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FIRST BAND OF RUELLE RESONANCES FOR CONTACT ANOSOV

FLOWS IN DIMENSION 3

MIHAJLO CEKIĆ AND COLIN GUILLARMOU

Abstract. We show, using semiclassical measures and unstable derivatives, that a smooth
vector field X generating a contact Anosov flow on a 3-dimensional manifold M has only
finitely many Ruelle resonances in the vertical strips {s ∈ C | Re(s) ∈ [−νmin + ε,− 1

2
νmax− ε]∪

[− 1
2
νmin + ε, 0]} for all ε > 0, where 0 < νmin ≤ νmax are the minimal and maximal expansion

rates of the flow (the first strip only makes sense if νmin > νmax/2). We also show polynomial
bounds in s for the resolvent (−X − s)−1 as |Im(s)| → ∞ in Sobolev spaces, and obtain similar
results for cases with a potential. This is a short proof of a particular case of the results by
Faure-Tsujii in [FaTs0, FaTs2, FaTs3], using that dimEu = dimEs = 1.

1. Introduction

In this note, we study the localization of Ruelle resonances for contact Anosov flows in di-
mension 3 using semiclassical measures, and we show the existence of a first band of resonances
under a pinching condition on the maximal and minimal expansion rates of the flow. The
fact that a vector field X generating a contact Anosov flow has a band structure (see Figure
1) for its Ruelle resonance spectrum is proved in a series of seminal papers by Faure-Tsujii
[FaTs0, FaTs2, FaTs3] using FBI transform techniques and normal forms. In the 3-dimensional
case, we give a rather short proof of the existence of the first band using unstable derivatives
and semiclassical measures in the spirit of Dyatlov’s proof [Dy2] for operators with r-normally
hyperbolic trapped set. Thus the aim of this work is to use the 3-dimensional particularity and
semiclassical measures to present the mechanism behind this structure.

Let M be a 3-dimensional closed manifold, equipped with a Riemannian metric g and let X
be a smooth vector field on M such that its flow ϕt is Anosov (see Section 2.1 for a definition).
Denote by Eu ⊂ TM and Es ⊂ TM the unstable and stable bundles. We shall assume that
ϕt is a contact Anosov flow, which means that there is a smooth 1-form α on M such that
kerα = Eu ⊕ Es, α(X) = 1 and α ∧ dα is a volume form, and that Eu, Es are orientable1 (and
hence trivializable) bundles. Define the minimal and maximal expansion rate of ϕt to be2

νmin := lim
t→∞

inf
x∈M

1

t
log ‖dϕt(x)|Eu‖g, νmax := lim

t→∞
sup
x∈M

1

t
log ‖dϕt(x)|Eu‖g.

Now, we come to the notion of Ruelle resonances for X. It is proved by Butterley-Liverani [BuLi]
and Faure-Sjöstrand [FaSj] that for each N > 0, there is a Hilbert space HN , called anisotropic
Sobolev space of order N , satisfying3 HN (M) ⊂ HN ⊂ H−N (M) so that for Re(s) > −νminN

−X − s : {u ∈ HN | −Xu ∈ HN} → HN

is a Fredholm operator of index 0, implying that −X has discrete spectrum in the half-plane
{s ∈ C |Re(s) > −νminN}. Moreover, there is no spectrum in Re(s) > 0, the spectrum in
Re(s) > −νminN0 on HN does not depend on N ≥ N0 or the choice of the space HN and the
resolvent

R(s) := (−X − s)−1 : C∞(M)→ C−∞(M)

1For instance, this is satisfied for Anosov geodesic flows on orientable Riemannian surfaces.
2The limit exists by Fekete’s lemma, and the same holds as well for Vmax, Vmin defined later.
3HN (M) = (1 + ∆g)

−N/2L2(M) denotes the usual Sobolev space of order N on M.
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Figure 1. Left: resonance spectrum of a closed hyperbolic surface Σ [DFG]; colouring
describes the nature of the resonance. Right: band structure of a contact Anosov flow
on a 3-manifold given by Theorem 1. In dashed blue regions we have only finitely many
resonances, with semiclassical resolvent bounds written using O and o notation; gray
regions are not covered by the theorem.

is meromorphic in C. An s ∈ C is a pole of the resolvent if and only if it is an eigenvalue of −X
in HN for some N > −Re(s)/νmin, and such s are called Ruelle resonances, and u ∈ HN with
(X + s)u = 0 are called resonant states.

Since we want to prove absence of Ruelle resonances and bounds on the resolvent R(s) for
large Im(s), it is convenient to use a semiclassical rescaling, that is to take a small parameter
h > 0 so that hIm(s) is uniformly bounded. For such small parameter h > 0, we denote by HN

h

the HN (M) Sobolev space equipped with the norm ‖u‖HN
h

:= ‖(1 + h2∆g)
N/2u‖L2 .

We prove the following result:

Theorem 1. Assume that X is a smooth contact Anosov flow on a closed 3-manifold M with
Eu, Es orientable, and let νmin, νmax be the minimal and maximal expansion rates of the flow.
For any ε > 0, there are only finitely many Ruelle resonances in the regions (see Figure 1)

S0(ε) :=
{
s ∈ C | Re s > −νmin

2
+ ε
}

and S1(ε) :=
{
s ∈ C | Re s ∈ (−νmin + ε,−νmax

2
− ε)

}
,

and the following bounds hold, as |s| → ∞

‖(−X − s)−1‖
H

1
2 (M)→H−

1
2 (M)

= o(|s|), s ∈ S0(ε),

‖(−X − s)−1‖H1(M)→H−1(M) = O(|s|), s ∈ S1(ε).

More precisely, if h ∈ (0, h0) is a small parameter, for any N > 0 there exist Hilbert spaces HNh
satisfying uniform bounds

∃C > 0,∀u ∈ C∞(M), ∀h ∈ (0, h0), C−1‖u‖H−Nh ≤ ‖u‖HNh ≤ C‖u‖HN
h
,

such that the following bounds hold: for all ε > 0 and A > 1, and λ ∈ C satisfying |Im(λ)| ∈
[A−1, A], as h→ 0

‖(−hX − λ)−1‖HNh →HNh = o(h−2), h−1λ ∈ S0(ε), N ≥ 1

2
,

‖(−hX − λ)−1‖HNh →HNh = O(h−2), h−1λ ∈ S1(ε), N ≥ 1.

As mentioned above, this result is contained in the set of results of Faure-Tsujii [FaTs0,
FaTs2, FaTs3]. In fact, the second strip we obtain with finitely many resonances is not optimal
and should be Re(s) ∈ [−3νmin

2 + ε,−νmax
2 − ε] for all ε > 0 small. A band structure for Ruelle
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resonances was first obtained by Faure-Tsujii in [FaTs1, FaTs2, FaTs3] for prequantum maps and
Anosov flows using FBI transform methods and normal forms, including the case of a geometric
potential (multiples of the unstable Jacobian). In the case of constant curvature or locally
symmetric spaces, the bands are actually lines [FaTs0, DFG, GHW, KuWe] (see Figure 1). In a
related context, for operators with r-normally hyperbolic trapped set, Dyatlov [Dy1, Dy2] also
proved some band structure for resonances.

Our proof is adapted to the case of a 1-dimensional bundles Eu, Es, and should be quite acces-
sible for a reader with a semiclassical background (pseudo-differential calculus). The aim of this
note is to exhibit the mechanism behind the band structure in this simpler 3-dimensional case.
The existence of the first region {s ∈ C | Re(s) > −νmin/2+ε} with only finitely many Ruelle res-
onances for contact Anosov flows was first shown by Tsujii [Ts1, Ts2] using FBI transform, and
then by Nonnenmacher-Zworski [NoZw] using normal hyperbolicity of the trapped set; both re-
sults also hold in higher dimension where νmin is replaced by limt→∞ infx∈M

1
t log det(dϕt(x)|Eu).

Here, the method of proof is more similar to Dyatlov’s approach [Dy1, Dy2] for r-normally hy-
perbolic trapped sets, and uses semiclassical measures and propagation estimates. It was also
used in the setting of frame flows in constant curvature [GuKu]. We also mention that the exis-
tence of a (non-explicit) small strip without Ruelle resonances in the contact Anosov setting was
first proved by Dolgopyat [Do] and Liverani [Li], and that there are two recent breakthroughs
for 3-dimensional Anosov flows: first for volume preserving Anosov flows by Tsujii [Ts3], and
finally Tsujii-Zhang [TsZh] recently proved the existence of a strip with no Ruelle resonances
for all topologically mixing Anosov flows in dimension 3.

The main idea of our proof is based on an observation made in a paper of the second author and
Faure [FaGu], namely that the Ruelle resonant states u ∈ H1 with resonance in Re(s) > −νmin

satisfy U−u = 0 where U− is a vector field tangent to the unstable foliation (with regularity
C2−ε(M;TM)). The outline of our proof is as follows. First, the existence of a sequence of
Ruelle resonances sn (or of quasimodes) satisfying Re(sn) → −γ for some −γ > −νmin + ε
and Im(sn) → ∞ implies the existence of a non-zero semiclassical measure µ on T ∗M, which,
in microlocal terms, is the weak limit of a sequence of Ruelle resonant states (or quasimodes)
un ∈ H1. By microlocal ellipticity it is supported in {(x, ξ) ∈ T ∗M| ξ(X) = −1}, and using the
propagation of singularities estimate, one can see that for all t ∈ R

(Φt)∗µ = e−2γtµ, (1.1)

where Φt(x, ξ) = (ϕt(x), (dϕt(x)−1)T ξ) is the symplectic lift of the flow ϕt on T ∗M. Next, using
radial point propagation estimates related to the hyperbolicity of Φt, we can see that

supp(µ) ⊂ Γ+ := E∗u ⊕ E∗0 ,
where E∗0 := Rα and E∗u is the annihilator of RX⊕Eu ⊂ TM. The last step is to use a version of
the horocyclic invariance of the resonant states un proved in [FaGu], that is U−un = 0 (or small
in h). This invariance of un by U− can be understood as an extra invariance of the measure
µ, which implies (by propagation estimates again) some regularity of µ at the trapped set E∗0
of Φt. This is where the contact assumption is important, it appears as a transversality of the
symplectic lift of the horocyclic flow (i.e. the flow of U−) with the trapped set E∗0 = Rα. Namely
one shows that for all δ > 0 small and Uδ a δ-neighborhood of E∗0 ∩ {ξ(X) = −1} in T ∗M

µ(Uδ) ∈ (δ/C,Cδ)

for some uniform C > 0. Combining with (1.1) and using the hyperbolicity of Φt:

∀t ≥ 0, (Uδe−(νmax+ε)t ∩ Γ+) ⊂ Φ−t(Uδ ∩ Γ+) ⊂ (Uδe−(νmin−ε)t ∩ Γ+),

which implies by an elementary argument that −γ must be in [−(νmax + ε)/2,−(νmin − ε)/2].
One of the main issues in this argument is that U− is only a C2−ε(M;TM) vector field for all
ε > 0, which complicates the use of microlocal methods. To circumvent the problem, we regu-
larize U− at scale hρ = |Im(sn)|−ρ for some 0 < ρ < 1, to make it a smooth, h-dependent, vector
field Uh− in some exotic class of differential operators. The resonant states (or quasimodes) are
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not killed anymore by Uh− but they are good enough quasimodes to apply the reasoning above.
We have to show, in particular, that the propagation estimates still hold in this exotic class (see
Appendix A).

