

sonable simplifying assumptions on the Earth model. Among the currently available global Earth

solver, AxiSEM (Nissen-Meyer et al. 2007, 2014) is probably the most attractive and efficient one.

The originality of AxiSEM is to consider axisymmetric spherical Earth models so that seismic

velocities and densities are invariant by rotation around Earth’s polar axis. After positioning the

seismic source at the pole (i.e. on the symmetry axis) by a solid rotation, a dimensionality reduc-

tion can be achieved by removing the azimuthal dependence of the seismic wavefield. Therefore,

a 3D full wavefield simulation is recast as a 2D wavefield simulation problem, enabling a one-fold

reduction in computational complexity.

To describe the radiation pattern of a moment tensor source, several 2D simulation need to be

performed and combined to reconstruct the complete 3D wavefield. The azimuthal dependence of

seismic wavefields produced by a moment tensor source can be expressed into a finite multipole

expansion with monopole (m = 0), dipole (m = 1) and quadrupole (m = 2) source terms. The
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wavefield associated to a given polar order m can then be expressed in cylindrical coordinates as

um(x) =


us(x̃) cosmΦ

uΦ(x̃) sinmΦ

uz(x̃) cosmΦ

 , (3)

where x = (s, Φ, z) are the coordinates along the radial, azimuthal and symmetry axes respectively

and x̃ = (s, z) the same coordinates restricted to the 2D AxiSEM computational domain.

The full response of a seismic moment tensor is finally expressed as the linear combination of

Green’s functions corresponding to four elementary sources (two monopoles, one dipole and one

quadrupole)

u(x, t) =
4∑

k=1

M̃k(Φ)G̃k(x̃, t; zs)S(t), (4)

where S(t) is the source time function, M̃k the radiation pattern of the elementary source term and

G̃k the 2D Green function corresponding to elementary source k (located on the symmetry axis at

depth zs). The four radiations patterns are themselves linear combinations of components of the

moment tensor solution:

M̃1(Φ) = Mrr

M̃2(Φ) = (Mθθ +MΦΦ)/2

M̃3(Φ) = Mrθ cos Φ +MrΦ sin Φ

M̃4(Φ) = (Mθθ −MΦΦ) cos 2Φ +MΦθ sin 2Φ ,

(5)

where, M̃1 and M̃2 are two monopole sources, M̃3 a dipole source and M̃4 a quadripolar source.

Once the four elemental wavefields have been computed and the seismic wavefield has been

reconstructed using equation (4), it is projected back into the spherical coordinate system. Finally,

by applying the inverse of the solid rotation used to put the source along the symmetry axis, we

obtain the wavefield expressed in the geographic reference frame.

AxiSEM computes the solution of the wave equation in the time domain. Since the far-field

displacement is proportional to the particle velocity at the source, the apparent source wavelet is

the time derivative of the particle displacement imposed at the source position in the AxiSEM

computations. For example, to get a far-field Gaussian wavelet, we need to impose the moment-
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release time function

S(t) = erf

[
α(t− t0)

τ0

]
(6)

so that

Ṁ(t) = Ṡ(t) =
2√
π

exp

[
−α

2(t− t0)2

τ 2
0

]
, (7)

where α = 3.5 so that τ0 corresponds to the visual width of the Gaussian.

2.3 Injection of an incident wave field computed with FK

A simpler approach is to approximate the incident wavefield by a plane wave and to compute

the response of the medium described by a stack of flat homogeneous layers with the frequency-

wavenumber (FK) method (e.g. Takeuchi & Saito 1972; Zhu & Rivera 2002). For a detailed de-

scription of the computation of velocities and tractions with the FK method we refer the reader to

Tong et al. (2014a) and Tong et al. (2014b).

Hereafter, we will only consider teleseismic P waves, but our FK injection code is also able to

handle SV or SH waves. The incident wavefield is described by the backazimuth and slowness of

the wave recorded at the center of the surface edge of the regional SEM grid. For an incident P

wave, the incidence angle of the incoming plane wave is obtained from

i = arcsin(p · Vp) (8)

where Vp is the compressional wave velocity at the base of the SEM grid, and p the ray parameter,

computed in the reference Earth model. For all the computations in this study the ak135 model

(Kennett et al. 1995) has been chosen. For consistency, this reference model is also imposed on

the boundary nodes of the SEM grid, with a taper zone that ensures a smooth and gradual transition

from the 3D regional model inside the SEM grid to the 1D global Earth model on its boundaries.

