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IDA-PBC for LTI dynamics under input delays: a reduction approach

Mattia Mattioni!, Salvatore Monaco! and Dorothée Normand-Cyrot?

Abstract—In this paper, the problem of stabilizing linear
port-controlled Hamiltonian dynamics through interconnection
and damping assignment in presence of input delays is consid-
ered. The contribution exploits the reduction approach allowing
to reveal and shape the energy properties of the time-delay
dynamics. Performances are illustrated on a simple mechanical
system.

Index Terms— Linear systems, Delay systems, Energy sys-
tems.

I. INTRODUCTION

Passivity-based control (PBC) of dynamical systems has
been shown to offer a natural and powerful framework for
controlling dynamic systems by exploiting their physical
properties [1], [2]. Basically, when considering stabilization
at the origin, PBC is aimed at injecting energy back through
feedback so to modify and exploit the natural dissipation of
the plant [3]. When considering port-controlled Hamiltonian
systems [4], [5], Interconnection and Damping Assignment
(IDA, [6]) has been introduced to stabilize the system at some
desired new equilibria through passivation: first the energy
of the system is reshaped; then damping is injected to ensure
asymptotic convergence to the desired equilibrium.

If on one side, PBC represents a powerful control approach
at large and several extensions have been proposed in the
literature [7], [8], a very few works are devoted to the
investigation and exploitation of passivity in presence of time
delays (e.g., [9]-[13]). When considering nonlinear dynamics
affected by discrete input delays of length 7, a new solution
concerning passivity-based control for stabilization at the
origin has been proposed in [14] through reduction [15]-
[17]. The main idea is to construct a new dynamics (the
reduced dynamics) that is free of delays and equivalent, in
terms of stabilizability, to the original delayed one. Such a
dynamics preserves the drift of the retarded one but exhibits
a transformed control vector field explicitly parameterized by
the delay. Then, passivity-based arguments for stabilization
at the origin can be fruitfully applied.

Exploiting the approach proposed in [14], the contribution
of this paper concerns stabilization of linear time-invariant
(LTI) port-controlled Hamiltonian dynamics under input de-
lay at a desired equilibrium through IDA-PBC; namely, sta-
bilization is performed by assigning and shaping the energy
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dissipation of the time-delay closed-loop system. Assuming
the existence of a solution for the delay-free case, we show
first how to define and compute a reduced dynamics which
preserves the Hamiltonian structure of the original retarded
dynamics together with its dissipation. Then, an IDA-PBC
feedback designed over the reduced dynamics is shown to
asymptotically stabilize the retarded original dynamics at the
desired equilibrium. The designed feedback assigns, to the
reduced dynamics, the same Hamiltonian structure as the one
assigned to the delay-free feedback system. As an important
consequence of this choice, it is shown that the resulting
delayed feedback control system possesses a new port-
Hamiltonian structure which is directly parameterized by the
delay and which recovers the delay-free one as 7 falls to zero.
Several extensions are briefly sketched. A simple example is
exploited to illustrate the result and perform comparisons
with respect to classical prediction-based control laws.

The remainder of this paper is organized as follows. In
Section [} the problem is settled by providing recalls on
standard IDA-PBC and reduction-based control. In Section
the main results are given with some sketches on
the extension to further classes of time-delay systems. In
Section a simple mechanical LTI system is worked out
and simulations show the performances. Final remarks and
perspectives conclude the paper.

Notations. R and N denote the set of real and natu-
ral numbers including 0. For any vector z € R", |z]]
and z' define respectively the norm and transpose of z.
Given a full rank matrix B € matg(n,m) with n > m,
BT = (BTB)~!BT denotes the pseudoinverse, while B~ its
orthogonal complement verifying B+B = 0. Also, ker{ B}
denotes the nullspace of B. Given R € Matg(n,n) and z €
R", the weighted square norm is defined as ||z||% := 2" Rz.
I denotes the identity matrix of suitable dimension. Given a
twice continuously differentiable function S(-) : R” — R,
VS(-) represents its gradient vector.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, recalls on reduction for LTI dynamics
dynamics [14], [18] are provided together with standard re-
sults on IDA-PBC for delay-free port-controlled Hamiltonian
(pcH) dynamics [19].