In fact, since it does not involve more difficulties, we prove the more general result involving
a smooth real potential V . We introduce the quantities

Vmax := lim
t→∞

sup
x∈M

1

t

∫ t

0
V (ϕs(x))ds, Vmin := lim

t→∞
inf
x∈M

1

t

∫ t

0
V (ϕs(x))ds. (1.2)

Theorem 2. LetM and X satisfy the same assumptions as in Theorem 1, and let V ∈ C∞(M)
be a real valued potential. For any ε > 0, there are only finitely many Ruelle resonances of
−X + V in the regions

S0(ε) :=
{
s ∈ C | Re s > −νmin

2
+ Vmax + ε

}
and

S1(ε) :=
{
s ∈ C | Re s ∈ (−νmin + Vmax + ε,−νmax

2
+ Vmin − ε)

}
,

and the following bounds hold, as |s| → ∞

‖(−X + V − s)−1‖
H

1
2 (M)→H−

1
2 (M)

= o(|s|), s ∈ S0(ε),

‖(−X + V − s)−1‖H1(M)→H−1(M) = O(|s|), s ∈ S1(ε).
(1.3)

More precisely, with the notation of Theorem 1, then for all ε > 0 and A > 1, and for all λ ∈ C
satisfying |Im(λ)| ∈ [A−1, A], we have as h→ 0

‖(−hX + hV − λ)−1‖HNh →HNh = o(h−2), h−1λ ∈ S0(ε), N ≥ 1

2
,

‖(−hX + hV − λ)−1‖HNh →HNh = O(h−2), h−1λ ∈ S1(ε), N ≥ 1.
(1.4)

Here again the existence of a band structure for Ruelle resonances in the case of a potential
is proved in [FaTs0, FaTs2, FaTs3].

Acknowledgements. This project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 725967). We thank Semyon Dyatlov for several useful discussions and for sug-
gesting to apply the method of [Dy2] in this setting.

2. Anosov flows, anisotropic spaces and Ruelle resonances

2.1. Dynamical background. Let M be a 3-dimensional closed manifold equipped with a
Riemannian metric g, which also induces a metric on T ∗M, the Sasaki metric. We will consider
a smooth vector field X on M and we assume that the flow ϕt of X is Anosov: there is a dϕt
invariant splitting

TM = E0 ⊕ Eu ⊕ Es
where E0 = RX is the flow direction, Es is the stable bundle defined by

v ∈ Es ⇐⇒ ∃C > 0, ν > 0, ∀t ≥ 0, ‖dϕt(v)‖ ≤ Ce−νt‖v‖
and Eu is the unstable bundle defined by

v ∈ Eu ⇐⇒ ∃C > 0, ν > 0, ∀t ≤ 0, ‖dϕt(v)‖ ≤ Ce−ν|t|‖v‖.
The bundles Eu and Es are 1-dimensional vector bundles, which have Hölder regularity. We
say that the flow is a contact Anosov flow if there is a smooth 1-form α such that α(X) = 1,
ker dα = Eu⊕Es and dα is non-degenerate on kerα, or equivalently α∧ dα is a smooth volume
form on M. If the flow of X is a contact Anosov flow, then the stable and unstable bundles
Es, Eu have regularity C2−ε(M) for all ε > 0 by the result of Hurder-Katok [HuKa]. For
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notational convenience we will denote Ck−(M) := ∩ε>0C
k−ε(M) for k ∈ N. We shall assume

that Es and Eu are orientable, which means that there are two non-vanishing vector fields
U± ∈ C2−(M;TM) such that

Es = RU+, Eu = RU−.
Note that the orientability condition for Eu, Es is satisfied for Anosov geodesic flows on orientable
surfaces. We can define a dual Anosov decomposition of T ∗M

T ∗M = E∗0 ⊕ E∗u ⊕ E∗s , with E∗u(Eu ⊕ RX) = 0, E∗s (Es ⊕ RX) = 0

and E∗0 = Rα is the annihilator of Eu ⊕ Es. We will also define

Γ+ := E∗u ⊕ E∗0 , Γ− = E∗s ⊕ E∗0 , K = Γ+ ∩ Γ− = E∗0 (2.1)

that we call the outgoing tail, the incoming tail and the trapped set for X, respectively.

Let us now recall a couple of properties about U± from [FaGu, Lemma 2.2]: we have the
following commutation formula

[X,U±] = ±r±U±, (2.2)

and r±, U± ∈ C2−. From (2.2), we conclude for all t ∈ R

dϕ−t(x)U−(x) = e−
∫ 0
−t ϕ

∗
sr−(x)dsU−(ϕ−t(x)),

dϕt(x)U+(x) = e−
∫ t
0 ϕ
∗
sr+(x)dsU+(ϕt(x)).

(2.3)

We note that both U− and r− are not uniquely defined but the large time average of r− along
orbits are intrinsic to X. By Fekete’s lemma, we may define the following finite, positive quan-
tities

νmin := lim
t→∞

inf
x∈M

1

t

∫ t

0
r−(ϕ−s(x))ds, νmax := lim

t→∞
sup
x∈M

1

t

∫ t

0
r−(ϕ−s(x))ds. (2.4)

Note that in the contact case, one also has

νmin = lim
t→∞

inf
x∈M

1

t

∫ t

0
r+(ϕs(x))ds, νmax = lim

t→∞
sup
x∈M

1

t

∫ t

0
r+(ϕs(x))ds. (2.5)

Then for each ε > 0, there exists Cε > 0 such that for all t ≥ 0 and x ∈M

C−1
ε e−(νmax+ε)t ≤ |dϕ±tU±(x)| ≤ Cεe−(νmin−ε)t.

2.2. Anisotropic space and extension of the resolvent of X. Let V ∈ C∞(M) be a
potential. We want to prove a spectral gap with resolvent estimates at high frequency for
−X + V . It is convenient to make the semiclassical rescaling

Ph := −ihX + ihV, Ph(λ) = Ph − iλ (2.6)

where h > 0 is a small parameter and λ ∈ C. The semiclassical principal symbol of Ph is given
by

p(x, ξ) = ξ(X). (2.7)

We will denote by Φt the Hamiltonian flow at time t of p: notice that

Φt(x, ξ) = (ϕt(x), (dϕt(x)−1)T ξ).

The Hamiltonian vector field of p will be denoted by Hp so that Φt = etHp . In [FaSj], Faure and
Sjöstrand construct a family of Hilbert spaces, called anisotropic Sobolev spaces, using variable
order pseudo-differential operators. Another presentation is given by Dyatlov-Zworski [DyZw],
where a semiclassical parameter is included. We recall a few results about these spaces and the
spectral properties of Ph acting on them, we refer to [FRS, FaSj, DyZw] for more details.

If m ∈ S0(T ∗M) is a symbol of degree 0 on T ∗M, i.e. satisfying the bounds in local coordi-
nates (for some constants Cα,β > 0)

|∂αx ∂
β
ξm(x, ξ)| ≤ Cα,β〈ξ〉−|β|,
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we denote by Ψm
h (M) the space of semiclassical pseudo-differential operators of order m as

defined in [FRS, Appendix] (see also [DyZw] for the h-dependent version): these are operators
which have the form in local coordinates

Au(x) = (2πh)−3

∫
e
i
h

(x−y)ξa(x, ξ)u(y)dydξ

where a ∈ Sm(T ∗M) is a symbol of order m, ie. it satisfies local bounds for each ε > 0 small

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β,ε〈ξ〉m(x,ξ)−(1−ε)|β|.

We also fix a semiclassical quantization Oph on M mapping symbols to operators acting on
L2 (see [Zw] and [DyZw, Appendix E]). The space Ψcomp

h (M) denotes the space of compactly

microsupported operators, defined as the space of operators of the form Oph(a) + h∞Ψ−∞h (M)
with a ∈ C∞c (T ∗M). We shall denote by σ : Ψm

h (M) → Sm(T ∗M)/hSm−1+ε(T ∗M) the
semiclassical principal symbol map, satisfying σ(Oph(a)) − a ∈ hSm−1+ε(T ∗M) for all ε > 0.

Finally, let Hs
h := (1 + h2∆g)

−s/2L2(M) be the semiclassical Sobolev space of order s (here ∆g

is the Riemannian Laplacian of g on M).

First, by [FaSj] there exists an escape function G ∈ C∞(T ∗M) of the form

G(x, ξ) = m(x, ξ) log f(x, ξ)

where m ∈ C∞(T ∗M; [−1, 1]) is homogeneous of degree 0 in the fiber variable ξ for |ξ| > 1,
f > 0 is homogeneous of degree 1 in the fiber variable for |ξ| > 1 and satisfies the following
properties: there is a Cm > 0 such that

m(x, ξ) = −1 in a conical neighborhood Vu of E∗u,
m(x, ξ) = 1 in a conical neighborhood Vs of E∗s ,
Hpm ≤ 0 on T ∗M,
HpG < −Cm outside a conical neighborhood V0 of E∗0 .

We can thus define the anisotropic Sobolev space of order N ∈ R to be, for h small enough

HNGh := Oph(eNG)−1L2(M).

Here Oph(eNG) belongs to the class of semiclassical pseudodifferential operators ΨNm
h (M) of

variable order m, and it is invertible in the class of semiclassical pseudodifferential opera-
tors with inverse Oph(eNG)−1 ∈ Ψ−Nmh (M) if h > 0 is small enough. We notice that, since

Oph(〈ξ〉−N )Oph(eNG) ∈ Ψ0
h(M), there is C > 0 such that for all u ∈ C∞(M) and h > 0

1

C
‖u‖H−Nh ≤ ‖u‖HNGh ≤ C‖u‖HN

h
. (2.8)

The following result was proved in [FaSj] (see also [DyZw])

Proposition 2.1. There is4 cX > 0, cV ∈ R such that the operator Ph(hλ) : D(Ph) ⊂ HNGh →
HNGh is Fredholm in the region Re(λ) > cV − cXN , where D(Ph) = {u ∈ HNGh | Phu ∈ HNGh }.
Its inverse (Ph−iλh)−1, called the resolvent of X, is a meromorphic family of bounded operators
on HNGh and the poles are called Ruelle resonances.

3. Semiclassical measures associated to sequences of resonances and quasimodes

In this Section, we shall see that the presence of an infinite number of Ruelle resonances λn
with Re(λn) → −γ and |λn| → ∞ implies the existence of a non-trivial measure T ∗M, with
certain invariance properties with respect to Hp, and more generally the same holds for good
quasimodes. This will allow us to prove gaps of resonances and bounds on the resolvent. The
idea is to rescale the equation (−X + V − λn)un = rn with rn small in some appropriate norm
by setting hn = 1/|λn| so that, according to (2.6), (Phn − ihnλn)un = ihnrn and to view this

4It can be checked, by inspecting the proof, that one can choose cX = νmin and cV = Vmax.
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last equation as a semiclassical problem. This method follows some ideas developed by Dyatlov
in [Dy2] for operators with r-normally hyperbolic trapped set.

Assumption 1. For some γ > 0 and N > 0, consider a sequence

Reλh = −hγ + o(h), Imλh = 1 + o(1), −γ > Vmax −Nνmin,

where h > 0 is a parameter going to 0, which can be discrete or continuous. Let
uh ∈ D(Ph) ⊂ HNGh be a sequence (as h→ 0) of quasimodes for Ph(λh):

‖uh‖HNGh = 1, ‖Ph(λh)uh‖HNGh = o(hβ),

for some β > 0.

