
HAL Id: hal-03020503
https://hal.science/hal-03020503v1

Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Programming in style with bach (extended version)
Andrea Agostini, Daniele Ghisi, Jean-Louis Giavitto

To cite this version:
Andrea Agostini, Daniele Ghisi, Jean-Louis Giavitto. Programming in style with bach (extended
version). 14th International Symposium on Computer Music Multidisciplinary Research, Richard
Kronland-Martinet; Sølvi Ystad; Mitsuko Aramaki, Oct 2019, Marseille, France. pp.257-278,
�10.1007/978-3-030-70210-6_18�. �hal-03020503�

https://hal.science/hal-03020503v1
https://hal.archives-ouvertes.fr

Programming in style with bach

Andrea Agostin1, Daniele Ghisi2, and Jean-Louis Giavitto3

1 Conservatory of Turin, andreaagostini@conservatoriotorino.eu
2 University of California, Berkeley – CNMAT, danieleghisi@berkeley.edu

3 Sciences et Technologies de la Musique et du Son (STMS) – CNRS, IRCAM,
Sorbonne Université, jean-louis.giavitto@ircam.fr

Abstract. Several programming systems for computer music are based
upon the data-flow family of programming paradigms. In the first part
of this article, we shall introduce the general features and lexicon of
data-flow programming, and review some specific instances of it with
specific reference to computer music applications. We shall then move
the discussion to Max’s very peculiar take on data-flow, and evaluate
its motivation and shortcomings. Subsequently, we shall show how the
bach library can support different programming styles within Max, im-
proving the expression, the readability and the maintenance of complex
algorithms. In particular, the latest version of bach has introduced bell ,
a small textual programming language embedded in Max and specifi-
cally designed to facilitate programming tasks related to manipulation
of symbolic musical material.

Keywords: Programming paradigms, computer-aided composition,
Max, bach, bell

1 Introduction

In spite of the way it is advertised, its own Turing-completeness and the sheer
amount and complexity of things that have been done with it, programming in
Max is difficult. Whereas setting up simple interactive processes with rich graph-
ical interfaces may be immediate, it has been long observed that implementing
nontrivial algorithms is far from straightforward, and the resulting programs are
often very difficult to analyse, maintain and debug.

Several other popular programming languages and environments for com-
puter music, such as OpenMusic [1], PWGL [15] and Faust [19], share with Max a
superficially similar, but profoundly different, dataflow programming paradigm,
which makes them better suited for ‘real’ programming and less for setting up
highly interactive and responsive systems. This is reflected in the types of artistic
practices these systems are typically used for, and mirrors the oft-discussed rift
between composition- and performance-oriented tools in computer music [22].

We are convinced that this rift is by no means necessary or natural, and, on
the contrary, has proven problematic with respect to a wide array of practices
lying somehow between the two categories, such as extemporaneous, ‘intuition-
istic’ approaches to composition (including, but not limited to, improvisation),
sound-based and multimedia installations, live coding and more.

2 A. Agostini et al.

In this paper, we shall investigate this divide and its reasons from the point
of view of computational models, and consider how it can be bridged, or at least
narrowed, through the use of the bach package for Max [4].

2 Dataflow computational models

The concept of dataflow is an old one, dating back at least to [8], which first
introduced the idea of independent computational modules communicating by
sending data (discrete items) among directed links. Over the years, many kinds
of dataflow computation models have been developed. In this section, we shall
review some of them and how they apply to different languages and software
systems for computer music.

2.1 The dataflow model

The term dataflow refers to a whole family of execution models that can be
described by autonomous entities, called actors or processes interacting only
through links connecting their input and output ports4. An actors triggers a
computation according to the availability of data on its input ports and delivers
its results on its output ports. The sequence of data passing through a link make
up a stream and each value in the sequence is called a token. A token is sent
through an output port and received by one or more destination actors, each of
which retrieves the token through an input port. Often a dataflow graph (DFG)
defines a whole computation that must be iterated periodically on a sequence of
data (periodic dataflow). This is simply modeled by considering the stream of
inputs.

The different dataflow execution models differ in the static or dynamic nature
of the connection graph, the activation strategy of the actors, the capacity of
the links to temporarily store the data produced (FIFO buffer), and the type of
computation performed by each actor. By varying these parameters, the dataflow
model is able to describe, in a unified manner, execution models ranging from
electronic circuits to functional programming through audio graphs.

2.2 Homogeneous synchronous dataflow

One specific dataflow model is particularly useful, since it corresponds to the kind
of computations done in real-time signal processing: the synchronous dataflow
(SDF), also called the static dataflow. In this specific model, the graph is fixed
and the order in which actors trigger their computations does not depend on the
data that is processed (i.e., the value of the token).

In homogeneous SDF, an actor fires its computation when there is a token on
each of its input port and produces a token on each output port. In other word,

4 In the usual Max terminology, actors correspond to boxes (object or message) and
input and output ports corresponds respectively to inlets and outlets.

Programming in style with bach 3

the connections are FIFO of size one and the activation of actors never leads
to a buffer overflow. Homogeneous SDF corresponds well to audio graphs where
tokens correspond to audio buffers and actors to unit generators, delays, filters
and other effects. It also matches well the behavior of synchronous (clocked) elec-
tronic digital circuit: an actor is an electronic gate and a token is the value of the
voltage on a pin. A clock is used to acquire and deliver the tokens simultaneously
for all the gates.