Since in FK the wavefields are computed in the frequency domain we also need to define the

source wavelet spectrum. For example, for a Gaussian wavelet, following the AxiSEM conven-

tions, the source wavelet spectrum is given by

S(ω) =

√
πτ0

α
exp

(
−ω

2τ 2
0

4α2

)
, (9)
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where τ0 is the dominant period of the wave and α = 3.5. Again, the constant α has been chosen

so that the visual width of the Gaussian in the time domain is close to τ0. We compute the solution

up to a frequency cut-off fmax = 2/τ0 beyond which the energy of the source spectrum drops to

values lower than 1 % of the maximum. This definition of fmax also holds for the first and second

derivatives of the Gaussian.

The other parameter that needs to be tuned is the length of the time window T . This parameter

controls the temporal aliasing of the FK solution (Mallick & Frazer 1987). Since the solutions

in the time domain are computed with an inverse fast Fourier transform, we obtain T -periodic

wavefields
+∞∑

n=−∞

u(t+ nT ) =
∆ω

2π

K∑
k=−K

U(k∆ω) exp (−ik∆ωt) , (10)

where ∆ω = 2π/T is the frequency sampling rate and K∆ω = 2πfmax. To prevent aliasing, we

thus need to choose a small frequency interval, or a time window that is sufficiently long to capture

all the arrivals with a significant amplitude. As a rule of thumb, a time window of 200 s is usually

sufficient for a typical teleseismic application.

3 COMPARISON OF THE AXISEM AND FK INJECTION METHODS

The FK method is particularly efficient for teleseismic applications because, in contrast to the

point source case (Zhu & Rivera 2002), the medium response only needs to be computed for

a single wavenumber or slowness, defined as the slowness of the reference ray that reaches the

center of the regional grid at the free surface. Another advantage of the FK method is that, in

contrast to AxiSEM, the amount of computations scales linearly with the maximum frequency,

and thus it is possible to reach rather high frequencies with modest computational resources. In

practice, teleseismic P wavefields recorded by dense local or regional arrays show some coherence

typically up to 2 Hz. While computing solutions up to these frequencies is technically feasible with

AxiSEM, this would require using both very fine mesh elements and very small time steps, making

these computations very time consuming.

However, the computational efficiency offered by the FK method comes at the price of in-
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Figure 2. The subduction model used in the numerical test. We show here the model of compressional

velocity Vp, expressed in m/s.

troducing some approximations in the medium response by neglecting the curvature of the wave

front and of the Earth, but also the complexity of the incoming wave field, for example the sec-

ondary phases that arrive in the time window considered. In the following, we will thus investigate

the limitations of the FK method for modelling teleseismic waveforms by performing numerical

experiments in a continental subduction model.

3.1 Description of the numerical test

We built and meshed the 2.5D continental subduction model shown in figure 2. The dimensions

of the mesh are respectively 320 km, 150 km, and 150 km, along the x, y, and z directions. The

crust is composed of an upper and a lower homogenous crustal layer, lying over an homogeneous

mantle. A low-velocity basin is located in the upper crust of the upper plate, on top of the conti-
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AxiSEM FK

Mesh size SEM (km) 3.0-3.9 4.1-5.0

Number of elements SEM 114,660 69,120

Degrees of freedom SEM 7,931,572 4,936,800

Minimum resolved period (s) 1.77 1.8

Time steps SEM (s) 0.0405 0.0450

Number of time steps SEM 16,000 16,000

Computation of incident wavefields for a monopole on 96 CPU (s) 5,580 65

Computation of incident wavefields for a complete moment tensor on 96 CPU (s) 30,480 65

SEM run time on 96 CPU (s) 300 180

Table 1. Table summarizing the parameters used in the numerical tests of the AxiSEM and FK coupling

methods.

nental subduction. This simple model is thus characterized by both shallow and deep strong lateral

variations of seismic velocities.