(A1)

First, by applying [DyZw, Theorem E.42], we directly have the

Lemma 3.1. Under the assumptions of (A1), there is a subsequence uhj and a Radon measure

measure µ on T ∗M such that for each Ah ∈ Ψcomp
h (M)

〈Ahjuhj , uhj 〉L2 →
∫
T ∗M

σ(A)dµ as j →∞.

We can also consider the sequence ũhj = Ophj (e
NG)uhj which satisfies ‖ũh‖L2 = 1 and thus

one can consider its semiclassical measure µ̃ satisfying, as j →∞,

〈Ahj ũhj , ũhj 〉L2 →
∫
T ∗M

σ(A)dµ̃.

3.1. Support and first invariance properties of the semiclassical measure. We first
remark that the measure µ must satisfy some support properties and some invariance under the
Hamiltonian flow of the p(x, ξ) (defined in (2.7)). These are consequences of elliptic regularity
and propagation of singularities.

Lemma 3.2. The measures µ̃ and µ satisfy e2NGdµ = dµ̃, and

supp(µ) ⊂ {(x, ξ) ∈ T ∗M | ξ(X) = −1}.

Assume that β ≥ 1 in (A1). If p(x, ξ) = ξ(X) and Hp is the Hamiltonian vector field of p, then
for each a ∈ C∞c (T ∗M) ∫

T ∗M
(Hp + 2(γ + V ))a dµ = 0. (3.1)

Proof. The first identity follows from the definition of µ, µ̃ for A ∈ Ψcomp
h (M)

〈Ahj ũhj , ũhj 〉L2 = 〈Ophj (e
NG)∗AOphj (e

NG)uj , uj〉L2

→j→∞

∫
T ∗M

σ(Ophj (e
NG)∗AOphj (e

NG))dµ =

∫
T ∗M

σ(A)e2NGdµ.

The semiclassical principal symbol of Ph(λh) is ξ(X) + 1 + o(1) thus

supp(µ) ⊂ {(x, ξ) ∈ T ∗M | ξ(X) = −1}

using microlocal ellipticity [DyZw, Theorem E.43]. We write Im(Ph(λh)) = (Ph(λh)−Ph(λh)∗)/2i ∈
hΨ0

h(M), with

h−1Im(Ph(λh)) = γ + V + o(1).

By [DyZw, Theorem E.44] (or Proposition A.4), we have that for each a ∈ C∞c (T ∗M), (3.1)
holds. �

Next, we shall use propagation estimates to obtain information on the support of µ and
establish that µ 6= 0.
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Lemma 3.3. Assume β ≥ 1 in (A1), then the semiclassical measure µ satisfies

supp(µ) ⊂ Γ+ = E∗0 ⊕ E∗u. (3.2)

Moreover, if KR := {(x, ξ) ∈ T ∗M| dg((x, ξ), E∗0) ≤ R}, we have µ(KR) > 0 for any R > 0.

Proof. We fix N1 > 0 an arbitrarily large constant. Let us consider the fiber compactification
T
∗M of T ∗M (see [DyZw, Appendix E] for the definition). The bundles E∗u, E

∗
s and E∗0 extend

to T
∗M naturally (by taking their closures) and we let L := E∗s ∩∂T

∗M and L′ := E∗u∩∂T
∗M.

The set L is a radial source and L′ a radial sink in the terminology of [DyZw, Definition E.50].
First, we will show that µ has no mass for ξ large enough in a conic neighborhood Vs of E∗s .
This can be proved using the radial point estimates of [DyZw, Theorem E.52]. There is s0 ∈ R
such that for all s > s0 and N1 > 0, and B1 ∈ Ψ0

h(M) with L ⊂ ellh(B1), there is A0 ∈ Ψ0
h(M)

elliptic in a neighborhood U of L in T
∗M, and C > 0 so that for all u ∈ Hs

h(M) such that
B1Ph(λh)u ∈ Hs

h

‖A0u‖Hs
h
≤ Ch−1‖B1Ph(λh)u‖Hs

h
+ ChN1‖u‖

H
−N1
h

. (3.3)

Note that by (A1) we may choose s0 = N − δ0 for some δ0 > 0. Now, since uh ∈ HNGh
and Ph(λh)uh ∈ HNGh , we can choose B1 so that WFh(B1) ⊂ Vs and, since B1Oph(eNG)−1 ∈
Ψ−Nh (M) by the fact that m = 1 in Vs, we see that B1Ph(λh)uh ∈ HN

h and ‖B1Ph(λh)uh‖HN
h

=

o(hβ). We thus choose s = N with N > s0 and get that there is A0 ∈ Ψ0
h(M) elliptic in a

neighborhood U of L such that

‖A0uh‖HN
h

= o(hβ−1). (3.4)

This shows that µ(χ|σ(A0)|2) = 0 for all χ ∈ C∞c (T ∗M) and thus µ vanishes in U . By the
Anosov property of X (L is an attractor for the backward Hamiltonian flow Φ−t = e−tHp) for
all (x, ξ) ∈ T ∗M \ E∗u ⊕ E∗0 , there is T > 0 such that Φ−T (x, ξ) ∈ U . We can then use the
invariance (3.1) to deduce that µ = 0 outside E∗u ⊕ E∗0 so that (3.2) holds.

To prove that µ 6= 0, we also need to have H−Nh estimates on Quh for some appropriate
Q ∈ Ψ0

h(M) microsupported outside E∗u.

For an operator Y ∈ Ψm
h (M), denote by Y (N) := Oph(eNG)Y Oph(eNG)−1 the conjugated

operator. By [FRS, Appendix] we then have Y (N) ∈ Ψm
h (M) and σh(Y (N)) = σh(Y ). First, the

elliptic estimate of [DyZw, Theorem E.33] gives that for each A1 ∈ Ψ0
h(M) with WFh(A1)∩{p =

−1} = ∅ and each N1 > 0, there is C > 0 so that for all h > 0

‖A(N)
1 ũh‖L2 ≤ C‖

(
Ph(λh)

)(N)
ũh‖L2 + ChN1‖uh‖H−Nh . (3.5)

Here we used the above facts for Y = A1, Ph(λh). Therefore, for each cone C0 ⊂ T
∗M satisfying

C0∩ (E∗u⊕E∗s ) = ∅, there is R > 0 large and A1 ∈ Ψ0
h(M) satisfying σ(A1) = 1 in C0∩{|ξ| > R}

such that, for some N1 > β

‖A1uh‖HNGh ≤ C‖Ph(λh)uh‖HNGh + ChN1‖uh‖H−Nh = o(hβ). (3.6)

Next, we remark from the Anosov property of X that for each cone Cs ⊂ T
∗M\ (E∗u ⊕ E∗0)

there is T > 0 so that Φ−T (Cs) ⊂ U where U is the neighborhood of L used before, we can then
use the propagation of singularity estimate of [DyZw, Theorem E.47] to deduce the following.
For each cone Cs as above, there is A2 ∈ Ψ0

h(M) with σ(A2) = 1 on Cs, B ∈ Ψ0
h(M) with

WFh(B) ⊂ U , so that for all N1 > 0, there is a constant C > 0 such that

‖A2uh‖HNGh ≤ Ch−1‖Ph(λh)uh‖HNGh + C‖Buh‖HNGh + ChN1‖uh‖H−Nh .

Note that, strictly speaking, we applied the propagation of singularities estimate to (A2)(N),(
Ph(λh)

)(N)
, B(N) and ũh, similarly to (3.5). Using (3.4) and elliptic estimates, ‖Buh‖HNGh ≤
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C‖A0uh‖HN
h

+O(h∞) = o(hβ−1), and combining with (A1), we deduce that

‖A2uh‖HNGh = o(hβ−1). (3.7)

Next, by [DyZw, Theorem E.54], there is s1 such that for all s < s1, N1 > 0, there is

A3 ∈ Ψ0
h(M) elliptic near L′ := E∗u∩∂T

∗M, B′ ∈ Ψ0
h(M) with WFh(B′)∩L′ = ∅, B1 ∈ Ψ0

h(M)
elliptic on WFh(A3) and C > 0 such that for all v ∈ Hs

h(M) such that B1Ph(λh)v ∈ Hs
h, all

h > 0

‖A3v‖Hs
h
≤ C‖B′v‖Hs

h
+ Ch−1‖B1Ph(λh)v‖Hs

h
+ ChN1‖v‖H−Nh . (3.8)

Note that, by possibly applying another time the propagation of singularities estimate, one can
choose B′ to be microsupported also close to L′; we can assume that A3, B

′ are microsupported
where C1〈ξ〉−N ≤ eNG ≤ C2〈ξ〉−N . Note that by (A1), we may choose s1 = −N + δ1 for some

δ1 > 0. Let Ã3 ∈ Ψ0
h(M) elliptic so that WFh(Ã3 − A3) ∩ L′ = ∅, i.e. Ã3 is microlocally equal

to A3 near L′. We can now write for some N1 > β and some C,C ′ > 0, using (3.8) with v = uh
and s = −N in the third line

1 = ‖uh‖HNGh ≤C‖Ã3uh‖HNGh +O(hN1)

≤C‖A3uh‖H−Nh + C‖(Ã3 −A3)uh‖HNGh +O(hN1)

≤C ′‖B′uh‖H−Nh + C‖(Ã3 −A3)uh‖HNGh + o(hβ−1).

(3.9)

Note that B′ and (Ã3 − A3) satisfy the same property that their wavefront set does not

intersect L′ in T
∗M. But if B′′ ∈ Ψ0

h(M) is such that WFh(B′′) ∩ L′ = ∅, then one can choose
Cs and C0 above so that WFh(B′′) ⊂ Cs∪C0∪{|ξ| ≤ 2R} for some R > 1 large enough, and thus
there exists Q ∈ Ψcomp

h (M) such that, for any N1 > 0

‖B′′uh‖HNGh ≤ C(‖B′′A1uh‖HNGh + ‖B′′A2uh‖HNGh + ‖B′′Quh‖HNG
h

) + ChN1‖uh‖H−Nh .

Applying this to B′′ = B′ and B′′ = Ã3−A3 and using (3.7), (3.6) and (3.9), we deduce that
there is Q ∈ Ψcomp

h (M) elliptic on {|ξ| ≤ R} and C > 0 such that

1 ≤ C‖Quh‖HNGh +O(hN1) + o(hβ−1).

Taking some N1 > β and since β ≥ 1, the right hand side converges to 0 as h → 0 and we
deduce that µ(|σ(Q)|2) > 0, showing that µ({|ξ| ≤ R}) > 0 for R > 0 large enough. Using the
flow invariance (3.1) and the fact that etHp is expanding linearly in ξ in the E∗u direction where
µ is supported, we deduce that µ(KR) > 0 for all R > 0. �

We remark that the proof of this Lemma shows that u = o(hβ−1) microlocally on compact
sets outside Γ+ ∩ {p = −1} (use (3.5) and (3.7)).

4. Unstable derivatives and exotic calculus

If V ∈ C∞(M) is a potential, the proof of [FaGu, Theorem 2] gives that there is αV ∈
C

νmin
νmax

−(M) such that (−X − r−)αV = U−(V ) and

[−X + V,U− + αV ] = r−(U− + αV ), r− ∈ C2−(M), XαV ∈ C
νmin
νmax

−(M). (4.1)

Recall that u is called a generalized resonant state at s if (X + s)ku = 0 for some k ≥ 0 and
u ∈ HN for some N large enough. We recall the result of [FaGu]:

Proposition 4.1 (Faure-Guillarmou [FaGu]). If X is a contact 3-dimensional Anosov flow, the
Ruelle generalized resonant states u with resonance in Re(s) > −νmin satisfy U−u = 0.
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This extra property of resonant states will give us a new identity on the semiclassical measures
associated to sequences of resonances: roughly speaking µ will be invariant by the Hamiltonian
flow of σ(U−). More generally we can use this unstable derivative even for quasimodes. However,
there is a technical drawback, which is that U− is not smooth. For microlocal methods, this
complicates the argument, and we will have to regularize U− with an h-dependent scale. This
leads us to use a slightly exotic class of pseudo-differential operators and symbols.