2.3 Dynamic dataflow

The SDF model is not particularly expressive. A number of dataflow variants
have been developed that relax the constraints of SDF. We loosely refer to them
as dynamic dataflow (DDF). In DDF, the activation of an actor can be more
complicated and the firing strategy may change in time, for instance with some
internal state of the actor. The number of tokens produced can also vary on
each output ports. This makes possible to express conditional firing, i.e., an
actor triggers its computation only if the input token has a particular value.

For instance, the audio graph in Max5 is a SDF, while the control graph is
a DDF in which the firing of an actor is driven by the so-called ‘hot’ inlets, and
not by the availability of the incoming messages on all inlets. Which inlet is ‘hot’
may also depend on the specific data arriving in non-‘hot’ (or ‘cold’) inlets (as
for example in the switch box). Moreover, the activation of a box does not lead
necessarily to each of their outlets firing (as for example in the gate box). As
for patchcords, the ones connecting an outlet to a cold inlet do not store the
whole sequence of messages in transit before being consumed by the target, as
only the last one (i.e., the most recent) is kept until its consumption.

DDF is also needed to handle several rates in an audio graph, for instance
for the handling multimedia streams (audio and video).

2.4 Data-driven and demand-driven implementation strategies

Historically, there are two main approaches for the software implementation of
dataflow: the data-driven approach and the demand-driven one.

Data-driven. In the data-driven implementation, tokens travel in the intercon-
nection graph and fire according to the actors. The activation of the actors
propagates in the graph like a wave starting at the inputs and ending at the
outputs, i.e. actors that have no output ports and that are used to ‘deliver’
the result of the calculation (be it in the form of text, audio, MIDI data, image
display, etc.).

In SDF, tokens can be presented asynchronously to the input ports but the
actors fire only when all their inputs bear a token. If the graph is homogeneous,
then a token is produced on each of the output ports and, subsequently, actors
that lie at a distance 1 from the inputs are activated, and so on. Therefore, the

5 We shall talk diffusely about Max in the later chapters, and only introduce it as an
example here for readers already familiar with it.

4 A. Agostini et al.

functioning of the dataflow graph in time can be seen as a sequence of ‘rounds’,
that is, transactions in which the first token of all input streams is consumed
and a token is produced for all output streams (hence the term “synchronous”).
In this context, the order of activation of the actors can be fixed a priori, through
a static analysis of the graph itself, and can be computed by a simple topological
sort of the graph, as long as it is loop-free (also see below).

Both Max’s and Pure Data’s audio and control graphs are implemented using
a data-driven approach. Once the user has laid out graphically the audio graph,
the program analyses it statically and, if there are no errors (typically resulting
from a feedback connection) an internal representation of it is generated, also
establishing a fixed sequence of activations. Things are different for the control
graphs: since their behavior depend on the data they receive, their scheduling
cannot be fixed statically.

Demand-driven. The demand-driven approach is more convenient to handle
DDF. In this approach, the outputs of the graph require a token from their
connected actors, which in turn transmit the request to their inputs, so that a
wave of requests propagates through the graph, from its outputs to its inputs.
Each input of the graph answers the request by sending the requested token,
which is then processed, creating a second wave of computations from the in-
puts to the outputs.

The demand-driven approach is interesting because it may handle easily non-
homogeneous dataflow graphs. It is not by chance that it was chosen a model for
the Patchwork family of tools, OpenMusic and PWGL. For instance, in Open-
Music’s dataflow graphs, each node implements a function. Functions can be
non-strict, i.e., they may use only part of the inputs to produce the output.
An example is the conditional operator if that returns the value of one of its
two inlets following the boolean value present on a third inlet. Handling cor-
rectly non-strict functions is necessary for defining recursive functions: if the
conditional operator were strict, the retrieval of both inputs would be required
and the computation of recursive functions would loop forever, since even in the
terminal case all branches would have been computed.

The demand-driven approach makes the implementation of non-homogeneous
dataflow easier. In these models, the firing of an actor may consume an arbitrary
number of token on each input, and may produce an arbitrary number of tokens
on each output. In this case, an actor would request to its inputs the number
of tokens it needs. This can be used to simplify the handling of multirate audio
graphs.

2.5 The Kahn principle: reconciling the operational and the
algebraic view

The previous considerations sketch an operational view of the functioning of
a dataflow graph: the graph is a machine similar to an electrical circuit and
the functioning of the graph amounts to moving tokens along the links and to
transform the values of the tokens when passing through an actor.

Programming in style with bach 5

Another, more abstract, view of the graph has an algebraic flavour. The
idea is to assign a variable to each connection from an output port to an input
port and to describe the interaction graph by a set of equations linking such
variables — one equation for each output port. We can assume that there is
only one output port labeled with variable y for an actor a.6 Then, the equation
y = a(x1, x2, . . .) represents the relationships between the inputs x1, x2, . . . and
the output y (cf. the diagram below, at left). The symbol a refers to the behavior
of actor a and there are several mathematical ways to model this behavior. For
instance, a can be a function of the tokens. In this case, the variable denotes the
“current token value” instead of the entire stream.

a

x1 x2 · · ·

y1

y1 = a(x1, x2, . . .)