A. The reduction approach for LTI dynamics

Consider a retarded LTI dynamics of the form
&(t) = Az(t) + Bu(t — 1) (1)

with z € R™, v € R™, m < n and 7 > 0 a constant and
known time delay. For simplicity, we assume B of full rank



and u(t) = 0 for t € [—7,0). As firstly proposed in [18]
with extension to the nonlinear context in [14], the problem
of controlling can be set over a simplified dynamics
which is free of delay. To this end, we introduce the so-
called reduction variable

t
n(t) = x(t) + / et=T=OABy(0)de 2)
t—T1

with initial condition 79 = x¢, which can be easily verified
to evolve with the reduced dynamics

0(t) = An(t) + Bru(t) 3)

where B, = e "4B. It results that the reduced dynamics
(3) preserves the same drift as with constant control
vector field parameterized by 7, B.. Accordingly, from
[18], all feedbacks stabilizing (3 ensure stabilization of (T).
Moreover, by construction, all properties of (I)) are preserved
by reduction as, for instance, passivity. This last aspect is
clarified by the following statement recalled from [14].

Proposition 2.1: Let the delay-free (with 7 = 0) dynamics
associated to (1)) be passive with output y = Cx, C = B' P,
and storage function H(x) = xT Pz, P » 0; then, the
following holds true:

1) the reduced dynamics (3) is passive with output
Y, (t) = Crn(t) with C; = B P and the same storage
function H(n) =n' Pn;

2) if for 7 = 0, the delay-free dynamics associated to
(1) is Zero-State-Detectable (ZSD), then the reduced
dynamics (3) with output y, (t) = C.n(t) is ZSD;

3) the retarded dynamics is passive with output

t

yr(x(t),us) = Cra(t) + Cret=T=OABy(0)de

t—7
with u; = 1w (0) = u(t+6) for € [—7,0) and storage
functional
t
Hy(a(t),u) = o(6) + [ 701 Bu(e)ae.
t—71

Remark 2.1: In case of discrete and uniform input delay,
the reduction variable (2) rewrites as 7(t) = e "4z(t 4+ 7)
for z(t + 1) = e™a(t) + [/ _eAt=Oy()dl. Accordingly,
reduction can be interpreted as the prediction of the state
brought backward in time through e~74 which defines the
free evolution.

B. IDA-PBC for LTI pcH systems

Consider a delay-free pcH system of the form
&(t) = (J — R)VH (z(t)) + Bu(t) 4)

verifying, by construction, for all ¢ > 0 the energy-balance
equality

H(x(t)) — H (o) = / yT (D)l — w(t)

where, for some P = 0, w(t) > 0 and y(t) = BT Px(t)
denote the dissipated energy and the corresponding passive

conjugate output, respectively and H(z) = = ' Pz is the so-
called Hamiltonian.

Let x, € ker{ B+ A} be a desired equilibrium to stabilize
and assign via IDA-PBC with v an exogenous input signal;
one seeks for a control law u(t) = ues(t) + ugi(t) + v(¢)
with: ues being the energy shaping component modifying the
total energy function to assign the desired equilibrium x, and
ug; the damping injection component achieving asymptotic
stability of the aforementioned point. The problem is reduced
to the computation of matrices F, Fy, Jq = —J;r, Ry =
R] = 0 and P, = P/ = 0 solutions to the so-called

matching equation
(Jd - Rd)VHd(x) (5)
—(J—=R)VH(z) — B(Fx + Fya,) =0

so that rewrites, in closed loop, as the pcH system
#(t) = (Ja — Rg)VHy(z(t)) + Bo(t)

with new Hamiltonian Hy(z) = (x — z,)" Py(x — z,) and
control v = Fx + F,x, + v. As a consequence, one gets
that the closed-loop pcH system is passive with respect to
the new output y4 = BT Py(z — 1), energy balance equality

Hy(2(t)) — Ha(xo) = / ud (DOl — wy(t)

and x, as a new (asymptotically) stable equilibrium. As well-
known [19], in the LTI case the matching equation (5) is
equivalent to the matrix equalities

(Ja— Ra)Py— (J — R)P — BF =0
- (Jd - Rd)Pd +BF, =0

with Py, Jg and R, verifying the so-called matching condi-
tion

B*[(Js— Ry)Ps— (J—R)P] =0 (6)

that is necessary for solvability of the problem. Under (6]
the control matrices are given by

F =B'[(J4— Ra)Ps— (J — R)P]

7
F, =—B'(J;— Ry)Py. @

Remark 2.2: Typically, one usually sets the dissipation
matrix as Ry = «BB' with k > 0, that is the one
resulting from damping injection from the new passive output
Ya = BTPd(l‘ - JZ*).