The regular cartesian mesh is generated with meshfem, SPECFEM’s internal mesher. We use

standard Lagrange polynomials of order 4 to describe the fields inside each element along the three

spatial dimensions. For the coupling with AxiSEM, the sizes of the elements range between 3.3

and 3.9 km. The number of elements is 114660, for a total of 7931572 degrees of freedom. With

this mesh, the minimum resolved period is 1.77 s for a time step of 0.0405 s. The computation

of the incident wavefield with AxiSEM for a dominant period of 2 s took one hour on 136 cores,

while the computation of tractions and velocities on the boundary nodes of the SEM grid took

480 s on 96 cores. Note that these numbers are for a monopole source (explosion). For a complete

moment tensor, the computation of the incident wavefield is 5.6 times more expensive, whereas

the computation of the tractions and velocities are 4 times more expensive. In table 1, we give the

numbers for both types of simulations but note that in all the simulations that are shown hereafter,

a monopole source (explosion) has been used. The SEM computation time for 16000 time steps

on 96 Intel CPU Skylake cores took 300 s. For the FK coupling, we use a slightly coarser mesh

of 69120 elements, with sizes ranging between 4.1 and 5.0 km. The minimum resolved period is

1.8 s and the time step 0.0450 s. In that case, the number of degrees of freedom is 4936800 and the
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computation time of each SEM run for 16000 time steps is about 180 s on 96 Intel CPU Skylake

cores. However, the computation of the velocities and tractions on the edges of the SEM grid now

only took 65 s with 96 cores.

We consider a teleseismic P wave reaching the regional grid from the south, which is recorded

by a line of sensors regularly spaced along the y direction (i.e. along the down dip direction), the

y axis pointing toward the north. We compute synthetic seismograms corresponding to explosion

(monopole) sources located at 30◦ and 90◦ epicentral distance, and at 10 and 600 km depth (Fig-

ures 3, 4, 5, and 6). These 4 source positions describe the variability of incident teleseismic P

wavefields. The shallow and deep sources allow us to explore the effects of source side complex-

ities, and of depth phases in particular, which may have a strong imprint on seismic waveforms

observed at teleseismic distances. For each case, we show the synthetic seismograms obtained with

FK (left) and AxiSEM (right). The FK solution is computed for the incidence angle corresponding

to the ray parameter of the incoming P wave computed in the ak135 reference Earth model (Ken-

nett et al. 1995), using (8). Note again that this incidence angle describes the wave reaching the

regional SEM grid from below and thus needs to be computed with the P wave velocity imposed

at the base of the model.

3.2 Results

The upper rows of figures 3-6 show the vertical component seismograms computed for frequen-

cies up to 0.5 Hz. Figures 3C-6C show the FK synthetic seismograms convolved by the average

AxiSEM wavelet, and figures 3D-6D the AxiSEM synthetic seismograms convolved by the aver-

age FK wavelet.

The motivation for convolving the synthetic seismograms by an average wavelet is to introduce

the last ingredient that is required to accurately model observed teleseismic waveforms. Indeed,

natural earthquakes have a complex source time functions (usually not known), which results

from the complex history of slip distribution on the fault plane. In addition, teleseismic waveforms

are also contaminated by source-side propagation effects (e.g. depth phases following the main P

arrival) which are mixed with the source time function to produce an apparent source time function
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Figure 3. Vertical component of synthetic seismograms computed with FK (A) and AxiSEM (B) for a

source located at an epicentral distance of 30◦ and 10 km depth. Same seismograms, but convolved with the

average AxiSEM wavelet (C) and with the average FK wavelet (D).

or wavelet when the waves are observed far from the source region. These source wavelets can be

simply estimated by aligning and stacking the vertical component P wave records of a regional

seismic array. This procedure provides results very similar to principal component analysis (e.g.

Rondenay 2009). Figure 7 shows the average FK and AxiSEM source wavelets corresponding to

the case of a source at an epicentral distance of 30◦ and 10 km depth.
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Figure 4. Same as figure 3 but for a source at 600 km depth.