∗ ∗

+

g1 s1 g2 s2

y1 y2

y3

y1 = g1 ∗ s1
y2 = g2 ∗ s2
y3 = y1 + y2

With this interpretation, the set of equations associated to a DFG can be inter-
preted as an ordinary set of equations between real values. The right side of the
diagram above models a simple two-input mixer, with gain g1 and g2. Notice
that the set of equations is a set of fixed point equations, that is, each equation
takes the form

variable = expression-involving-variables .

The interesting point is that, in this example, solving the algebraic equations
associated with the DFG gives the same result as the operation of the DFG in
terms of tokens movement and tokens transformation (the operational view).

However, restricting the behavior of a node to a function of the current input
tokens is too restrictive: for instance, this mathematical model cannot represent
a node whose behavior depends of an internal memory, like a delay (see next
section). But the actor operation in the example above can be interpreted as
function acting on entire streams, the operators ∗ and + being the point-wise
multiplication and the point-wise addition of the stream’s elements.

A DFG where the behavior of each actor can be modeled as a continuous
function of the entire input streams to the output streams is said to be pure. It
has been postulated by Kahn [14], and proven only ten years later by Faustini
in [11], that the operational behavior of a pure DFG computes the least fixed
point solution of its associated set of equations. The understanding of this result
requires to define precisely what is meant by continuous and least. Intuitively,

6 If an actor has multiple output ports, it can be divided into as many actors as
outputs, each taking the same inputs and having only one output.

6 A. Agostini et al.

we can say that a set of equations may have zero or more solutions. This result
states that there is at least one solution, and that the graph computes the stream
solution that is minimal according to a carefully chosen stream comparison or-
der [16].

2.6 Feedback loops

The previous example of fixed point equations is not very interesting: these equa-
tions remain simple because there is no circular dependencies between variables.
Fixed point equations of this kind are easily solved by substituting known vari-
ables (here g1, s1, g2 and s2) in the expressions at the right hand side of the
equations and repeating this process until there is no further unknown variable.
In the example, the first iteration defines variables y1 and y2 and the second
iteration defines y3.

+

delay

x1

x3

x2

{
x2 = x1 + x3

x3 = delay(x2)

The Kahn principle is valid for any
pure DFG, including DFG having feed-
back loops. In the example at left, x1

is an input of the DFG and the oper-
ator delay is on the feedback loop go-
ing from the output of + to its input.
Here delay is a function shifting the en-
tire stream s = v0 · v1 · v2 · . . . in time:
delay(s) = 0 · v0 · v1 · v2 · Opera-
tionally, the delay is a memory initially
filled with 0.

When a token is present at the input, the delay outputs the value in the
memory and then update the memory with the input value. One can convince
oneself that this DFG computes the sum of its successive inputs.

The corresponding equations exhibit a self-dependency: if we substitute the
definition of x2 into the right hand side of x3, we get x3 = delay(x1 + x3) which
cannot be solved by substituting the variables but we can look instead at what
happens at the level of the stream’s elements: let the stream xi be x0

i · . . . ·x
j
i · . . .

x0
3 · . . . · x

j
3 · · · · = 0 · (x0

1 + x0
3) · . . . · (xj

1 + xj
3) · . . .

that is,
x0
3 = 0, xj+1

3 = xj
1 + xj

3

or, in other word, x3 is the running sum of the successive values of x1.

2.7 Time in dataflow: synchronous languages

In the previous example, one may notice that delay is a function acting on
stream, not a function acting on tokens. This allows the specification of behaviors
implying a transfer of information from one token to the next one. However, this
is not enough to model the behavior of a node acting to merge to streams.

Programming in style with bach 7

merge

x1 x2

y

The merge actor simply transmits the tokens that present them-
selves at its inputs towards its outputs, in their arrival order.
The first problem is to decide what happens when tokens are
simultaneously available on the two inputs. One may chose to
transmit the token on the first input and to drop the second to-
ken. This way, the merge operator has a deterministic behavior.
But even so, it cannot be modeled as a stream function.

The reason is that SDF does not provide enough information on the passing of
time. For instance, suppose that stream s represents the value 0 produced every
two seconds starting from date 0, while s′ represents the value 1 produced every
two seconds, starting from date 1. Then merge(s, s′) has for result the stream
0 · 1 · 0 · 1 · . . . Let s′′ be the stream representing the value 1 produce every four
seconds, starting from date 1, then we have merge(s, s′′) = 0·1·0·0·0·1·0·0·0·1·. . .
even if s′ = s′′. Obviously, the lack of temporal information in the stream makes
the stream s′ and s′′ indistinguishable, even if they model two different processes
and so there is no function merge on streams.

The problem was recognized in the real-time programming community and
lead to the development of synchronous languages like LUSTRE [13]. In this
dataflow programming language, the idea is to “align” each stream so the pro-
duction of the ith value of any stream takes place on the same date. This is
achieved by introducing a special token value ⊥ meaning “an actual value is not
available”. With this token, the synchronized streams s′ and s′′ are presented
by:

s′ = ⊥ · 1 · ⊥ · 1 · ⊥ · 1 · ⊥ · . . .
s′′ = ⊥ · 1 · ⊥ · ⊥ · ⊥ · 1 · ⊥ · . . .

The Kahn principle holds for fixed point equations on these synchronized streams
and more actors can be specified as stream functions.