C. Problem formulation and outline of the results

From now on, we assume that is a port-Hamiltonian
dynamics of the form

(t) = (J — R)YVH(x(t)) + Bu(t — 7) )

with J = —J", R=R" = 0, Hxz) = 2" Pz, P = 0
and A = (J — R)P. In addition, we refer to (@) as the
corresponding delay-free system deduced from (§) when 7 =
0 under the following standing assumption which is typical
of the time-delay context.



Assumption 1: There exists a stabilizing IDA-PBC solu-
tion for the delay-free dynamics @); namely, there exist
Jg = —JdT, Ry = RJ =0, Hy(z) = (x — 2,) " Py(x — xy),
Py = PJ > 0 solution to the matching equality with the
feedback u = F'x + F,xz, + v with F' and F), in , which
asymptotically stabilizes z, € ker{B+A }.

In the following, we seek to assign a desired equilibrium
T, to the retarded system by assigning a desired energy
behavior in closed loop despite the effect of the delay 7 > 0.
In particular, exploiting reduction arguments and Assumption
[Il we show that a suitable IDA-PBC problem can be set and
solved over the reduced model to fulfill the specification over
the delayed pcH dynamics (8). In this sense, we underline
that Assumption [I]is not restrictive as IDA-PBC is generally
relying on the free evolution of the system rather than on its
forced component. The following items outline the design
procedure:

1) construct the reduced model associated to @I) that is
n(t) = (J — R)VH(n(t)) + Bru(t); )

2) set an IDA-PBC control problem over (9) to assign
and stabilize a suitably defined reduced equilibrium
N« € ker{B}P} uniquely corresponding to x, €
ker{B1A}; ie. compute F,, F., Ju, deT’T,
Ryr = Ry, = 0 and Py, = P/ > 0 solutions
to the reduced matching equation

(Jd,T - Rd,T)VHd,T (n)

- ('] - R)VH(U) - BT(FTT] + FTJI*)] =0. (10)

The closed-loop reduced-model gets the form

77(75) = (Jd,T - Rd,T)VHd,T(n(t)) + B.,—’U(t)

with reduced Hamiltonian Hy - (n(t)) = |ln — .3,
and u(t) = Frn(t) + Fronw + v.
Accordingly, the contributions of the paper are given below:

1) under Assumption [I| a solution to the set IDA-PBC
control problem is shown to exist for all 7 > 0 for the
reduced model @]); the defined feedback stabilizes the
suitably defined reduced equilibrium 7, € ker{ B+ A}
and preserves the same Hamiltonian, damping and
interconnection matrices as in the delay-free case
(Proposition [3.1));

2) the controller designed on the reduced model assigns
and stabilizes the desired equilibrium z, € ker{ B+ A}
of the original delayed dynamics (8) by assigning a
new Hamiltonian structure (Theorem [3.1)).

III. REDUCTION-BASED IDA-PBC
A. Main result

As mentioned above, the objective is to regulate the state
of the time-delay pcH dynamics () to a desired admissible
equilibrium z, € ker{B+A} through IDA-PBC over the
reduced dynamics @I) To this end, it is first necessary to
characterize the correspondence among admissible equilibria
z, € ker{BtA} for and admissible equilibria 7, €

ker{ B} P} for the reduced pcH dynamics (9). The result
below serves this purpose.

Lemma 3.1: For all fixed 7 > 0, each admissible equi-
librium x, € ker{ B+ A} of the original retarded system
corresponds to 7, = e~ ™z, as admissible equilibrium of
the reduced dynamics (9).

Proof: The result is proved by fixing B+ = Bte™
with A = (J — R)P and the (constant) feedback u,, =
— Bl A, assigning 1, = e~ 7" x,. Accordingly, by definition
of reduction in @), one gets that for all ¢ > 0

t
x(t) = e T, —|—/

t—T1

eA(t_Z)dEBTBiAe_TAx*
so that one needs to prove that, for all t > 0
r,=e¢ Az, + /t 6A(t7£)d£BTBiAe*TA:L’*
t—7
and thus the quality

t
I—e ™z, = /
t—7

By exploiting the definition of pseudo-inverse and the fact
that e~ 74z, € ker{B;}+ A} one gets

t t
/ eA(tfe)déBTBIAe*TAac* = /
t—1

t—1

eA(t*Z)dﬂBTBiAe*TAx*.

eA(t*Z)déAe*TAx*

-
= / eAdsAe T,
0

=(I—e ™),

so getting the result. [ ]
We are now ready to prove the following result.