3.2.1 Shallow source (hypocentral depth = 10 km)

The strongest differences between FK and AxiSEM synthetic seismograms are observed when

the source is shallow (Figures 3A, 3B, and Figures 5A, 5B). In that case, since the FK method

approximates the incoming wavefield with a single incident plane wave, the depth phases are not

modelled. This can be clearly observed on figure 7, where the FK wavelet exhibits a clean and

predominant direct P pulse, in contrast to the average AxiSEM wavelet. On the other hand, when

the FK synthetics are convolved by the average AxiSEM wavelet, the differences between FK and
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AxiSEM synthetics are strongly attenuated (Figures 3C, 3D, and Figures 5C, 5D). This is simply

explained by the presence of depth phases in the average AxiSEM wavelet. At a distance of 30◦,

the only notable difference is coming from the PP wave, which arrives ∼50 s after the P wave at

the center of the transect. Owing to triplications produced by the stratification of the upper mantle

and transition zone, several PP phases are actually observed in this distance range. This group of

phases have a slowness of about 13.6 s/◦, which is much larger than the slowness of the P wave,

around 8.8 s/◦. Consequently, since the moveouts of PP waves are different from those of the P

wave, their signature on the average AxiSEM wavelet (Figure 7, from 110 to 150 s) will only be

partially captured and the convolved FK synthetic seismograms will differ from those computed

with AxiSEM. At a distance of 90◦, there is no secondary phase arriving in the coda of the P wave

and the FK computations indeed provide an excellent approximation of the incoming teleseismic

wavefield.

3.2.2 Deep source (hypocentral depth = 600 km)

For a deep source, the depth phases arrive much later and are well separated from the first P

arrival. At 90◦ distance, the FK and AxiSEM synthetic seismograms are very similar. However, at

30◦ important differences are observed in the early P coda, up to 30 s after the first P arrival. These

differences originate from the presence of secondary phases that have interacted with transition

zone discontinuities, and which are not present in the FK computation. For example, the S660P

phase, the S-to-P conversion on the 660 km discontinuity, arrives 6.5 s after the P wave. This

phase has been used in the past to characterize the depression of the 660 km discontinuity beneath

subduction zones (e.g. Castle & Creager 1998). Another phase that is clearly observed in the

AxiSEM synthetic seismograms is p410P, a P wave that has experienced an underside reflection

on the 410 km discontinuity. These secondary phases have slownesses close to the one of the P

wave, and are well captured by the average wavelet estimate, which again explains why the two

sets of synthetic seismograms are extremely similar after convolution by the average P wavelets.
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Figure 5. Same as figure 3 but for a source at 90◦ and 10 km depth.

4 DISCUSSION

Our simulation results have shown that the computation of the incident wavefield with AxiSEM

represents by far the most time consuming step in injection methods. However, such computations

are now easily affordable, even at periods as low as 2-3 s.

The first and perhaps most obvious limitation of FK compared to AxiSEM is that it cannot

account for the curvature of the wavefront and of the Earth. However, for regional scale problems,

i.e. considering grid sizes limited to a few degrees, our simulations demonstrate that these effects
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Figure 6. Same as figure 3 but for a source at 90◦ and 600 km depth.

are actually rather small. The variation of travel time with distance from a reference station located

at epicentral distance ∆0 is given by the Taylor expansion

T (∆) = T (∆0) +
∂T

∂∆
(∆−∆0) +

1

2

∂2T

∂∆2
(∆−∆0)2 . (11)

The second right-hand term in (11) gives the travel time variation for a plane wave, which is di-

rectly related to its ray parameter p = ∂T
∂∆

. The third right-hand term quantifies the deviation from

the plane wave, which results from the curvature of the Earth and of the wavefront. Figure 8 rep-

resents this travel time deviation as a function of the size of the grid, assuming ∂2T
∂∆2 = 0.01 s/deg2,
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Figure 7. Average incident wavelet of synthetic seismograms computed with FK (Bottom) and AxiSEM

(Top) for a source located at an epicentral distance of 30◦ and 10 km depth.

a typical value for P waves at teleseismic epicentral distances (30-90 degrees). For example, con-

sidering a 4◦x4◦ grid size, the maximum travel time difference between FK and AxiSEM will be

around 0.02 s. For waveform inversion problems, which typically exploit the 5-20 s period range,

this time deviation is thus expected to have a negligible effect. Obviously, when moving to shorter

periods and larger regional domains, the intrinsic limitations of FK will become a more serious

issue.