2.8 Declarative programming

If we insist on Kahn’s principle, this is because it leads to a declarative program-
ming language. It is commonly said that that declarative programming focuses
on what the program should accomplish (whereas imperative or procedural pro-
gramming focuses on how the program should achieve the result). This descrip-
tion is rather vague, and a more effective way to look at it is to characterize
declarative programming languages as programming languages making possible
equational reasoning, where an entity may always be substituted by its defi-
nition. In other word, the statement of the language can be seen as a set of
mathematical definitions, that is, a set of fixed point equations, and program
execution amounts to finding a solution to these equations.

In this context, a variable in a program is handled exactly as a mathematical
variable: a reference to a well defined although possibly unknown value. This
departs considerably from the notion of variable in an imperative program where

8 A. Agostini et al.

a variable refers to a memory location which can holds various values during the
program execution.

By definition, declarative programming enjoys transparential referency : any
expression can be replaced with its corresponding value without changing the
program’s behavior [24].

A program becomes a mathematical object that can be manipulated using
classical mathematical methods, for instance to prove program properties for
efficient compilation, to replace an expression by an equivalent expression less
costly to compute, to rearrange program computations much more freely, possi-
bly to execute some tasks in parallel.

The Kahn principle give us a tool to solve some equations on streams. It
also allows us to reason algebraically on the operational properties of a dataflow
program.

3 Dataflow and computer music programming languages

The previous section may seem very technical but they have far reaching con-
sequences in the realm of computer music programming languages. Several lan-
guages and systems, such as OpenMusic, PWGL and Faust, are based upon more
or less pure SDF:

– The core of OpenMusic and PWGL is a demand-driven implementation of
a pure dataflow. However, the language embeds some imperative features
that are useful for interacting with users (e.g., fixing some computed value
to be reused in later evaluation). Interestingly, a specific version of OpenMu-
sic, OM#, extends the demand-driven execution model towards an hybrid
data- and demand-driven execution model which simplify considerably the
programming of reactive system [5].

– Faust [18] is a perfect example of data-driven, pure synchronous dataflow.
Equational reasoning is heavily used in the Faust compiler, for code gen-
eration (by program transformation) but also for the automatic parallelisa-
tion [20].

– Synchronous programming—which involves synchronous streams, either in
the context of dataflow or in the context of imperative languages—is the
model embraced by signal processing languages like CHUCK [25] or KRO-
NOS [17].

3.1 Dataflow programming in Max and Pd

As previously mentioned, Max and PureData implement two different dataflow
systems, respectively devoted to audio signals and control messages. The earliest
versions of Max only implemented the former system, as Max itself had been
originally conceived as a tool for building interfaces controlling external audio
hardware. The audio system was only added to Max in the late 1990s, and
was so distinctly separated from the ‘core’ of Max itself that it used to be sold
separately under a different name, MSP.

Programming in style with bach 9

The Max audio graph is a relatively simple case of pure SDF, whose func-
tional nature is somewhat less explicit than that of Faust, but not too different
from it. Our discussion will only focus on the control graph, its significantly
different paradigm and the consequences this bears with respect to the different
applications Max lends itself to, with a specific focus on the implementation of
compositional processes.

In what follows, we shall assume in the reader a basic, practical knowledge
of Max, and only review some fundamental concepts when needed.

A Max patch can be seen as a set of nodes working asynchronously with
respect to each other: if, when and how each module ‘fires’ depends on the data
processed, and, generally speaking, only one message can traverse the patch at
any given time. This means that nodes with more than one input link must have
mechanisms for storing data for later use. This is accomplished through the so-
called ‘hot’ and ‘cold’ inlets (that is, input links in the Max jargon): when a hot
inlet receives a message, it performs its computation and delivers the result; but
when a message is received in a cold one, it gets stored for later use and nothing
else happens. Most Max objects have at least one hot inlet, and many have one
or more cold inlets.

This structure, which actually involves many other details and is not without
exceptions, has a profound consequences: there is no transparential referency in
the control DFG.

For example, multiple links (‘cords’ in the Max jargon) can be connected
to a single inlet corresponding to an implicit merge. But there is no notion of
synchronous stream in Max: there is no notion of timestamp that can be used
to “align” the streams values and to recover transparential referency. Another
example of non-transparential referency: sending the same message, that is, out-
putting a token on some link, does not achieve the same effect if done on the
timer thread or on the main thread (because of different message priorities, its
subsequent handling may differ).

3.2 Pros and cons of different computational models

Max’s computational model is motivated by the fact that, unlike the other sys-
tems described above, it was not conceived as a programming language but, in
its own creator’s words [21], as a musical instrument. With respect to this end,
Max has the merit of being extremely economical in terms of its basic principles
and quite adaptable to very different use cases.

On the other hand, as hinted at above, representing nontrivial algorithms
in Max is often more complicated than with other systems. Two of the au-
thors became painfully aware of this complicatedness while working at the cage
package [2], which implements a comprehensive set of typical computer-aided
composition operations. cage is entirely composed of abstractions, and during
its development the shortcomings of Max programming became so evident that
the seeds for the work presented in this article were planted.

The reasons for this difficulty are multiple, and include the following:

10 A. Agostini et al.

– The greater freedom Max grants in building the program graph easily leads
to far more intricate patches than functional dataflow models, with spaghetti
connections that can grow very hard to analyse.

– Typical Max patches often have their state distributed through many objects
whose main, individual purpose is not data storage.

– Max lacks, or implements in quite idiosyncratic ways, some concepts that are
ubiquitous in modern programming languages, such as complex, hierarchical
data structures, iteration, data encapsulation, functions and parametrization
of a process through other processes.

