Multi-energy optimization in Smart Grids: a Deep Reinforcement Learning approach

Dhekra Bousnina, Gilles Guerassimoff

Center for Applied Mathematics, MINES ParisTech, PSL Research University

SophIA Summit. November 19 th 2020

ADEME

Agence de l'Environnement er de la Maîtrise de l'Energie

The Meridia Smart Energy Smart territory

Figure: The Meridia Smart Energy eco-district

The Meridia Smart Energy Smart territory

Figure: The Meridia Smart Energy eco-district

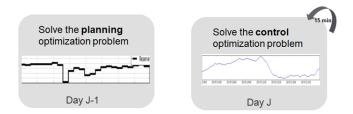
Figure: Energy systems of the MSE Smart Grid

• Maximize self-consumption and energy self-sufficiency

- Maximize self-consumption and energy self-sufficiency
- Reduce energy consumption, load peaks and energy bills

- Maximize self-consumption and energy self-sufficiency
- Reduce energy consumption, load peaks and energy bills
- Minimize GHG emissions of energy consumption and mobility

- Maximize self-consumption and energy self-sufficiency
- Reduce energy consumption, load peaks and energy bills
- Minimize GHG emissions of energy consumption and mobility
- Value flexibility potentials of the Smart Grid (ancillary services)


- Battery (charge)
- Heat storage (charge)
- Cooling storage (charge)
- Additional storage capacity brought by the EVs (via V2G)
- Heated water storage tanks
- Flexible devices (shiftable loads in buildings..)

Downward flexibility

- Battery (discharge)
- Heat storage
- Cooling storage
- Additional storage capacity brought by the EVs (via V2G)
- Public lighting
- Flexible devices (shiftable loads in buildings..)

Figure: Flexibility potentials in the MSE Multi-energy Smart Grid

Figure: Flexibility potentials in the MSE Multi-energy Smart Grid

• Smart Grids: a dual deterministic- stochastic structure: storage systems e.g react deterministically, whereas renewable energy generation and energy consumption are stochastic.

- Smart Grids: a dual deterministic- stochastic structure: storage systems e.g react deterministically, whereas renewable energy generation and energy consumption are stochastic.
- **The system**: is thus described partly via a deterministic simulator (a digital twin) and partly from real time series (for PV production, energy consumption..),

- Smart Grids: a dual deterministic- stochastic structure: storage systems e.g react deterministically, whereas renewable energy generation and energy consumption are stochastic.
- The system: is thus described partly via a deterministic simulator (a digital twin) and partly from real time series (for PV production, energy consumption..),
- The environment of the Smart Grid is modeled as an MDP (Markov Decision Process)
- Traditional methods to solve the MDP (DP, PSO, MPC, etc.): time consuming procedures, not suitable for online optimization

• Reinforcement Learning (RL) : Among all machine learning techniques, Reinforcement Learning models are the most suitable for cost minimization problems since they can learn optimal behaviour.

- Reinforcement Learning (RL) : Among all machine learning techniques, Reinforcement Learning models are the most suitable for cost minimization problems since they can learn optimal behaviour.
- However, most of these methods suffer from the curse of dimensionnality and fail to handle Smart Grids with high dimensional state and/or action spaces

- Reinforcement Learning (RL) : Among all machine learning techniques, Reinforcement Learning models are the most suitable for cost minimization problems since they can learn optimal behaviour.
- However, most of these methods suffer from the curse of dimensionnality and fail to handle Smart Grids with high dimensional state and/or action spaces
- Deep Reinforcement Learning (DRL) techniques: proposed a few years ago, have the capability to overcome this limitation by exploiting the end-to-end learning capability of the Deep Neural Networks (DNN)

- Reinforcement Learning (RL) : Among all machine learning techniques, Reinforcement Learning models are the most suitable for cost minimization problems since they can learn optimal behaviour.
- However, most of these methods suffer from the curse of dimensionnality and fail to handle Smart Grids with high dimensional state and/or action spaces
- Deep Reinforcement Learning (DRL) techniques: proposed a few years ago, have the capability to overcome this limitation by exploiting the end-to-end learning capability of the Deep Neural Networks (DNN)

This work

Proposes to specifically design a DRL approach based on the DPG algorithm for the optimal operation of the MSE multi-energy Smart Grid

This work

Proposes to specifically design a DRL approach based on the DPG algorithm for the optimal operation of the MSE multi-energy Smart Grid

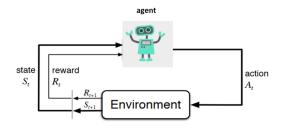
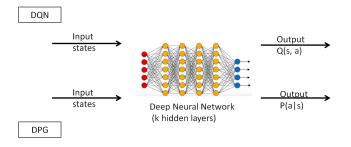



Figure: Reinforcement Learning framework

Deep Q Networks and Deep Policy Gradients

Figure: Two Deep Reinforcement Learning methods

Summary

- This work proposes to develop a strategy for the optimal operation of a multi-energy Smart Grid
- It uses a DRL approach
- Testing two methods: DQN and DPG
- Using a traditional method (MPC) as a benchmark

Thank you for your attention.

References I

- E. A. Feinberg and A. Shwartz. *Handbook of Markov decision processes: methods and applications*, volume 40. Springer Science & Business Media, 2012.
- V. François-Lavet. *Contributions to deep reinforcement learning and its applications in smartgrids*. PhD thesis, Université de Liège, Liège, Belgique, 2017.
- V. François-Lavet, D. Taralla, D. Ernst, and R. Fonteneau. Deep reinforcement learning solutions for energy microgrids management. In *European Workshop on Reinforcement Learning* (EWRL 2016), 2016.
- Y. Ji, J. Wang, J. Xu, X. Fang, and H. Zhang. Real-time energy management of a microgrid using deep reinforcement learning. *Energies*, 12(12):2291, 2019.
- F. Y. Melhem. Optimization methods and energy management in" smart grids". PhD thesis, 2018.

References II

- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
 G. Ostrovski, et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.
- E. Mocanu. Machine learning applied to smart grids. *Energy*, 2(3): 4, 2017.
- R. S. Sutton and A. G. Barto. *Reinforcement learning: An introduction.* MIT press, 2018.
- M. Wytock, N. Moehle, and S. Boyd. Dynamic energy management with scenario-based robust mpc. In 2017 American Control Conference (ACC), pages 2042–2047. IEEE, 2017.