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The Meridia Smart Energy Smart territory
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Optimization Objectives

Maximize self-consumption and energy self-sufficiency

Reduce energy consumption, load peaks and energy bills

Minimize GHG emissions of energy consumption and mobility

Value flexibility potentials of the Smart Grid (ancillary services)
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Optimization Objectives

Downward 
flexibility

Upward flexibility
• Battery (charge)
• Heat storage (charge)
• Cooling storage (charge)
• Additional storage capacity 

brought by the EVs (via V2G) 
• Heated water storage tanks
• Flexible devices (shiftable 

loads in buildings..)

-
+

• Battery (discharge)
• Heat storage 
• Cooling storage 
• Additional storage capacity 

brought by the EVs (via V2G) 
• Public lighting
• Flexible devices (shiftable 

loads in buildings..)

Downward flexibility

Figure: Flexibility potentials in the MSE Multi-energy Smart Grid
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Smart Grids optimal planning and control

Figure: Flexibility potentials in the MSE Multi-energy Smart Grid

Dhekra Bousnina, Gilles Guerassimoff Multi-energy optimization in Smart Grids: a DRL approach 4



Smart Grids optimal planning and control

Smart Grids: a dual deterministic- stochastic structure:
storage systems e.g react deterministically, whereas renewable
energy generation and energy consumption are stochastic.

The system: is thus described partly via a deterministic
simulator (a digital twin) and partly from real time series (for
PV production, energy consumption..),

The environment of the Smart Grid is modeled as an MDP
(Markov Decision Process)

Traditional methods to solve the MDP (DP, PSO, MPC, etc.):
time consuming procedures, not suitable for online
optimization
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Machine Learning techniques for optimal control

Reinforcement Learning (RL) : Among all machine learning
techniques, Reinforcement Learning models are the most
suitable for cost minimization problems since they can learn
optimal behaviour.

However, most of these methods suffer from the curse of
dimensionnality and fail to handle Smart Grids with high
dimensional state and/or action spaces

Deep Reinforcement Learning (DRL) techniques: proposed
a few years ago, have the capability to overcome this
limitation by exploiting the end-to-end learning capability of
the Deep Neural Networks (DNN)
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This work

Proposes to specifically design a DRL approach based on the DPG
algorithm for the optimal operation of the MSE multi-energy Smart
Grid

Figure: Reinforcement Learning framework
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Deep Q Networks and Deep Policy Gradients

Figure: Two Deep Reinforcement Learning methods
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Summary

This work proposes to develop a strategy for the optimal
operation of a multi-energy Smart Grid
It uses a DRL approach
Testing two methods: DQN and DPG
Using a traditional method (MPC) as a benchmark
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Thank you for your attention.
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