On the other hand, Max allows to incorporate, on top of its basic paradigm,
traits reminiscent of various programming styles, such as imperative, object-
oriented and functional. Moreover, it includes various objects enclosing entire
language interpreters, thus allowing textual code in various languages to be
embedded in a patch.

These features may prove useful when nontrivial processes have to be imple-
mented, as is the case when working in contexts like algorithmic and computer-
aided composition. Whereas Max was not conceived with these specific applica-
tions in mind, it quickly became clear that it could be a valuable environment
for them, and several projects have been developed in this sense [26,23,10]. We
shall focus on one of them, the bach package, which has been conceived and is
maintained by two of the authors.

3.3 The bach package

The bach package7 for Max is an open source library of more than 200 modules
aimed at augmenting Max with advanced capabilities of symbolic musical repre-
sentation. At its forefront are two objects called bach.roll and bach.score,
capable of displaying, editing and playing back musical scores composed of
both traditional notation and arbitrary time-based data, such as parameters for
sound synthesis and processing, textual or graphical performance instructions,
file paths and more.8

One of the main focuses of bach is algorithmic generation and manipula-
tion of such scores. To this end, bach implements in Max a tree data structure
called llll (an acronym for Lisp-like linked list), meant to represent arbitrary
data including whole augmented scores. bach objects and abstractions exchange
lllls with each other, rather than regular Max messages, and their majority is
devoted to performing typical list operations such as reversal, rotation, search,
transposition, sorting and so on.

Generally speaking, bach objects abide by the overall design principles and
conventions of Max, but it should be remarked that, whereas standard Max
objects can control the flow of lllls in a patcher just like they do with regular Max

7 www.bachproject.net
8 bach.roll and bach.score differ in that the former represents time proportionally,

whereas the latter implements a traditional representation of time, with tempi, metri,
measures and relative temporal units such as quarter notes, tuplets and so on.

Programming in style with bach 11

messages, they cannot access their contents unless lllls are explicitly converted
into a Max-readable format, which on the other hand has other limitations (for
a detailed explanation, see [4]). Thus, bach contains a large number of objects
that somehow extend to lllls the functionalities of standard Max objects. For
example, whereas the zl.rev object reverses a plain Max list, the bach.rev

object reverses an llll by taking into account all the branches of the tree, each
of which can be reversed as well or not according to specific settings. Whereas
it is possible to convert an llll into the Max format and reverse it with zl.rev,
in general the result will not be semantically and syntactically correct.

Since its beginnings, bach has been strongly influenced by and related to
a number of other existing projects: for an overview of at least some of them,
see [4]. The synthesis of different approaches that lies at the very basis of the
conception itself of bach has been validated by a large community of users, who
have developed many artistic and research projects in several domains9, and by
the fact that it provides the foundation for the cage and dada10 libraries [12].

In the following sections, we shall review a few programming styles and ap-
proaches and see how bach can be helpful with adopting them in Max: namely,
we shall show how some fundamentally imperative, functional and objected-
oriented traits of Max can be leveraged through the use of specific bach objects
and design patterns; moreover, we shall discuss a recent addition to bach, that
is, a multi-paradigm programming language called bell and meant to facilitate
the expression of complex algorithms for manipulating lllls.

4 Different programming styles and approaches in Max

4.1 Imperative approach

It has been observed that Max is essentially an imperative system in disguise [9]:
as stated before, any nontrivial program in Max requires to take care of states
and the order of operations, and analysing even a moderately complex patch can
only be done by following the flow of data and the evolution of states over time.
This is complicated by the fact that many objects whose purpose is carrying
out specific operations also maintain a state that can be used to store values
for later use. For example, most arithmetic operators have two inlets: the left
one, called hot, sets the first term of the operation and triggers the calculation;
the right one, called cold, only sets the second term of the operation. So, the
typical way to perform, say, a sum of two numbers is first setting the right term,
and then the left term, thus calculating the result. This somewhat idiosyncratic
design can be leveraged to perform more complex tasks in quite a synthetic way.
For example (see Fig. 1), a typical way to build a running accumulator is to feed

9 The website of bach showcases some interesting works that have been developed with
the library, mostly by people independent of its developers.

10 The dada library contains interactive two-dimensional interfaces for real-time sym-
bolic generation and dataset exploration, embracing a graphic, ludic, explorative
approach to music composition.

12 A. Agostini et al.

each new number to be accumulated in the hot inlet of a + operator, and feeding
back the result in the right inlet, so as to have it ready to be summed to the
next incoming value. Likewise, a differentiator can be built by sending each new
value to the hot inlet of a - object first and the cold inlet immediately after,
so that it is ready to be subtracted from the next incoming value. Whereas this
may be convenient for such simple cases, it can become extremely complicated
as the complexity of the problem grows. It is easy to build patches in which state
is distributed into many seemingly random objects, with spaghetti connections
that can only be made sense of by following attentively the flow of every bit of
information through the patch graph.