Proposition 3.1: Consider the pcH dynamics affected
by a discrete input delay of length 7 > 0 with =, €
ker{B1A } a desired equilibrium to be assigned and stabi-
lized. Let (8)) verify Assumptionwith matrices Jg = —J J ,
Ry = R] = 0and Py = P/ = 0. Let (2) be the
reduction variable associated to (8) with reduced model (9)
and equilibrium n, = e~ ™, to be assigned. Then, the
reduced matching equation @[) is solved by Jy, = Jqg,
Rar = Ra, Ha-(n) = Ha(n) = (n — nx) " Pa(n — n.) and
the feedback law u(t) = Frn(t) + Fr, n. + v(t) with

F. =Bl[(Js— Ra)Pa— (J = R)P]  (lla)
E. =—Bl(J;— Ry)P, (11b)

making the closed-loop reduced model of the form
n(t) = (Ja — Ra)VHa(n(t)) + B-u(t). (12)

In addition, the closed-loop reduced dynamics (I2) with
output ya - (t) = B, Pa(n(t) — 1) is passive.
Proof: The proof works out by showing that Jg, Ry

and P, solve the reduced matching condition
B [(Jas = Raz)Par = (J = R)P]=0.  (13)

To this end and with a slight abuse of notation, setting
B = Bte™ with A= (J—R)P and Ay = (Jg— Ry) Py,



one gets Bi[Ay — A] = Bte™[A4 — A]. Rewriting now
e =1+ Y is0 :—,Al and exploiting, by Assumption
the equality B-A = B A, it is a matter of computations
to verify that BLe™A,; = B+ Aze™ for all 7 > 0, that
is B*A*A; = BT A" for all i = 0,1,.... This can be
proved by induction assuming that this holds for 7 > 0.
Accordingly, it is a matter of computations to check that
the i order equality rewrites as BLA'A; — BLA™! =
BLALFY — BEA = BL(AY — AT (Ag+ A) = 0 so that
BLAH A, — B+ A2 = B A2 — B A2 = 0 and thus
the result. [ ]

Remark 3.1: Tt is worth to note that the prediction-based
feedback u,(t) = Fa(t+71)+ Fix, with F, F as in (7) and
x(t +7) = e™n(t) solves the reduced matching condition
@ with Adﬂ— = (Jd,r_Rd,r)Pd,T = 6_TA(Jd—Rd)Pd€TA.
In particular, Jy, = e "4 J4e™, Ry, = e A Rze™ and
Py, = e~ ™A Pse™ that is neither symmetric nor positive
semidefinite in general. In addition, such prediction does not
yield an IDA-PBC control under reduction as not ensuring a
closed-loop pcH structure for (9) for J # 0.

Remark 3.2: A further solution to the reduced matching
equality (13) is provided by Py, = Py, Jar = Jg and
Ry, = k,B;Bl with k, > 0, that is the one resulting
from performing damping injection over the new passivating
reduced output 3, = B Py(n—1,). Such a solution assigns
to the closed-loop time-delay systems the damping matrix
Ry.=Ry=BB".

Proposition shows that, when IDA-PBC can be applied
to stabilize a desired equilibrium x, € ker{BLA} for the
delay-free pcH system (@), an IDA-PBC control can always
be computed over the reduced model in presence of input
delays. Although the structure of the closed-loop reduced
model is the same as the delay-free one, the corresponding
feedback laws are not. In addition, even more importantly,
the reduction-based feedback assigns different pcH and ener-
getic structures to the time-delay system (§)) with respect to
the delay-free case. Thus, the following question naturally
arises: what is the structure that the reduction-based IDA-
PBC feedback assigns to the original retarded dynamics (8)?
The answer is provided by the result below.

Theorem 3.1: Consider the pcH dynamics affected by
a discrete input delay of length 7 > 0 with z, € ker{B+A }
a desired equilibrium to be assigned and stabilized via IDA-
PBC. Let (8) verify Assumption with matrices J; = —JJ ,
Ri = R) = 0and P, = P} = 0. Then, the reduction-
based IDA-PBC feedback makes the system (8) a port-
Hamiltonian system of the form

i(t) = (Jg — Rq)VHy(x(t)) + Bo(t — )

with Jy :(37‘4(],16”1T =—J], Ry = eTARdeTAT = RJ >
0, Hy(z) = (z — ) Te™™ Pye "™ (z — x,) and asymp-
totically stable equilibrium at the desired z, € ker{ B+ A}
with A =(J — R)P.