4.1. Regularization and exotic pseudo-differential calculus. If m ∈ R, ρ ∈ (0, 1) and
k ∈ R+, we define the exotic pseudo-differential calculus Ψm

h,ρ,k(M) to be the set of operators

of the form Oph(a) where the symbol a in the class Smh,ρ,k(T
∗M), which is the space of smooth

functions on T ∗M such that in local coordinates (here x+ := max(x, 0) for x ∈ R)

∀α, β, |∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β,ε〈ξ〉m−|β|h−ρ(|α|−k)+ . (4.2)

We will also write Ψm
h,ρ(M) when k = 0. The calculus defined by this property has all the

good properties of a semiclassical pseudo-differential calculus, and we refer to Appendix A for
a summary of the needed properties that we shall use freely in this section.

We want to work with smooth coefficients and will thus regularize Hölder functions at scale
hρ as follows. We fix a partition of unity (ψj)j associated to a family of local charts (Oj)j
(i.e. supp(ψj) ⊂ Oj), and denote by (x1, x2, x3) : Oj → R3 the local coordinates in each chart.
Without loss of generality, we shall choose the coordinate systems in the charts so that X = ∂x1 .
Then if u ∈ Ck(M) for k ≥ 0, define uh :=

∑
j ψju

h
j where uj = u|Oj and the hρ regularization

in the chart Oj , identified to an open set of R3, is given by

∀a ∈ L2
comp(R3), ah(x) := h−3ρ

∫
R3

χ((x− x′)/hρ)a(x′)dx′ (4.3)

where χ ∈ C∞c (R3;R+) has integral 1 and is chosen to be a radial function, i.e. a function of |x|.
Note that ψju

h
j depends only on the value of u on an hρ-neighborhood of supp(ψj). Notice also

in that 1h = 1. Similarly for a semiclassical differential operator P with Ck(M) coefficients,
that is an operator which in each chart Oj has the form∑

α

aj,α(x)h|α|∂αx

with aj,α ∈ Ck(Oj), we define P h =
∑

j ψjP
h
j where Pj = P |Oj , the regularization in each chart

Oj , is given by

P hj =
∑
α

ahj,α(x)h|α|∂αx .

Moreover, if P is a differential operator (i.e. non-semiclassical), we define P h analogously as an
h-dependent differential operator. For instance, for a vector field Y we then have (hY )h = hY h.
We notice that this process depends a priori on the charts and a partition of unity, but this will
not cause us any problems. The following holds true:

Lemma 4.2. Let k ∈ (0, 2) and let a ∈ Ck(M). For m ∈ [0, k) integer and ` ∈ N, one has

‖ah − a‖Cm = O(hρ(k−m)||a||Ck), ‖ah‖C` = O(h−ρ(`−k)+),

∀j, ‖ψjahj − ψjah‖Cm = O(h(k−m)ρ).

In particular one has ah ∈ S0
h,ρ,k(M) and ψja

h
j = ψja

h+OS0
h,ρ,0

(hρk). If k < 1 but Xa ∈ Ck(M),

one also has
Xah = Xa+OC0(hkρ).

If P is a semiclassical differential operator of order ` on M with Ck(M) coefficients, then
P h ∈ Ψ`

h,ρ,k(M) and

P h = P +OC0(hρk). (4.4)
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where the norm is the C0 norm of the coefficients in the local bases ∂xi.

Proof. We work out the case k ≥ 1, the case k < 1 is similar and indeed simpler. We write in
the chart Oj (on supp(ψj))

ahj (x) =

∫
R3

χ(y)aj(x+ hρy)dy

and use that aj(x+ hρy) = aj(x) + hρdaj(x).y +OC0(hkρ‖a‖Ck). But since χ is radial, one has∫
χ(y)daj(x).y dy = 0, and this shows that

ahj (x) = aj(x) +O(hkρ||a||Ck).

One has a similar estimate for the derivative

∂xia
h
j = ∂xiaj +OC0(h(k−1)ρ‖a‖Ck).

In general, for all |α| ≥ 2 we get ∂αx a
h
j = OC0(h−ρ(|α|−k)+) since

∂αx a
h
j (x) =(−1)|α|h−|α|ρ

∫
R3

∂αy χ(y)aj(x+ hρy)dy

=(−1)|α|−1h(1−|α|)ρ
∫
R3

∂α
′

y χ(y)∂xiaj(x+ hρy)dy

for some α′ satisfying |α′| = |α| − 1, with i so that αi > 0, and using that ∂xiaj(x + hρy) =

∂xiaj(x) +O((hρ|y|)k−1) and
∫
∂α
′

y χ(y)dy = 0. Thus, if V ∈ C∞(M;TM), one has

V ah =
∑
j

(
V (ψj)a

h
j + ψjV (ahj )

)
=
∑
j

(
V (ψj)(a

h
j − aj) + ψjV (ahj − aj) + V (ψj)aj + ψjV (aj)

)
=
∑
j

(
V (ψj)a+ ψjV (aj)

)
+OC0(h(k−1)ρ) = V a+OC0(h(k−1)ρ).

Next, we also get from this analysis that for m ≤ k, in Oj

∂mxi(ψj(a
h
j − ah)) = ψj∂

m
xi(aj − a) + ∂mxi(ψj)(aj − a) +OC0(h(k−m)ρ) = OC0(h(k−m)ρ).

Next, if a ∈ Ck with Xa ∈ Ck, by using that X = ∂x1 in each chart Oj so that X(ahj ) = (Xaj)
h,

we can write as above

Xah =
∑
j

(
X(ψj)a

h
j + ψjX(aj)

h
)

=
∑
j

(
X(ψj)(a

h
j − aj) + ψj(Xaj)

h
)

= (Xa)h +OC0(hkρ),

where we used that
∑

j ψj = 1. The analysis above also implies that for a semi-classical differ-

ential operator P the full local symbol of P h in charts satisfies

|∂αx ∂
β
ξ σfull(P

h)(x, ξ)| ≤ Cα,β〈ξ〉`−|β|h−ρ(|α|−k)+

and that (4.4) holds. �

Applying the preceding lemma to hU−, we get for any ε > 0

hUh− ∈ Ψ1
h,ρ,2−ε(M), hUh− = hU− +OC0(h1+ρ(2−ε)||U−||C2−ε). (4.5)

For technical purposes, we need the following claim on the size of (ab)h − ahbh:

Lemma 4.3. Let a ∈ Ck(M) and b ∈ C`(M) with k, ` ∈ (0, 2). Then, if aj = a|Oj and
bj = b|Oj , one has

ahbh = (ab)h +OS0
h,ρ,0

(hρ·min(k,`)), ψja
h
j b
h
j = ψj(ajbj)

h +OS0
h,ρ,0

(hρ·min(k,`)).
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Proof. First we work in the chart Oj . Using bj(x) = bhj (x)+O(h`ρ) and aj(x) = ahj (x)+O(hkρ),

the bound |∂αx bhj | = O(h−ρ(|α|−`)+) in supp(ψj) ⊂ Oj , and the Taylor expansion

(ahj b
h
j )(x+ hρy) = (ahj b

h
j )(x) + d(ahj b

h
j )(x) · hρy +R(x, y),

where R(·, y) = OS0
h,ρ,0

(hρ·min(k,`)) uniformly in y, we obtain

(ajbj)
h(x) =

∫
R3

χ(y)aj(x+ hρy)bj(x+ hρy)dy

=

∫
R3

χ(y)ahj (x+ hρy)bhj (x+ hρy)dy + h−3ρ

∫
R3

χ
(x− x′

hρ
)
aj(x

′)(bj − bhj )(x′)dx′

+ h−3ρ

∫
R3

χ
(x− x′

hρ
)
(aj − ahj )(x′)bhj (x′)dx′

=ahj (x)bhj (x) + hρd(ahj b
h
j )(x) ·

∫
R3

yχ(y) dy︸ ︷︷ ︸
=0

+OS0
h,ρ,0

(hρ·min(k,`)).

This gives the local result by using that χ is radial (so the hρ factor vanishes). Now for the
global result, by the first part of the lemma

(ab)h =
∑
j

ψja
h
j b
h
j +OS0

h,ρ,0
(hρ·min(k,`)) = ahbh +

∑
j

ψja
h
j (bhj − bh) +OS0

h,ρ,0
(hρ·min(k,`))

which yields the result since ψj(b
h
j − bh) = OS0

h,ρ,0
(hρ`) by Lemma 4.2. �

We next compute the regularized commutator of h(X−V ) and h(U−+αV )h where αV is the
function appearing in (4.1):

Lemma 4.4. Assume β0 ∈ (0, νmin
νmax

) and ρ > 1
2−β0 . If V ∈ C∞(M) is h-independent, the

following commutation relation holds

[h(X − V ), h(U− + αV )h] = −rh−h2(U− + αV )h + h2+β0ρRh,

where the upper index h denotes the regularization at scale hρ and Rh ∈ Ψ1
h,ρ,0(M).

Proof. For V ∈ C∞(M), let UV− := U− + αV , then

[h(X − V ), h(UV− )h] =
∑
j

ψj [h(X − V ), h(UV−,j)
h] + h2X(ψj)(U

V
−,j)

h

where UV−,j = UV− |Oj . We start by computing [h(X − V ), h(UV−,j)
h] in Oj . Writing X = ∂x1 as

before and U−,j =
∑

i ai(x)∂xi in Oj we have, using ∂xia
h = (∂xia)h,

[h(X − V ), h(Uh−,j + αhV,j)] = h2
(
X(αhV,j) +

3∑
i=1

(
(Xai)

h∂xi + ahi ∂xi(V )
))
.

Recall by (4.1) that XαV + U−(V ) = −r−αV and that αV , XαV ∈ Cβ0(M) for all β0 ∈
(0, νmin/νmax); we can then use Lemma 4.3 and Lemma 4.2 to deduce that on supp(ψj), for any
ε > 0

[h(X − V ), h(Uh−,j + αhV,j)] =h2[X,U−]hj + h2(XαV )hj + h2(U−(V ))hj +OΨ0
h,ρ,0

(h2+ρ(2−ε))

=− h2rh−,j(U
h
−,j + αhV,j) +OΨ0

h,ρ,0
(h2+ρβ0) +OΨ1

h,ρ,0
(h1+ρ(2−ε)).
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Now (UV−,j)
h = (U−,j)

h + αhV,j with h2ψj(U−,j)
h ∈ hΨ1

h,ρ,2−ε(M) and h2ψjα
h
V,j ∈ h2Ψ0

h,ρ,β0
(M)

satisfy, using again that
∑

j ψj = 1 and Lemma 4.2, for any ε > 0∑
j

hX(ψj)α
h
V,j =

∑
j

hX(ψj)[α
h
V,j − αV ] = OC0(h1+β0ρ),

∑
j

hX(ψj)(U−,j)
h =

∑
j

hX(ψj)[(U−,j)
h − U−] = OC`(h1+ρ(2−ε−`)),

for ` = 0, 1, where C` denotes the norm on vector fields. In particular,
∑

j hX(ψj)(U−,j)
h ∈

hρ(2−ε)Ψ1
h,ρ,0(M) and

∑
j hX(ψj)α

h
V,j ∈ h1+β0ρΨ0

h,ρ,0(M). Thus the error term belongs to

hmin(2+ρβ0,1+ρ(2−ε))Ψ1
h,ρ,0(M) and using the assumption on ρ completes the proof. �

4.2. A propagation estimate and regularity of the semiclassical measure in the unsta-
ble direction. In this section, we are going to use the regularized version of the commutation
formula [X,U−] = −r−U− proved in Lemma 4.4 to deduce that the semiclassical measure µ
enjoys some extra regularity in the (lifted) unstable direction.