Fig. 1. The typical design of a simple accumulator in Max: the int module stores the
current number in a hidden state; when the top button is clicked, the state is output,
incremented, and stored in the int module anew. Notice that, as a general rule in Max,
the internal state is hidden from the user: at the moment in which the screenshot
was taken the internal state had been updated to 8 (as the bottom number displays)
although the argument of the int module still shows ‘0’, which represents the initial
state. Note also that the functionning here is asynchronous and controled through hot
and cold inlets which differs from the synchronous functioning of the DF accumulator
in sect. 2.6

On the other hand, it is possible to make this imperative style more explicit
by adopting some good practices, like widely using specific objects (such as
trigger and bangbang), that can help with keeping the evaluation order under
control. Moreover, Max contains two objects whose only purpose is holding data
associated with a name: value and pv (for ‘private value’), whose role can be
seen as corresponding to that of variables in traditional imperative programming
languages. Each instance of those objects has a name, and every time it receives
a piece of information it retains and shares it with all the other objects with
the same name. It is subsequently possible retrieve the stored data from any of
them. The value and pv modules differ in their scope: the former’s is global,
that is, data are shared through all the open patches in the Max session, whereas
the latter’s is local, in that data are only shared within the same patcher or its
subpatchers. Considering the examples in some widespread textbooks [6][7][26]
and the Max documentation, as well as some informal reckoning of the patches
that users share on the official Max forum, it seems to us that these objects are

Programming in style with bach 13

seldom used. One likely reason is that they are virtually never necessary, and
tend to make patches larger and slightly less efficient. On the other hand, by
combining value and pv with the aforementioned sequencing objects, it is pos-
sible to use Max in a much more readable, essentially imperative programming
style.

bach implements its own variants of these objects, respectively named
bach.value and bach.pv. Besides dealing correctly with lllls, they can open
a text editing window if double-clicked, allowing to view and modify the data
they hold. Moreover, bach contains an object called bach.shelf, which acts as
a container of an arbitrarily large set of lllls, each associated to a unique name.
bach.shelf objects can be themselves named, thus defining namespaces: this
means that lllls associated to a name within one named bach.shelf object will
be shared only with other bach.shelf objects with the same name. Although
still somewhat crude (it might be interesting, for example, allowing non-global
namespaces), this is a way to improve data localization and data encapsulation,
and reduce the proliferation of storage objects in complex scenarios.

4.2 Object-oriented approach

The fact that a Max program is built of independent blocks responding to mes-
sages they send to each other in consequence of callbacks triggered by events
gives it a strong object-oriented flavour, and the Smalltalk influence is both ap-
parent and declared. At a lower level, in fact, each Max object in a patch is an
instance of a specific class, with member variables containing the object’s state
and methods roughly corresponding to the messages it accepts for modifying
and/or querying the state.

The two main bach editors, bach.roll and bach.score, comply with this
object-oriented approach. However, a distinction can be made about the kinds
of messages they accepts: some control and query the object’s appearance (back-
ground color, zoom level, etc.), whereas others are dedicated to the direct man-
agement of the editor’s content.

In fact, there are several ways to modify a score. One of the simplest involves
dumping its parameters from some outlets, modifying them via appropriate Max
and bach modules, and feeding the result into a different editor object.

In contrast, one can send direct messages to the editor, asking for specific
elements of the score to be created or modified through the so-called bach in-
place syntax, with no output from the object outlets (unless explicitly requested).
The operations are immediately performed and the score is updated (see Fig. 4).
These messages enable the creation, the edition and the deletion of individual
notation items, such as a single measure or a single note, and can actually be seen
as methods of the items themselves, arranged according to a precise hierarchy
and sharing a certain number of common properties (such as having a symbolic
name, being selectable, etc.).

This mechanism is strongly inspired by an object-oriented approach: refer-
ences to the notation items to be modified are acquired via a selection mech-
anism, and then messages are sent to them. A set of items can be selected

14 A. Agostini et al.

Fig. 2. An implementation in strict imperative style of the sieve of Eratosthenes, an
algorithm for finding prime numbers. The patch is a direct translation of the Python
code shown in the box. We have chosen not to write very idiomatic Python code for
making it closer to pseudocode. In the patch, we have avoided — among the other
things — storing data in the cold inlets of objects: every piece of data meant to be
reused is stored in pv objects, from which they are retrieved at need. The result is quite
redundant, but the structure of calculation is clear.

Programming in style with bach 15

Fig. 3. A more synthetic implementation of the sieve of Eratosthenes. Compared to
the example of fig. 2, the patch is more compact but also much less readable.

graphically, or through a query in the form of a message such as sel note if

voice == 2 and pitch % C1 == F#0, and then modified by means of messages
such as duration = velocity * 10 . Most musical properties can be modified
in this way, and the expressions determining the assignation support a standard
set of predefined variables, capturing the current state of the object (onset,
cent, duration, velocity, index, part, grace, and so on).

In fact, this kind of approach allows much more complex operations than the
ones described here, as there are many classes of notation items, each having
a large number of properties and related messages. In spite of the richness of
the data it can manipulate, though, the in-place syntax is not very flexible, but
there are plans to extend it through the bell language (see below).

16 A. Agostini et al.

Moreover, there are available methods to perform routine tasks such as copy-
ing/pasting score content or slot11 information, inserting or deleting pitch break-
points, modifying portions of score, snapping items to a temporal grid, making
selection monophonic, adding or modifying slot content, renaming, distributing
elements evenly in time, and so on. Notation objects send notifications whenever
their state is changed, so that any of the aforementioned methods can be also
triggered by user operations on the score, in a reactive way. Some of these mes-
sages work in conjunction with the playback system, so that users can, among
other things, retrieve properties of the currently played notes or move the play-
back cursor.