Proof: To investigate this latter aspect, we consider the
delayed pcH dynamics under the reduction-based IDA-
PBC feedback in Proposition (computed for simplicity

(14)

at v =0)

i(t) = Ax(t) + B[BI(Aq — A)n(t — 7) — Bl Age™ ™z,
with A = (J — R)P and Ay = (Jq — Rq) Py. By exploiting
Remark [2.1] one gets n(t — 7) = e~ 74x(t) so getting
=Ax(t) + BBI[(Ag — A)e ™ x(t) — Age ™z, ]
=Az(t)+e™ e BBl [(Ag— A)e Az (t)—Age ]
=Ax(t) + e [(Ag — A)e T2 (t) — Age™™z,]
=" Age A (x(t) — ).

i(t

~—

The form above is a pcH dynamics with Hamiltonian
Hy(z) = (x—x,) e ™ Pge " (x—=z,) and new damping
and interconnection matrices J; = eTAJze™A = —JJ,
Rd = GTARdGTAT :R:{ > 0. |

Remark 3.3: Contrarily to the prediction discussed in Re-
mark [3.I] the proposed reduction-based feedback assigns
a new structure to the retarded pcH dynamics (§) with
new damping and interconnection matrices that are directly
parameterized by 7. However, as 7 — 0 the proposed
solution naturally recovers the delay-free one.

Remark 3.4: Along the lines of Proposition 2.1] and the
results in [14], for Ay = (J4— R4) Py the time-delay closed-
loop system (T4) is passive with respect to the output

Ya,r (€(t),v0) =B] Pa(a(t) — )
t
+ / B Petat=m=0y(p)de.
t—1

B. Further remarks and extensions

1) An insight on robustness analysis: Contrarily to
prediction-based feedback [20], reduction is well-known to
be robust with respect to uncertainties in the knowledge of
the delay. To this end, assume that 7 € (0, 7,] is unknown
but bounded by a known and constant 7,, > 0. In this
case, the pcH structure of the closed-loop feedback under
reduction-based feedback is not preserved. Still stabilization
of the desired equilibrium might still hold under w(t) =
F;, n(t) + F;, n. computed over the nominal reduction

t
n(t) = z(t) + / A= =0 By (0)de (15)
t—Tn
evolving with perturbed closed-loop reduced model
77(t) = (Jd_Rd)Pdn(t)+BFT1L (U(t—T) _n(t_Tn))' (16)

To investigate robustness of the closed-loop system (8]) under
the nominal reduction-based feedback it is hence enough to
investigate robust stability of the perturbed reduced dynamics
(T6). To this end, as commented in Remark [2.2] one can set
Rq = xBBT and look for x > 0 preserving stability of
and hence of () in closed loop despite the delay mistmatch.
This can be done exploiting standard Lyapunov-Krasovskii
arguments [21] rewriting (16) as

t—T

0(t) = (Ja— Ra) Pan(t) + BF,, / (0

t—Tn



with the functional

Vi) = Halo(0) + = / /@ li(s)[2dsde, e > 0.

Remark 3.5: As well known, prediction-based feedback
suffers from initialization issues as, setting z(¢) = x(t + 7),
one gets zg = z(7) = " xg. This is crucial when the delay
is uncertain since the initial condition for prediction cannot
be exactly fixed apriori. As underlined so far, this issue is
overcome by the reduction approach yielding 1y = zg.

2) Extensions to further classes of time-delay systems:
The proposed result applies to dynamics affected by multi-
channel delays described by

#(t) = (J — R)VH(x

—|—z:buZ — 1)

with 7;, > 0 for ¢ = 1,...,m. As a matter of fact, one
introduces the reduction and the reduced dynamics as

t
n(t) =z(t) + Z/f et=Ti=0Ab 4y, (0)dl

i=1
)+ Ze Tidp, i (t

Also, the case of dynamics affected by distributed delays
can be dealt using the proposed arguments. In particular,
considering the time-delay pcH dynamics

/B 0

one gets the reduction and the reduced dynamics

—|—/t /T =5 OAB(f)u(s)dlds
n(t) =(J — R)VH(n(t)) + /t i e “B(0)dlu(t).

i(t) =(J — R)\VH(n

#(t) = (J — R)\VH(x

Remark 3.6: Note that the proof of Lemma easily
extends the aforementioned classes of time-delay systems.
As a matter of fact, in case of one discrete and uniform
delay, such a proof might be simplified as follows: because
n(t) = e ™Ax(t + 1) and z, is an admissible equilibrium
assigned by a constant control u,, one easily gets n(t) =