Before proceeding, we define the semiclassical principal symbol of −ihU±
p±(x, ξ) := σ(−ihU±)(x, ξ) = ξ(U±(x)).

Recall here U− spans Eu and U+ spans Es, so we have

p−1
− (0) = E∗0 ⊕ E∗u = Γ+, p−1

+ (0) = E∗0 ⊕ E∗s = Γ−.

Since p− ∈ C2−, the Hamiltonian vector field Hp− has C1− coefficients, which would a priori
not be sufficient to define its flow as it is not Lipschitz. However, since this is a Hamiltonian
vector field, the flow equation in local coordinates reads

ẋ(t) = U−(x(t)), ξ̇(t) = −∂xU−(x(t)).ξ(t). (4.6)

Since U− ∈ C2−, we see that the first equation with initial condition x(0) = x0 has a unique
solution given by the (horocycle) flow φt(x0) = etU−(x0) of U−, and (t, x) 7→ φt(x) is C2− but it
is C2 in the t-variable. Since x(t) is well-defined (in a unique way), the second equation for ξ(t)
with ξ(0) = ξ0 can now obviously be solved for each x since it is linear, the solution is unique,

and it is given by ξ(t) = (dφt(x)−1)T ξ. We will thus define etHp− to be the symplectic lift of φt

etHp− (x, ξ) := (φt(x), (dφt(x)−1)T ξ)

which is the unique solution of (4.6) with initial condition (x, ξ) ∈ T ∗M.

Let δ > 0 be small and define

Uδ := {(x, ξ) ∈ T ∗M : |p−(x, ξ)| < δ, |p+(x, ξ)| < δ, |p(x, ξ) + 1| < δ}. (4.7)

We now state a technical propagation Lemma, which is comparable to [Dy2, Lemma 2.7].

Lemma 4.5. Let k ≥ 1. Fix δ > 0 small and assume A,B,B1 ∈ Ψcomp
h (M) satisfy (see Figure

2)

1. WFh(A) ⊂ U3δ/2 and A = 1 +O(h∞) on Uδ.
2. WFh(B) ⊂ U3δ ∩ {|p−| > δ/2} and B = 1 +O(h∞) on U2δ ∩ {|p−| ≥ δ}.
3. WFh(B1) ⊂ U3δ and B1 = 1 +O(h∞) on U2δ.

Let W ∈ Ψ0
h,ρ,k(M) with real principal symbol σ(W ) so that σ(W ) → σ(W )0 ∈ C0(T ∗M)

uniformly as h→ 0, and assume that for T � 1 and some c > 0

1

T

∫ T

0
(σ(W )0 − V − γ) ◦ e−tHpdt ≥ c on Uδ ∩ Γ+. (4.8)

Then for all uh ∈ D′(M) and all N1 � 1, there is a C > 0 such that

‖Au‖L2 ≤ Ch−1‖B1(Ph(λh)− ihW )u‖L2 + C‖Bu‖L2 + ChN1‖u‖
H
−N1
h

. (4.9)
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p+

p−

Uδ
U 3δ

2

U2δ

δ
3δ
2 2δ

Figure 2. The wavefront set setup in Lemma 4.5. In shaded blue we have A = 1, in
red is B = 1, in yellow is B2 = 1, in gray we have B1 = 1, while the dark green rectangle
bounds the set where B′2 = 1, all taken modulo O(h∞).

Proof. We split the proof in two steps.

Step 1. Take B2 ∈ Ψcomp
h (M) such that WFh(B2) ⊂ U2δ and B2 = 1 +O(h∞) on U3δ/2. We

claim that, for every fixed ε0 > 0, there is C > 0 such that for all u ∈ L2(M)

‖Au‖L2 ≤ Ch−1‖B2(Ph(λh)− ihW )u‖L2 + C‖Bu‖L2 + ε0‖u‖L2 . (4.10)

We prove this by contradiction: assume there is a sequence uh ∈ L2(M) with h → 0 and
‖uh‖L2 = 1, such that

‖B2(Ph(λh)− ihW )uh‖L2 = o(h), ‖Buh‖L2 = o(1), ‖Auh‖L2 ≥ ε0. (4.11)

By [DyZw, Theorem E. 42] there is a semiclassical (Radon) measure ν associated to uh. Now
use propagation of singularities estimate Proposition A.2 (item 8): for every (x, ξ) ∈ U3δ/2 \Γ+,

there is a t0 ≥ 0 with e−t0Hp(x, ξ) ∈ {σ(B) = 1} and e−tHp(x, ξ) ∈ U3δ/2 for t ∈ [0, t0]. Thus for

all Q ∈ Ψcomp
h (M) with WFh(Q) ⊂ U3δ/2 \ Γ+,

‖Qu‖L2 ≤ C‖Bu‖L2 + Ch−1‖B2(Ph(λh)− ihW )u‖L2 +O(h∞).

By (4.11) we obtain ‖Qu‖L2 = o(1) and so ν = 0 on U3δ/2 \ Γ+.

Next, (4.11) implies (Ph(λh)− ihW )u = o(h) microlocally in U3δ/2, so by Proposition A.4 we
have for all a ∈ C∞0 (U3δ/2)∫

T ∗M
Hpa dν = 2

∫
T ∗M

(σ(W )0 − V − γ)a dν.

Set f := 2(σ(W )0−V −γ). Equivalently, since for t ≥ 0 we have e−tHp : U3δ/2∩Γ+ → U3δ/2∩Γ+

and since ν is zero on U3δ/2 \ Γ+, we may write an evolution equation for ν ′ = ν|U3δ/2∩Γ+ ,

(e−tHp)∗dν ′ = e
∫ t
0 f◦e

−rHpdrdν ′, t ≥ 0. (4.12)

Applying this relation to 0 ≤ a ∈ C∞0 (U3δ/2) and as ν is a Radon measure, we get for t� 1∫
U3δ/2∩Γ+

a ◦ etHpdν =

∫
U3δ/2∩Γ+

e
∫ t
0 f◦e

−rHpdra dν ≥ e2ct

∫
U3δ/2∩Γ+

a dν,
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by the condition (4.8). The left hand side of this equation is bounded from above by ‖a‖L∞ν(U3δ/2),
while the right hand side is growing exponentially fast. Thus, ν ≡ 0 on U3δ/2, contradicting the
last point of (4.11) and proving the claim.

Step 2. For every B′2 ∈ Ψcomp
h (M) with B′2 = 1 +O(h∞) microlocally on WFh(B2), we may

apply inequality (4.10) to B′2u to get

‖Au‖L2 ≤ Ch−1‖B2(Ph(λh)− ihW )u‖L2 + C‖Bu‖L2 + ε0‖B′2u‖L2 + ChN1‖u‖
H
−N1
h

. (4.13)

Choose B′2 such that for every (x, ξ) ∈WFh(B′2), there is a t0 ≥ 0 with e−t0Hp(x, ξ) ∈ {σ(A) 6=
0} ∪ {σ(B) 6= 0}, and for all t ∈ [0, t0] we have e−tHp(x, ξ) ∈ {σ(B1) 6= 0}. Thus by the
propagation of singularities estimate, Proposition A.2 (item 8), we obtain

‖B′2u‖L2 ≤ Ch−1‖B1(Ph(λh)− ihW )u‖L2 + C‖Bu‖L2 + C‖Au‖L2 + ChN1‖u‖
H
−N1
h

. (4.14)

By using (4.14) to estimate the ‖B′2u‖L2 term in (4.13), the elliptic estimate [DyZw, Theorem
E.33] and the fact that WFh(B2) ⊂WFh(B1)

‖Au‖L2 ≤ Ch−1‖B1(Ph(λh)− ihW )u‖L2 + C‖Bu‖L2 + ε0C‖Au‖L2 + ChN1‖u‖
H
−N1
h

.

Taking ε0 small enough, we absorb the ε0C‖Au‖L2 term to the left hand side, thus completing
the proof. �

We will now use this propagation estimate to deduce some regularity of the semiclassical
measure µ in the direction of Hp− . Recall the definition of Vmin, Vmax in (1.2).

Proposition 4.6. Assume γ < νmin − Vmax in (A1). If additionally β ≥ 2 in (A1), for δ > 0
small enough and any a ∈ C∞c (Uδ), we have∫

Uδ
(Hp−a− (−divU− + 2αV )a)dµ = 0, (4.15)

where div denotes the divergence with respect to the contact measure α∧ dα. Moreover, if (A1)
holds with ‖Ph(λh)uh‖HNGh = O(h2) there is a C > 0 such that∣∣∣ ∫

Uδ
Hp−(a) dµ

∣∣∣ ≤ C‖a‖L∞ . (4.16)

Proof. Denoting UV− := U− + αV , the commutation relation in Lemma 4.4 reads:

[h(X − V ), h(UV− )h] = −rh−h2(UV− )h + h2+ρβ0Rh, Rh ∈ Ψ1
h,ρ(M),

for some β0 > 0. Therefore, we have the relation

(Ph(λh)− ihrh−)h(UV− )h = h(UV− )hPh(λh)− ih2+β0ρRh. (4.17)

Next, for each ε > 0 so that νmin − Vmax − γ > 3ε, there is T0 > 0 such that for all T > T0

1

T

∫ T

0
(r− − V ) ◦ ϕ−t dt > νmin − Vmax − 2ε > γ + ε.

Thus, we can apply Lemma 4.5 with the functions h(UV− )huh ∈ H−N−1
h (M) and with W :=

rh− ∈ Ψ0
h,ρ,2−ε(M), which gives

‖Ah(UV− )huh‖L2 ≤ Ch−1‖B1(Ph(λh)− ihrh−)h(UV− )huh‖L2 + C‖Bh(UV− )huh‖L2

+O(h∞)‖h(UV− )huh‖H−N−1
h

, (4.18)

where A,B,B1 ∈ Ψcomp
h (M) satisfy the conditions of Lemma 4.5.

We analyse (4.18) by studying each term on the right hand side separately. Firstly, since
WFh(B) does not intersect Γ+ ∩ {p = −1}, using the remark after Lemma 3.3, we have

‖Bh(UV− )huh‖L2 = o(hβ−1), h→ 0.
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Here we also used that h(UV− )h ∈ Ψ1
h,ρ,0(M) is suitably bounded by Proposition A.2 (items 1

and 6). By the same boundedness properties

‖h(UV− )huh‖H−N−1
h

≤ C‖uh‖H−Nh = O(1),

which shows that the last term of (4.18) equals O(h∞). Finally, for the first term it suffices to
estimate, by (4.17)

h−1‖B1(h(UV− )hPh(λh)− ih2+ρβ0Rh)uh‖L2 ≤ h−1‖B1h(UV− )hPh(λh)uh‖L2 + h1+ρβ0‖B1Rhuh‖L2

≤ h−1‖Ph(λh)uh‖H−Nh + h1+ρβ0‖uh‖H−Nh +O(h∞)

= o(hβ−1) +O(h1+ρβ0) +O(h∞).