Fig. 4. A very simple example of in-place modification: notes belonging to the second
voice and whose onset lies before the middle of the second measure are selected and
transposed up a perfect fifth (the image shows both the state of the score before and
after the click on the message).

4.3 Functional approach

Max shares some similarities with functional languages, mostly by handling val-
ues through a variety of nodes implementing functions on these values. It is then
possible to build patches that somehow behave functionally, and whose appear-
ance is extremely similar to that of equivalent ones in a functional graphical
system such as PWGL. bach extends the functional traits of Max in a few areas.

As hinted at before, it implements the llll , a tree data type quite similar to a
Lisp list, and provides a large number of modules for dealing with lllls. Although,
of course, list operators are not inherently functional, they are quite customary
in functional languages, and the corresponding bach objects can be connected in
a way corresponding to the composition of list functions in functional languages
such as Lisp or Haskell.

Secondly, generalized versions of functions such as sort and find require some
way to specify, respectively, a custom ordering or an arbitrary search criterion.
In several languages, these generalized functions are conveniently implemented
as higher-order functions, i.e., functions taking other functions as arguments.

11 Slots are containers of arbitrary data attached to notes and chords.

Programming in style with bach 17

This requires to handle functions like ordinary data. A Max patcher lacks the
concept of function, but several bach objects implement a design pattern called
the lambda loop (see Fig. 5), whose role is somehow akin to that of higher-order
functions.

A lambda loop is a patching configuration in which one or more dedicated
outlets of a module output data iteratively to a patch section, which must cal-
culate a result (either a modification of the original data, or some sort of return
value) and return it to a dedicated inlet of the starting object [4].

Lambda loops are used by some bach modules directly inspired by functional
programming practices, such as bach.mapelem (performing a map operation)
and bach.reduce (recursively applying a binary function on elements); all these
modules can be helpful to translate programs conceived functionally into Max
patches. The number of modules taking advantage of this design pattern is,
however, much larger, and include basic operators such as bach.sieve (only
letting some elements through) and bach.sort (performing sort operations), but
also advanced tools such as bach.constraints (solving constraint satisfaction
problems) as well as some of the modules in the cage package.

5 Textual coding

The approaches described so far are based on the idea that individual objects
carry out elementary operations, and they are connected graphically so as to
build complex behaviors.

Fig. 5. The cross-connected and loop-connected patch cords attached to bach.mapelem,
bach.sieve, bach.sort and cage.timewarp modules form several instances of the so-called
lambda loop. The left-side example should be straightforward. In the right-side ex-
ample, the temporal distribution of events in a musical score is altered through the
provided transfer function, with time on the X axis and speed on the Y axis. At a su-
perficial level, patches like these appear to be quite similar to how the same processes
might be implemented in a functional dataflow system.

18 A. Agostini et al.

A different, but not incompatible, point of view is embedding an algorithm,
even a potentially complex one, into a single object by means of textual coding,
and subsequently insert it into a patch. In graphical, Lisp-based systems such
as OpenMusic and PWGL, this is easily accomplished by inserting graph boxes
containing Lisp code in the patcher.

The corresponding, native way to do the same in Max is writing an external
object in C. Whereas this was originally meant to be a part of the regular
Max workflow, it is undoubtedly a quite complicated task for today’s average
Max user, requiring to master the C programming language and the compilation
chain. Moreover, the write-test-debug cycle requires to restart the whole Max
environment at every modification made to the object, and errors in the code are
not unlikely to crash Max. Finally, unlike what happens in OM and PWGL, the
code for a Max object is required to include a quite heavyweight infrastructure
taking care of the communication with the Max environment and only remotely
related to the actual problem meant to be tackled.

As expressing algorithms through textual coding can be quite convenient but
the C API has the aforementioned drawbacks, over the years various other pro-
gramming languages have been embedded into Max through higher-level APIs,
including Java, JavaScript, Lua, all included in the Max distribution. Although
very effective for various kinds of operations, these bindings are not optimal for
interacting with bach, for a number of reasons that are detailed in [3] and mostly
amounting to two areas:

– As mentioned before, the all-encompassing data structure of bach is the llll ,
which is not easily expressed in any of the above languages.

– These bindings require some pieces of quasi-boilerplate infrastructure, such
as the explicit management of inlets, outlets and messages sent to the en-
closing object, that make the writing of code significantly more complex,
compared to the ease and directness of embedding Lisp code in Open Music
and PWGL.

On the other hand, Max contains a family of objects, namely expr, vexpr
and if, that allow defining textually mathematical expressions and simple condi-
tionals which might otherwise require fairly complicated constellations of objects
in a patch. bach adds another member to the family, called bach.expr, allowing
to define mathematical expressions to be performed point-wise on lllls.

Whereas the expr family syntax is not a full-fledged programming language,
it can be seen as the basis for one. We therefore decided to include in the latest
release of bach a new object to the family, called bach.eval, implementing a
new, simple programming language conceived with a few, conceptually simple
points in mind:

– Turing-complete, functional syntax, in which all the language constructs re-
turn values, but also including imperative traits such as sequences, variables
and loops.

– Full downward compatibility with the expr family.

Programming in style with bach 19

– Inclusion of list operators on lllls respecting, as far as possible, the conven-
tions and naming of the corresponding bach objects.