As stated earlier, an important ingredient in the recipes of synthetic seismogram computation

and full waveform inversion is the source wavelet. This source wavelet is usually estimated from

the observed waveforms (Wang et al. 2016; Beller et al. 2018b). The principle is to deconvolve

the vertical component of synthetic seismograms computed with an impulsive source (for exam-

ple a Gaussian), which can be seen as Green’s functions, from the observed vertical component
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Figure 8. Travel time deviation from the plane wave assumption produced by wavefront and Earth curvature,

as a function of distance from the center of the regional mesh. To compute this curve we have assumed
∂2T
∂∆2 = 0.01 s/deg2, a representative value for teleseismic P waves.

waveforms. This gives us apparent source wavelets at each station which usually show some dif-

ferences owing to the strong crustal heterogeneity. Aligning and stacking these wavelets to extract

their coherent part provides a reasonable approximation of the source wavelet. Indeed, when this

source wavelet is convolved with the synthetic seismograms, the vertical component of teleseismic

P records is strongly correlated to the observed data. This wavelet estimation procedure absorbs

most of the source-side complexities that may affect the seismic waveforms. For example, depth

phases (pP and sP) have slownesses that are very close to the one of the direct P wave. There-

fore, the average source wavelet will contain the mixed contributions of both direct and depth

phases. By the same token, Christensen & Ruff (1985) have shown that for shallow events (depth

< 30 km), the change in Green’s functions caused by an incorrect hypocentral depth can always

be compensated by changes in the source time function, producing the same final seismograms.

The similarity between synthetic seismograms computed with FK convolved with the average

AxiSEM P wavelet and synthetic seismograms computed with AxiSEM convolved with the av-

erage FK P wavelet (Figures 3-6C,D) suggests that in most cases, a single incident plane wave
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provides a good approximation of the incident wavefield. The source-side complexities that are

present in the AxiSEM computation would simply be absorbed by the source wavelet estimation

if the Green’s functions were computed with FK. The only problem that may arise is when a sec-

ondary phase with a slowness different from the direct P wave is present in the analysed time

window. This is the case in figure 3, where the PP wave and related multiples arrive∼50-70 s after

the P wave. Another potentially disrupting phase is PcP in the 60-80◦ distance range. However, in

practice, this phase is often barely visible on real data owing to its small amplitude compared to

the direct P wave. Therefore, our numerical tests suggest that computing the incident P wavefield

with the frequency-wavenumber method should provide synthetic seismograms that are in most

cases accurate enough for full waveform inversion of teleseismic waveforms, provided that the

data set has been carefully selected. In practice, since data sets built for full waveform inversion

cover a broad range of source backazimuths and epicentral distances, the remaining biases that

could come from approximating the incident wavefields with planar waves should cancel out and

one can thus expect a limited impact on the inversion results. In any case, since AxiSEM compu-

tations, while more demanding, can now be performed routinely on moderate size clusters even

at periods as short as a few seconds, the AxiSEM injection method is thus probably currently the

best choice for teleseismic regional scale full waveform inversion. Therefore, we anticipate that

the most promising applications of the FK injection method will come from high frequency (f ≥

1 Hz) applications at the local scale, typically geotechnical or site effects studies, for which the

curvature of the wavefronts produced by distant sources can be safely neglected.

Note again that we have here only considered teleseismic P waves, as in our first full waveform

imaging studies (Monteiller et al. 2015; Wang et al. 2016; Beller et al. 2018a,b). However, our

hybrid methods can also be used to model teleseismic SH and SV waveforms and in principle it

should be straightforward to extend the full waveform inversion method to shear waves. A recent

study has demonstrated the importance of inverting simultaneously P and S waveforms for imaging

upper mantle seismic anisotropy (Beller & Chevrot 2020).
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5 CONCLUSIONS

We have developed and optimized a new toolkit for the computation of synthetic seismograms of

short period teleseismic body waves in regional 3D models by coupling the FK or AxiSEM meth-

ods with the spectral-element code SPECFEM3D Cartesian. Detailed comparisons of teleseismic

wave fields computed with these two methods have shown that for short-period P waves (T >

2 s) and for regional domains not larger than a few degrees, approximating the incident wave field

with a single planar wave usually provides reasonably accurate modeling results. Nevertheless,

since the extra cost of using AxiSEM is now easily affordable, we believe that AxiSEM currently

represents the best choice to compute synthetic seismograms with teleseismic hybrid numerical

methods, unless high frequencies (f ≥ 1 Hz) are considered.