We used that ‖Rh‖H1
h→L2 = O(1) by σ(Rh) = O(1) and Proposition A.2 (item 6). Therefore,

by (4.18)

‖Ah(UV− )huh‖L2 = o(hβ−1) +O(h1+ρβ0),

and so h(UV− )huh = o(h) microlocally in Uδ if β = 2. Now note that

h−1 Im(−ih(UV− )h) =
−ih(UV− )h − (−ih(UV− )h)∗

2ih
=

1

2
divUh− − αhV = OΨ0

h,ρ,0(M)(1),

by Lemma 4.2. The main result (4.15) then follows by Proposition A.4, since divUh− → divU−,

αhV → αV and Hσ(−ih(UV− )h)a→ Hp−a uniformly.

Finally, if ‖Ph(λh)uh‖HNGh = O(h2), a similar argument gives h(UV− )huh = O(h) microlocally

in Uδ. The final conclusion follows again by applying Proposition A.4. �

We now show that Proposition 4.6 implies some Lipschitz regularity of µ inside Γ+.

Lemma 4.7. Assume that γ < νmin − Vmax in (A1). If additionally β ≥ 2 in (A1), then for
δ > 0 small enough, there is a C > 0 such that for every δ0 > 0 small enough

δ0

C
≤ µ(Uδ ∩ {|p+| < δ0}) ≤ Cδ0. (4.19)

Moreover, if (A1) is valid with ‖Ph(λh)uh‖HNGh = O(h2), then the upper bound in (4.19) holds.

Proof. First, we make the following observation using the contact structure α: we have

Hp−(p+)(x, ξ) = ξ([U−, U+](x)), (4.20)

and [U−, U+] is a C1− vector field that does not vanish such that 0 6= α([U−, U+]) = −dα(U−, U+)
(as U± ∈ kerα), by the relation

0 6= α ∧ dα(X,U−, U+) = 2dα(U−, U+). (4.21)

This means that either Hp−(p+)(x, ξ) > c1 or −Hp−(p+)(x, ξ) > c1 for some c1 > 0 on Uδ if
δ > 0 is small enough. Let ã ∈ C∞c (R) with supp(ã) ⊂ (−2δ0, δ1) satisfying

‖ã‖∞ ≤ 1, ∂sã ≥ −
2

δ1
, ∂sã ≥

1

3δ0
for |s| ≤ δ0, (4.22)

for some small fixed δ1 ∈ (0, δ), independent of δ0 (here we take δ0 < δ1/2). Let χ ∈ C∞c (−δ, δ)
be equal to 1 in (−δ/2, δ/2). Consider a(x, ξ) := ã(p+(x, ξ))χ(p−(x, ξ))χ(p(x, ξ) + 1) which is
a C2−

c (Uδ) function. If Hp−(p+) > c1 on Uδ, using that supp(µ) ⊂ (Γ+ ∩ {p = −1}) ⊂ {|p−| ≤
δ/2, |p+ 1| ≤ δ/2}, we get∫

Uδ
Hp−(a) dµ =

∫
Uδ
∂sã(p+)Hp−(p+) dµ ≥ c1

3δ0
µ({|p+| ≤ δ0})−

2c1

δ1
µ({|p+| ∈ (δ0, δ1)}).
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The result of Proposition 4.6 (in the case ‖Ph(λh)uh‖HNGh = O(h2) as well) also holds for

a ∈ C1
c (Uδ) by using a density argument, so we can apply it to our function a and, since

µ({|p+| ∈ (δ0, δ1)}) ≤ µ(Uδ), we get that there is a C > 0 such that for all δ0 > 0 small

µ({|p+| ≤ δ0}) ≤ Cδ0.

In the case where Hp−(p+)(x, ξ) < 0 we can do the same reasoning by bounding below the
integral −

∫
Uδ Hp−(a) dµ.

To obtain a lower bound for the measure of Uδ ∩ {|p+| ≤ δ0}, we can proceed as follows.
Without loss of generality, we can assume that c2 > Hp−(p+) > c1 > 0 as above in Uδ –

this precisely means that p+ is increasing along etHp− . Moreover, we compute Hp−p(x, ξ) =

ξ([U−, X](x)) = r−(x)p−(x, ξ), and thus both p and p− are constant along etHp− on Γ+.

We integrate (4.15) to get, for each a ∈ C∞c (Uδ/2) and |t| ≤ δ
2c2

(so supp(a ◦ etHp− ) ⊂ Uδ)∫
Uδ
a ◦ etHp− dµ =

∫
Uδ
e
∫ t
0 (− div(U−)+2αV )◦e−sHp− dsa dµ. (4.23)

We thus get, using that |−div(U−)+2αV | is uniformly bounded, that there is C > 0 independent
of δ0 such that ∫ δ

2c2

0

∫
Uδ
a ◦ etHp− dµ dt ≤ C

∫
Uδ
a dµ. (4.24)

We choose a = ã(p+)χ(p+ 1)χ(p−) with χ as above, ã ∈ C∞c ((−δ0, δ0);R+) satisfying ã = 1 on

{|p+| ≤ δ0/2}. For each z ∈ Uδ/2, the map t 7→ p+(etHp− (z)) is a C1-diffeomorphism for |t| ≤ δ
2c2

since Hp−(p+) ∈ [c1, c2]. Thus we can perform the change of variable q = p+(etHp− (z))∫ δ
2c2

0

∫
Uδ/2

a(etHp− (z)) dµ(z)dt =

∫
Uδ/2

∫ p+
(
e
δ

2c2
Hp− (z)

)
p+(z)

ã(q)

Hp−(p+)(et(q)Hp− (z))
dqdµ(z)

≥ 1

c2

∫
Uδ/2

∫ p+
(
e
δ

2c2
Hp− (z)

)
p+(z)

ã(q)dqdµ(z)

≥δ0

c2
µ({z ∈ Uδ/2 | (−δ0/2, δ0/2) ⊂ [p+(z), p+

(
e

δ
2c2

Hp− (z)
)
]}︸ ︷︷ ︸

A:=

).

Since Hp−p+ ∈ [c1, c2] on Uδ, the set A contains p−1
+ (
[
δ0
2 −

δc1
2c2
,− δ0

2

]
). Note first that by the

Lipschitz bound and Lemma 3.3, for any δ > 0 we have µ(Uδ \ E∗0) > 0. Then the horo-
cyclic invariance (4.23) implies that for all R1, R2 ∈ R small enough, the strip SR1,R2 = {z ∈
T ∗M |R1 ≤ p− ≤ R2} satisfies µ(SR1,R2) > 0. Thus for δ0 small enough, µ(A) ≥ C ′ for some
constant C ′ > 0 depending only on c1, c2 and δ (and not on δ0). We therefore obtain, by
combining with (4.24), that there is C ′′ > 0 such that for all δ0 > 0 small

µ(Uδ ∩ {|p+| ≤ δ0}) ≥
∫
Uδ
a dµ ≥ C ′′δ0,

concluding the proof. �

5. Proof of the main theorem

We proceed to the proof of the main result. Note that Theorem 1 is an immediate corollary
of Theorem 2 for the case V = 0.

Proof of Theorem 2. We proceed by contradiction. Assume that the estimates in (1.4) do not
hold, i.e. there is a sequence hn → 0, λn ∈ C and u′n, fn ∈ HNGh with norm ‖fn‖HNGh = 1, such

that (−ihnX+ihnV −iλn)u′n = fn satisfies ‖u′n‖HNGh > Ch−2
n for some C > 0 (resp. ‖u′n‖HNGh >
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nh−2
n ) if h−1

n Reλn ∈ S0(ε) (resp. h−1
n Reλn ∈ S1(ε)). Up to extracting a subsequence and

rescaling hn, we can assume that Im(λn)→ 1 and h−1
n Re(λn)→ −γ as n→∞ with −γ ∈ S0(ε)

(resp. −γ ∈ S1(ε)). Define un := u′n/‖u′n‖HNGh ∈ HNGh which satisfies

‖Phn(λn)un‖HNGh =
‖fn‖HNGh
‖u′n‖HNGh

=

{
O(h2

n), −γ ∈ S0(ε),

o(h2
n), −γ ∈ S1(ε).

This means that we are in the case of (A1) with ‖Ph(λh)uh‖HNGh = O(h2) and N ≥ 1
2 , if

−γ ∈ S0(ε), or with β = 2 and N ≥ 1, if −γ ∈ S1(ε).

By Lemma 3.1 there is a semiclassical measure µ associated to uh, which by Lemmas 3.2 and
3.3 has support in Γ+ ∩{p = −1}. By Lemma 3.2, we have for every a ∈ C∞c (Uδ) and t ≥ 0 (see
(4.7) for the definition of Uδ)∫

Uδ
a ◦ etHp dµ =

∫
Uδ
e−2γt−2

∫ t
0 V ◦e

−rHpdra dµ.

Therefore for all ε′ > 0 and t ≥ Tε′ large enough, we have e−tHp(Γ+ ∩ Uδ) ⊂ Γ+ ∩ Uδ and

e−2t(γ+Vmax+ε′)µ(Γ+ ∩ Uδ) ≤ µ(e−tHp(Γ+ ∩ Uδ)) ≤ e−2t(γ+Vmin−ε′)µ(Γ+ ∩ Uδ). (5.1)

Moreover, we claim that for each ε′ > 0 and t ≥ Tε′ large enough

{|p+| ≤ e−(νmax+ε′)tδ} ∩ Γ+ ∩ Uδ ⊂ e−tHp(Γ+ ∩ Uδ) ⊂ {|p+| ≤ e−(νmin−ε′)tδ} ∩ Γ+ ∩ Uδ. (5.2)

To see this, first note that Hp(p+)(x, ξ) = ξ([X,U+](x)) = r+(x)p+(x, ξ) by (4.1) and thus

p+(e−tHp(x, ξ)) = e−
∫ t
0 r+(ϕ−r(x))drp+(x, ξ), t ∈ R,

and we obtain, by (2.5), that for t ≥ Tε′ large enough and (x, ξ) ∈ Uδ
e−(νmax+ε′)t|p+|(x, ξ) ≤ |p+|(e−tHp(x, ξ)) ≤ e−(νmin−ε′)tδ,

thus giving (5.2). If −γ ∈ S1(ε), by (5.2) and Lemma 4.7 (note it is here that we use −γ >
−νmin + Vmax), we obtain that there is C = C(ε′) > 0 such that for ε′ > 0 and t ≥ Tε′

C−1e−(νmax+ε′)t ≤ µ(e−tHp(Γ+ ∩ Uδ)) ≤ Ce−(νmin−ε′)t. (5.3)

Combining these inequalities with (5.1), we obtain for all t ≥ Tε′

C−1e(2γ+2Vmin−νmax−3ε′)t ≤ µ(Γ+ ∩ Uδ) ≤ Ce(2γ+2Vmax−νmin+3ε′)t. (5.4)

Since −2γ < −νmax + 2Vmin− 2ε we get a contradiction by choosing ε′ small and letting t→∞.

Next, if −γ ∈ S0(ε), by (5.2) and Lemma 4.7 we similarly get the upper bound of (5.3), which
combined with (5.1) yields the upper bound in (5.4). Since −2γ > −νmin + 2Vmax + 2ε, we can
choose ε′ small enough and by letting t→∞ this would force to have µ(Uδ) = 0, contradicting
Lemma 3.3.