Azt +71) = e 2, = ).
IV. A SIMULATED EXAMPLE

For illustrating the result we consider a simple mass-spring
LTI mechanical system of the form

(60)-(4 ) ()

with Hamiltonian H(q,p) = 53;p* + 3K¢% mass M >
0, stiffness K > 0 and ¢,p € R are the position and the
momentum of the mass. One computes the matrices

0 1 00 K 0
7= (Go) =0 )=o)

Letz = (¢p)" and z, = (gx 0) " be the desired equilibrium
to stabilize via IDA-PBC and reduction.

1) The delay-free design: When T = 0, standard delay-
free IDA-PBC applies with B+ = (1 0) and setting
Ha(g,p) = 530" + 5K (¢ — ), Pa= P, Jg=J and

0 0
Rd—<0 7“+/£>’ k> 0.

Accordingly, the feedback

uar(t) = —%p(t) + Kaq, (18)

asymptotically stabilizes the closed-loop equilibrium.
2) Reduction-based design: As 1T > 0, setting n =

(g m) € R o = —r/M, w = —ay/T—4u2/a?,

wp, = v/ K/M and computing

oA o [cOS(wT)+ 2 sin(wT)
—e ]
M =2 sin(wr)

)
|

— = sin(wT) )

cos(wT) — 2 sin(wT)
the reduced model gets the form of (9) with

[r— — 4 sin(wT)
T cos(wT) — Zsin(wr) )

At this point, the result in Theorem (3.1) applies by setting

N4 —or [cOs(wT) + Lsin(wr)
Nx = ") = aq«e w2 .
Np, M =2 sin(wT)

Bt =eoT (& sin(wr) — cos(wr) 57 sin(wT))

19)

_ 14+a2M?
andﬂr* Z2M2

the feedback law
u,(t) = — BIRaPr(t) —

sin® (wr)+cos? (wr)— 22 sin(wr) cos(wT),

B.J,f_(J — Rq) P, + v(t)
__ e [cos(wT) - gsin(WT)]np(t)

Br M

+ E(Kcos (wr) — é(Ka2 + (r
z_ w—) sin? (wr) —

o ((r + e
— 2Ka) sin(w) cos(w)) + v(¢).

3) Simulations: We compare the proposed reduction-
based control with standard prediction (as discussed in
Remark over (I7). Also, the delay-free closed-loop
system under the standard IDA-PBC (I8) is reported for
completeness. In all cases, we fix zog = (go po) ' = (=20 —
DT, u(t) = 0 as t € [-7,0), the desired equilibrium
z, = 2007, m =1, K =4, 7 =01,and x = 1
Two scenarios are considered: (7) the delay is exactly known
(Figure ; (i) the delay is small although uncertain (Figure
with 7 # 7,,. In the latter case, as the delay is unknown,
the prediction-based feedback cannot be exactly initialized
while this problem is overcome by reduction.

In case (i), both controllers get to successfully stabilize
the desired equilibrium after a small transient for ¢ € [0, 7)
in which the control is zero. However, in this particular
case performances ensured by the reduction-based IDA-PBC
control are significantly improved even with an acceptable
control effort. Also, the reduced-dynamics clearly shows that
the equilibrium to be stabilized for the reduction is shifted as
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Fig. 2. Small uncertain delay with 7 = 0.15 s and 7, = 0.2 s.

proved in Lemma [3.1] We underline that further simulations
show that, as 7 is small, performances under both prediction
and reduction are similar and satisfying. In case (i), the
reduction-based IDA-PBC control (computed at the nomi-
nal 7,) stabilizes the desired equilibrium despite the delay
mismatch with acceptable performances as well. However,
in this same scenario and even under small delay, prediction
fails to stabilize the required equilibrium. As a matter of
fact, as shown in Figure 2] the controlled dynamics does not
converge to the desired x, under prediction highlighting the
improved robustness ensured by reduction.

V. CONCLUSIONS

The problem of regulating the state of linear port-
controlled Hamiltonian systems under input-delays via IDA-

PBC has been considered. Assuming the problem solvable in
case of no delay, an IDA-PBC feedback has been constructed
based on reduction. Future works concern the extension of
this approach to nonlinear Hamiltonian systems, possibly,
under sampling using the concepts introduced in [22], [23].
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