6 DATA AND RESSOURCES

AxiSEM and FK coupling methods are part of SPECFEM3D Cartesian software, available at

https://gitlab.com/Seismic_Imaging/RegHyM.
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APPENDIX A: OPTIMIZATION OF THE INJECTION ALGORITHM

A1 Coupling optimization: cubic B-spline interpolation

The time step of the spectral-element simulation ∆t needs to verify the stability condition

∆t ≤ 0.3 min

(
h

Vp

)
, (A.1)

where h is the shortest distance between two neighboring mesh nodes and Vp the compressional

velocity. Usually, ∆t is much smaller than the dominant period of the wave and thus it would

be extremely inefficient to compute and store the velocities and tractions for the injection at the

SPECFEM3D Cartesian time step.

Cubic B-splines provide a basis function to represent continuous functions. Any continuous

function φ can be expanded in the B-spline basis as

φ(x) =
+∞∑

k=−∞

ckβ
3(x− k) (A.2)

where the ck are the spline coefficients (Unser et al. 1991; Unser 1999) and β3(x) is the normalized

B-spline of order 3 (Unser 1999):

β3(x) =


2
3
− ‖x‖2 + ‖x‖3

2
, 0 ≤ ‖x‖ < 1

(2−‖x‖)3
6

, 1 ≤ ‖x‖ < 2

0, 2 ≤ ‖x‖

(A.3)

Given a regularly sampled signal sk, the spline coefficients can be efficiently determined with two

recursive filters (Unser et al. 1993a,b)

c+
k = sk + αc+

k−1, (k = 2, ..., K) (A.4)

c+
K = − α

1− α2
(2c+

K − sK) (A.5)

c−k = α
(
c−k+1 − c

+
k

)
, (k = K − 1, ..., 1) , (A.6)

with α =
√

3 − 2. The seed value c1 is computed by imposing a mirror boundary condition at

the beginning of the sequence. This algorithm is extremely efficient because it only requires two

additions and two multiplications per sample point. Another advantage is that all the operations

are performed in-place, thus the algorithm is also memory-efficient, leading to minimum i/o. Once
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the spline coefficients are computed, it is then easy to resample the times series using (A.2) and

(A.3).

A2 FK Optimization

We have modified the original FK algorithm developed by Tong et al. (2014a) to improve its ef-

ficiency. We first performed standard low level optimizations such as extractions of if statements

from loops. Since FK works in the frequency domain, the incident tractions and velocities com-

puted with FK thus need to be transformed in the time domain. This requires a large number of

Fast Fourier Transforms (FFT), because this needs to be done for the three components of both

tractions and velocities on all the GLL nodes located on the external boundaries of the spectral el-

ement mesh. These FFT have been accelerated by calling the routines in the FFTW library (Frigo

& Johnson 2005). Finally we reorganized the FK algorithm itself, in order to exploit the symme-

tries of the problem and minimize the number of operations. Figure A1 represents the original FK

flowchart from Tong et al. (2014a). In this implementation, the propagator matrix was recomputed

for each GLL node and each frequency (cf. Appendix A in Tong et al. (2014a)). This implemen-

tation is not optimal since the propagation matrices are the same for all the nodes located in the

same layer. We thus reorganised the FK computations as summarized in Figure A2. We now com-

pute and store, for each frequency, the propagation matrices Ni corresponding to each layer i in

the 1D model. We then loop on each GLL boundary node and compare the depth of the current

point with the depth of the previous one. If the depth is different, we compute and store in the

memory the complete propagation matrices at each frequency and compute the frequency fields.

If the depth is the same, we load the propagation matrices and the frequency fields. This method

provides a good trade-off between computational efficiency and memory pressure as we are only

storing propagation matrices at each frequency for a given depth at a time, and that in general

points at a given depth are consecutive. Taken together, these optimizations allowed us to reduce

the FK computation time by a factor of 5.
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Figure A1. Original FK computation flowchart. A first loop is performed over the ipts nodes on the edges

of the mesh inside which a second loop is performed over the nf2 frequencies.
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Figure A2. Optimized FK computation flowchart
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Figure A3. Same as figure 3 but for a source at 90◦ and 10 km depth.

A3 Radial components
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Figure A4. Same as figure 3 but for a source at 90◦ and 600 km depth.
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Figure A5. Radial component of synthetic seismograms computed with FK (A) and AxiSEM (B) for a

source located at an epicentral distance of 30◦ and 10 km depth. Same seismograms, but convolved with the

average Axisem wavelet (C) and with the average FK wavelet (D).
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Figure A6. Same as figure 3 but for a source at 600 km depth.
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