Finally, the classical estimates (1.3) follow by introducing a semiclassical parameter h :=
| Im(s)|−1 and applying the semiclassical estimates (1.4), as well as (2.8). �

Appendix A. An exotic symbol class

LetM be a closed n-manifold equipped with a Riemannian metric g, let k ≥ 0 and 0 < ρ < 1.
We use the usual notation 〈ξ〉 = (1 + |ξ|2)1/2, h > 0 will be a small semiclassical parameter,

we let T
∗M be the fiber radial compactification of T ∗M as defined in [DyZw, Section E.1.3]

and Hp will denote the Hamiltonian vector field of p ∈ C∞(T ∗M). Given an operator P , we

write ImP = P−P ∗
2i for the imaginary part of P and ReP = P+P ∗

2 for the real part; then
P = ReP + i ImP . Recall that for x ∈ R we write x+ = max(x, 0).

Most of the results we gather in this appendix are simple extensions of classical results in
semiclassical analysis that can be found in the books [Zw] and [DyZw, Appendix E]. We shall
only point out the main differences with our setting.
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For each m ∈ R, we define the exotic pseudo-differential calculus Ψm
h,ρ,k(M) by saying that A ∈

Ψm
h,ρ,k(M) if its Schwartz kernel KA is in OCN (M×M)(h

N ) for all N > 0 outside a neighborhood
of the diagonal, and near the diagonal can be written in local coordinates as

KA(x, y) = (2πh)−n
∫
Rn
e
i
h

(x−y)ξa(x, ξ)dξ,

where the local symbols are in the class Smh,ρ,k(R2n) defined by the property: a ∈ Smh,ρ,k(R2n)

if a ∈ C∞(R2n) is an h-dependent function and satisfies in local coordinates (for some Cα,β
uniform in h)

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−|β|h−ρ(|α|−k)+ . (A.1)

We notice that it is important here, for the calculus, that the loss of h−ρ happens only in the
x-derivatives and not in the ξ derivatives. First, observe the basic properties for 0 ≤ k′ ≤ k

a ∈ Smh,ρ,k(R2n), b ∈ Sm′h,ρ,k′(R2n) =⇒ ab ∈ Sm+m′

h,ρ,k′ (R2n),

a ∈ Smh,ρ,k(R2n) =⇒ ∂αx a ∈ h−ρ(|α|−k)+Smh,ρ,(k−|α|)+(R2n), ∂αξ a ∈ S
m−|α|
h,ρ,k (R2n),

∀j ∈ [0, k], hjρSmh,ρ,k−j(R2n) ⊂ Smh,ρ,k(R2n).

(A.2)

We define Smh,ρ,k(T
∗M) to be C∞(T ∗M) functions that, using local coordinates on M, are in

Smh,ρ,k(R2n). First, one directly sees from the formula of symbols under a change of coordinates

[Zw, Theorem 9.9] that the symbol in local coordinates being in Smh,ρ,k(R2n) is invariant by
change of coordinates, and moreover there is a principal symbol map

σ : Ψm
h,ρ,k(M)→ Smh,ρ,k(T

∗M)/hSm−1
h,ρ,k(T ∗M).

Using local charts and a partition of unity, we fix a semi-classical quantization Oph : Smh,ρ,k(T
∗M)→

Ψm
h,ρ,k(M), which satisfies

σ(Oph(a)) = a mod hSm−1
h,ρ,k(T ∗M).

We first check that symbols in this class are closed under composition. Recall from [Zw,

Theorem 4.14] that if A ∈ Ψm
h,ρ,k(Rn) and B ∈ Ψm′

h,ρ,k(Rn) have full symbol a, b then AB has full

symbol (as an oscillatory integral)

a#b(x, ξ) = (2πh)−n
∫
R2n

e−
i
h

(x′.ξ′)a(x, ξ + ξ′)b(x+ x′, ξ)dx′dξ′ (A.3)

which has expansion

a#b =
∑
|α|≤N

(−ih)|α|

α!
∂αξ a∂

α
x b+O

Sm+m′−N−1
h,ρ,0 (R2n)

(h(N+1)(1−ρ)). (A.4)

Here |∂αξ a∂αx b| ≤ Cαh
−|α|ρ〈ξ〉m+m′−|α| so that higher order terms in the expansion are higher

powers of h and of 〈ξ〉−1.

Lemma A.1. Let a ∈ Sm1
h,ρ,k(R

2n) and b ∈ Sm2
h,ρ,k(R

2n). Then a#b ∈ Sm1+m2
h,ρ,k (R2n).

Proof. This follows from (A.4) and (A.2). �

For A ∈ Ψm
h,ρ,k(M), we say that (x0, ξ0) ∈ T

∗M is not in WFh(A) if there is a small

neighborhood U of (x0, ξ0) in T
∗M so that the full local symbol of A restricted to U is in

hNS−Nh,ρ,0(U) for all N > 0. We also define the elliptic set ellh(A) of A ∈ Ψm
h,ρ,k(M) to be the

set of points (x0, ξ0) ∈ T ∗M so that for a neighborhood U of (x0, ξ0) there is c0 > 0 so that
〈ξ〉−m|σ(A)(x, ξ)| ≥ c0, for (x, ξ) ∈ U . We finally list some properties of the Ψh,ρ,k(M) calculus.

Proposition A.2. The following properties hold:
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1. Let A ∈ Ψm
h,ρ,k(M). If B,B′ ∈ Ψcomp

h (M) with WFh(B) ∩WFh(B′) = ∅, then BAB′ ∈
h∞Ψcomp

h (M).

2. The principal symbol is well-defined as a map

σ : Ψm
h,ρ,k(T

∗M)→ Smh,ρ,k(T
∗M)/hSm−1

h,ρ,k(T ∗M)

with kernel hΨm−1
h,ρ,k(M), and it satisfies for any A ∈ Ψm

h,ρ,k(M) and B ∈ Ψm′
h,ρ,k(M)

σ(AB) = σ(A)σ(B) mod h1−ρSm+m′−1
h,ρ,k (T ∗M),

σ(AB) = σ(A)σ(B) mod hSm+m′−1
h,ρ,k−1 (T ∗M) if k ≥ 1.

3. If A ∈ Ψm1
h,ρ,k(M) and B ∈ Ψm2

h,ρ,k(M), then

[A,B] ∈ h1−ρΨm1+m2−1
h,ρ,k (M),

h−1[A,B] ∈ Ψm1+m2−1
h,ρ,k−1 (M) if k ≥ 1,

and σ(h−1[A,B]) = −i{σ(A), σ(B)}.
4. If P = −ihX for X a vector field on M, Θ ∈ Ψm

h,ρ,k(M) and Hpσ(Θ) ∈ Smh,ρ,k(M),

where p = σ(P ) = ξ(X), then [P,Θ] ∈ hΨm
h,ρ,k(M).

5. If A ∈ Ψm
h,ρ,k(M), then A∗ ∈ Ψm

h,ρ,k(M) and

σ(A∗) = σ(A) mod h1−ρSm+m′−1
h,ρ,k (T ∗M),

σ(A∗) = σ(A) mod hSm−1
h,ρ,k−1(T ∗M) if k ≥ 1.

6. Each A ∈ Ψ0
h,ρ,0(M) is bounded L2 → L2 and for each ε > 0

‖A‖L2→L2 ≤ (1 + ε) sup
h,x,ξ
|σh(A)(x, ξ)|+Oε(h∞).

Moreover, for any A ∈ Ψm
h,ρ,k(M) and any s ∈ R we have

‖A‖Hs
h→H

s−m
h
≤ (1 + ε) sup

h,x,ξ
|〈ξ〉−mσ(A)|+Oε(h∞).

7. Let P ∈ Ψp
h,ρ,k(M), A ∈ Ψm

h,ρ,k(M) and B1 ∈ Ψl
h,ρ,k(M). Assume WFh(A) ⊂ ellh(P ) ∩

ellh(B1). Then for all s ∈ R, N > 0, and u with B1Pu ∈ Hs−p−l
h (M)

‖Au‖Hs−m
h
≤ C‖B1Pu‖Hs−p−l

h
+O(h∞)‖u‖H−Nh .

8. Assume k ≥ 1 and let P ∈ Ψ1
h,ρ,k(M) with ReP ∈ Ψ1

h(M) and ImP ∈ hΨ0
h,ρ,k(M).

Denote p := σ(P ) and assume that for each (x, ξ) ∈ WFh(A) ⊂ T
∗M, there is T > 0

such that e−THp(x, ξ) ∈ ellh(B) and e−tHp(x, ξ) ∈ ellh(B1) for t ∈ [0, T ]. Then for each
u ∈ L2 with Pu ∈ L2(M), and every N > 0 there is a C > 0 such that

‖Au‖L2 ≤ C‖Bu‖L2 + Ch−1‖B1Pu‖L2 + ChN‖u‖H−Nh .

Proof. 1. This follows from the composition formula (A.4).
2. This was discussed above.
3. From the composition formula (A.4), locally we have

a#b− b#a ∼ h(Dξa∂xb−Dξb∂xa) +
1

2
h2(D2

ξa∂
2
xb−D2

ξb∂
2
xa) +

1

6
h2(D3

ξa∂
3
xb−D3

ξb∂
3
xa) + . . .

where, after taking the expansion to a high enough order, the remainder is in hNSm−Nh,ρ,0 (R2n)

for some large N > 0. By (A.2), all these terms are in h1−ρSm1+m2−1
h,ρ,k (R2n) ∩ hSm1+m2−1

h,ρ,k−1 (R2n)

if k ≥ 1, and the principal symbol of h−1[A,B] is −i(∂ξa∂xb− ∂xa∂ξb).
4. This follows from the composition formula (A.4), the fact that ∂αξ σ(P ) = 0 for |α| ≥ 2 and
item 3 above.
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5. This follows from the fact that, if A has full local symbol a in local coordinates, the full
symbol a∗ of A∗ is

a∗(x, ξ) ∼
∑
α

h|α|

α!
∂αξ D

α
xa(x, ξ).

6. The argument is standard (see [GrSj, Theorem 4.5]) and we just make a brief summary.
Let a := σ(A) ∈ S0

h,ρ,k(M). For M = ‖a‖∞, we can construct B0 ∈ Ψ0
h,ρ,0(M) with principal

symbol b0 :=
√

(1 + ε)2M2 − |a|2 ≥ εM > 0, so that

C := (1 + ε)2M2 −A∗A = B∗0B0 + h1−ρR0,

for some R0 = R∗0 ∈ Ψ−1
h,ρ,0(M) by item 2 (and the fact that a ∈ Smh,ρ,0 and a > 0 implies

√
a ∈ Sm/2h,ρ,0). Next we can choose B1 = B0 + h1−ρ

2 Oph(b−1
0 )∗R0 so that B∗1B1 = C − h2(1−ρ)R1

with R1 ∈ Ψ−2
h,ρ,0(M). We iterate this procedure to find BN ∈ Ψ0

h,ρ,0(M) such that (1 +

ε)2M2 − A∗A = B∗NBN + h(N+1)(1−ρ)RN with RN ∈ Ψ−N−1
h,ρ,0 (M). By Schur’s lemma we have

‖RN‖L2→L2 = O(h(N+1)(1−ρ)−n) and thus for any u ∈ L2

‖Au‖2L2 = (1 + ε)2M2‖u‖2L2 − ‖BNu‖2L2 +O(h2(N+1)(1−ρ)−n)‖u‖2L2

which shows the desired estimate by choosing N large. Similarly the case of arbitrary k follows
and the Sobolev bound is an easy consequence of this.
7. This follows from the parametrix construction in the elliptic set, the main thing to notice is
that if B ∈ Ψm

h,ρ,k(M), A ∈ Ψl
h,ρ,k(M) and WFh(A) ⊂ ellh(B), then

σ(A)

σ(B)
∈ Sl−mh,ρ,k(M).

8. We follow the proof of [DyZw, Theorem E.47] and divide the proof into steps.

Step 0: an escape function. Fix β ≥ 0. There is a g ∈ C∞(T
∗M) with supp g ⊂ ellh(B1),

such that
g ≥ 0, g > 0 on WFh(A), Hpg ≤ −βg,

where the last condition holds outside ellh(B).

Step 1. Note that g ∈ S0(T ∗M) and define

G := Oph(〈ξ〉sg) ∈ Ψs
h(M), WFh(G) ⊂ ellh(B1).

We can that u ∈ C∞(M). If we write f = Pu,

Im〈f,G∗Gu〉 = Im〈(ReP )u,G∗Gu〉︸ ︷︷ ︸
term T1

+ Re〈(ImP )u,G∗Gu〉︸ ︷︷ ︸
term T2

.

We will bound the two terms on the right separately.

Step 2: term T1. Since Re(P ) ∈ Ψ1
h(M) is non exotic, this step is exactly the same as in the

proof of [DyZw, Theorem E.47] and we get

T1 ≤ (C1 − β)h‖Gu‖2L2 + Ch‖Bu‖2Hs
h

+ Ch2‖B1u‖2
H
s− 1

2
h

+O(h∞)‖u‖2
H−Nh

.

Step 3: term T2. Write

T2 = Re〈(ImP )u,G∗Gu〉 = 〈(ImP )Gu,Gu〉+ Re〈[G, ImP ]u,Gu〉.
We estimate the two terms on the right hand side separately. Firstly

|〈(ImP )Gu,Gu〉| = h|〈(h−1 ImP )Gu,Gu〉| ≤ C2h‖Gu‖2L2 +O(h∞)‖u‖2
H−Nh

,

where we used the boundedness property (item 6) for the exotic operator h−1 ImP . For the
second term, we need to deal with a commutator. Note first that

ReG∗[G, ImP ] = hReG∗[G, h−1 ImP ] ∈ h2Ψ2s−1
h,ρ,k−1(M),
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by item 3 above. As WFh(G∗[G, ImP ]) ⊂ ellh(B1), by the elliptic estimate

|〈Re(G∗[G, ImP ])u, u〉| = h2|〈h−2 Re(G∗[G, ImP ])u, Y u〉|+O(h∞)‖u‖2
H−Nh

≤ Ch2‖B1u‖2
H
s− 1

2
h

+O(h∞)‖u‖2
H−Nh

,

where Y ∈ Ψ0
h(M) is such that Y = 1 + O(h∞) microlocally on WFh(Re(G∗[G, ImP ])) and

WFh(Y ) ⊂ ellh(B1). Here we used the boundedness in the exotic class item 6, item 1, the
elliptic estimate in the exotic class (item 7). Adding the two estimates we finally obtain

|Re〈(ImP )u,G∗Gu〉| ≤ C2h‖Gu‖2L2 + Ch2‖B1u‖2
H
s− 1

2
h

+O(h∞)‖u‖2
H−Nh

.

Step 4. Adding the estimates in Steps 2 and 3, we obtain

Im〈f,G∗Gu〉 ≤ (C1 + C2 − β)h‖Gu‖2L2 + Ch‖Bu‖2Hs
h

+ Ch2‖B1u‖2
H
s− 1

2
h

+O(h∞)‖u‖2
H−Nh

.

By ellipticity of B on WFh(G), there is Q ∈ Ψs
h(M) such that G = QB1 + R, where R ∈

h∞Ψ−∞h (M), thus

|〈f,G∗Gu〉| ≤ |〈QB1f,Gu〉|+ |〈Rf,Gu〉| ≤ C‖B1f‖Hs
h
‖Gu‖L2 +O(h∞)‖u‖2

H−Nh
.

Now choose β = C1 + C2 + 1 to get

‖Gu‖2L2 ≤ C‖Bu‖2Hs
h

+ Ch−1‖B1f‖Hs
h
‖Gu‖L2 + Ch‖B1u‖2

H
s− 1

2
h

+O(h∞)‖u‖2
H−Nh

.

We can absorb the ‖Gu‖L2 term to the left hand side, at the cost of the additional term
Ch−2‖B1f‖2Hs

h
on the right hand side. Next, use the condition WFh(A) ⊂ ellh(G) and elliptic

estimates to derive

‖Au‖Hs
h
≤ C‖Bu‖Hs

h
+ Ch−1‖B1f‖Hs

h
+ Ch

1
2 ‖B1u‖

H
s− 1

2
h

+O(h∞)‖u‖H−Nh . (A.5)

Step 5. Here, one can use the same induction procedure as in [DyZw, Proof of Th. E.47] to
show that for each ` ∈ N

‖Au‖Hs
h
≤ C‖Bu‖Hs

h
+ Ch−1‖B1f‖Hs

h
+ Ch

`
2 ‖B1u‖

H
s− `2
h

+O(h∞)‖u‖H−Nh ,

where the first step of the induction is exactly where we arrived in (A.5). �

Next we discuss semiclassical defect measures in the setting of the exotic calculus.

Proposition A.3. Assume that uh ∈ L2(M) is a family satisfying ‖uh‖L2 = O(1). Then there
exists a Radon measure µ, called semiclassical measure, and a sequence hj → 0, such that for
any A ∈ Ψcomp

h,ρ,0 (M) with limh→0 σ(A)(h;x, ξ) = a0(x, ξ) in C0
c (T ∗M), it holds that

lim
j→∞
〈Auhj , uhj 〉L2 =

∫
T ∗M

a0 dµ.

Proof. We follow the proof of [DyZw, Theorem E.42]. By Proposition A.2, we have that A −
Oph(ah) ∈ hΨcomp

h,ρ,0 (M) for some symbol ah ∈ Scomp
h,ρ,0 (T ∗M) so that ah → a0 in C0

c (T ∗M); it

suffices to prove the claim for A = Ophj (ahj ). We write Ih(ah) := 〈Op(ah)uh, uh〉L2 and claim

lim sup
h→0

|Ih(ah)| ≤ C lim sup
h→0

‖ah‖∞ ≤ C sup
h
‖ah‖∞. (A.6)

Indeed, by Cauchy-Schwarz and Proposition A.2 (item 6), we have

|Ih(ah)| ≤ C‖ah‖∞ +OA(h∞), (A.7)

where C = C(suph ‖uh‖L2) > 0. Take a countable, dense subset (a`h)`∈N ⊂ Scomp
h,ρ,0 (T ∗M), where

Scomp
h,ρ,0 (T ∗M) is equipped with the inductive limit topology from the seminorms in (A.1). By a
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diagonal argument and since by (A.7) Ih(a`h) is bounded for all `, we may extract a sequence

hj → 0 such that Ihj (a
`
hj

) converges for all `. For each ah ∈ Scomp
h,ρ,0 (T ∗M) and `, we get by (A.7)

lim sup
j,j′→∞

|Ihj (ahj )− Ihj′ (ahj′ )| ≤ lim sup
j,j′→∞

|Ihj (a
`
hj

)− Ihj′ (a
`
hj′

)|+ C sup
h
‖ah − a`h‖∞.

Using the density of a`h, we obtain that Ihj (ahj ) is a Cauchy sequence and we may define for

ah ∈ Scomp
h,ρ,0 (T ∗M)

I(ah) := lim
j→∞

Ihj (ahj ).

By (A.7), the map I satisfies for each ah ∈ Scomp
h,ρ,0 (T ∗M)

|I(ah)| ≤ C lim sup
j→∞

‖ahj‖∞ ≤ C sup
h∈(0,h′0)

‖ah‖, (A.8)

for any h′0 > 0. In particular, I extends to a continuous linear functional on C0
c (T ∗M) (h-

independent functions). Given ah ∈ Scomp
h,ρ,0 (T ∗M) with limh→0 ah = a0 ∈ C∞c (T ∗M) in the

C0
c (T ∗M) topology, we get by (A.8)

|I(a0 − ah)| ≤ C sup
h∈(0,h′0)

‖a0 − ah‖∞ → 0 as h′0 → 0,

and thus I(ah) = I(a0). By G̊arding’s inequality I(a0) ≥ 0 when a0 ≥ 0 and so by the Riesz-
Markov representation theorem there is a Radon measure µ such that for each a0 ∈ C∞c (T ∗M)

I(a0) = lim
j→∞
〈Ophj (a0)uhj , uhj 〉L2 =

∫
T ∗M

a0 dµ.

The main claim follows from this by using I(ah) = I(a0) under the given assumptions. �

Now we prove a version of a propagation estimate for the semiclassical measure in the exotic
calculus. This is a slight extension of [DyZw, Theorem E.44]. Note that if σ(P ) is real valued
and k ≥ 1, then ImP ∈ hΨm−1

h,ρ,k−1(M) if P ∈ Ψm
h,ρ,k(M) by Proposition A.2 (item 5).

Proposition A.4. Assume ‖uh‖L2 = O(1) and uh converges to a semiclassical measure µ. Let
P ∈ Ψm

h,ρ,k(M) with k ≥ 1, denote p := σ(P ) and assume that p is real-valued for all h, and

define b := σ(h−1 ImP ). Assume that for each a ∈ C∞c (T ∗M)

(Hpa)0 = lim
h→0

Hpa and b0 = lim
h→0

b exist in C0
c (T ∗M).

Then there is C > 0 such that for all a ∈ C∞c (T ∗M) and Y ∈ Ψcomp
h (M) with Y = 1 +O(h∞)

microlocally on supp(a)∣∣∣ ∫
T ∗M

((Hpa)0 + 2b0a)dµ
∣∣∣ ≤ C‖a‖∞ lim sup

h→0
(h−1‖Y Puh‖L2‖Y uh‖L2).

Proof. Assume without loss of generality that a is real valued. Let A ∈ Ψcomp
h (M) be such that

σ(A) = a and A∗ = A. We compute

h−1 Im〈Puh, Auh〉 = (2i)−1h−1〈APuh, uh〉 − (2i)−1h−1〈P ∗Auh, uh〉
= (2i)−1〈h−1[A,P ]uh, uh〉+ 〈(h−1 ImP )Auh, uh〉.

Now by Proposition A.2 (item 3), we have h−1[A,P ] ∈ Ψcomp
h,ρ,k−1(M) with −iσ(h−1[A,P ]) = Hpa

and by assumptions σ((h−1 ImP )A) = ba. Thus by Proposition A.3 there is a semiclassical
measure µ such that the right hand side converges to, after extracting a subsequence hj → 0∫

T ∗M

(1

2
(Hpa)0 + b0a

)
dµ.

Moreover, the left hand side equals (using Proposition A.2, item 1)

(2ih)−1(〈PY uh, AY uh〉 − 〈AY uh, PY uh〉) +O(h∞),
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from which we easily deduce the main estimate. �
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Mathématique 351 (2013) , 385–391.
[FaTs1] F. Faure, M. Tsujii, Prequantum transfer operator for Anosov diffeomorphism, Astérisque 375, (2015),
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