– Implicit concatenation of elements into lllls, meaning that by simply juxta-
posing values (be they literals, or the result of calculations) they are packed
together into an llll . In this way, a program can be seen as an llll inter-
mingled with calculations, not unlike what happens by combining the quote

operator and unquote macro in Lisp.
– Maximum ease of embedding of the object into a Max patcher, with, among

the other things, no need for explicit management of inlets and outlets.

The resulting language is called bell (standing for bach evaluation language
for lllls, but also paying homage to the historic Bell Labs). A detailed description
of its syntax can be found in [3], whereas, for the scope of this article, a few
examples should suffice (see Fig. 6, 7 and 8).

bell code can be typed in the bach.eval object box or into a dedicated text
editor window, loaded from a text file and even passed dynamically to the host
object via Max messages.

Fig. 6. A comparison between an llll manipulation process described through a snippet
of bell code (in the bach.eval object box) and the corresponding implementation
within the standard graphical dataflow paradigm of Max. The code should be mostly
straightforward for readers familiar with the bach library and a textual programming
language such as Python, considering that the [...] paired operator encloses one
or more elements into a sublist, according to the general syntax of lllls.

The intended usage paradigm of bach.eval is similar to that of the expr
family: bach.eval objects are meant to carry out relatively simple computa-
tional tasks, and to be disseminated around the patcher among regular bach and
Max objects taking care of the UI, MIDI, DSP, event scheduling and so on.

Snippets of bell language can also be passed to other objects for fine-tuning
their behavior, as a replacement for lambda loops. Moreover, an intended (albeit
not straightforward) development is to allow bach.score and bach.roll to be

20 A. Agostini et al.

Fig. 7. A snippet of bell code approximating a list of midicents to the nearest semitone,
and returning the distances from the semitone grid from a different outlet. Here, the
code has been typed in a separate text editing window (shown on the right). The $o1

and $o2 pseudovariables assign results to the extra outlets declared in the bach.eval

object box. The main, rightmost outlet returning the actual result of the computation
(which, in this example, is the last term of the sequence defined by the ; operators,
that is, the value of the $l variable as passed to the first extra outlet) is left unused
here. The language has several other features not shown here, including named and
anonymous user-defined functions with a rich calling mechanism.

Fig. 8. An example of usage of bell in combination with bach.roll’s in-place syntax:
100 notes are generated in the first voice with random onsets (between 0 and 2 seconds)
and random pitches (between middle C and the C two octaves above, on a tempered
semitonal grid); then all C’s, C]’s and D’s are selected (i.e. notes whose remainder
modulo 1200 is less than or equal to 200), assigned to the second voice, transposed two
octaves below, remodulated with a velocity crescendo and distributed equally in time.

Programming in style with bach 21

scripted in bell, thus allowing far more complex interactions than what is already
possible through the syntax described above.

6 Conclusions and future work

We have presented some historical and theoretical background about the com-
putational models of Max and other related programming languages and envi-
ronments, and subsequently described how the bach library can be helpful with
writing clear and maintainable programs, through some specific features aimed
at implementing different programming approaches and styles on top of it. These
features are rooted in practical considerations and experience, and allow one to
escape the limitations of pure formal models.

More generally, we think that time is ripe for advocating the adoption of more
structured and theoretically grounded approaches to working with this successful
and widely used tool. We hope that this article may be a step in that direction:
further steps should involve, on the one hand, an actual survey of real-life use
cases, possibly with the involvement of the community of bach users; a more
precise and organic formalisation of good and scalable programming practices in
Max, which might prove quite different from the ones typical of more traditional
programming languages; and, most likely, the conception and development of
new tools to encourage them and facilitate their adoption.

References

1. Agon, C.: OpenMusic : Un langage visuel pour la composition musicale assistée
par ordinateur. Ph.D. thesis, University of Paris 6 (1998)

2. Agostini, A., Daubresse, E., Ghisi, D.: cage: a High-Level Library for Real-Time
Computer-Aided Composition. In: Proceedings of the International Computer Mu-
sic Conference. Athens, Greece (2014)

3. Agostini, A., Giavitto, J.: bell, a textual language for the bach library. In: Proceed-
ings of the International Computer Music Conference (to appear). New York, USA
(2019)

4. Agostini, A., Ghisi, D.: A Max Library for Musical Notation and Computer-
Aided Composition. Computer Music Journal 39(2), 11–27 (2015/10/03
2015). https://doi.org/10.1162/COMJ a 00296, http://dx.doi.org/10.1162/

COMJ_a_00296

5. Bresson, J., Giavitto, J.L.: A reactive extension of the openmusic visual program-
ming language. J. of Visual Languages & Computing 25(4), 363–375 (2014)

6. Cipriani, A., Giri, M.: Musica Elettronica e Sound Design. ConTempoNet (2013)
7. Colasanto, F.: Max/MSP: Gúıa de Programación para Artistas. CMMAS (2010)
8. Conway, M.E.: Design of a separable transition-diagram compiler. Communication

of the ACM 6(7), 396–408 (1963)
9. Desain, P., et al.: Putting Max in Perspective. Computer Music Journal 17(2),

3–11 (1992)
10. Didkovsky, N., Hajdu, G.: Maxscore: Music Notation in Max/MSP. In: Proceedings

of the International Computer Music Conference (2008)

22 A. Agostini et al.

11. Faustini, A.A.: An operational semantics of pure dataflow. In: Nielsen, M., Schmidt,
E.M. (eds.) 9th International Colloquium on Automata, Languages, and Program-
ming. LNCS, vol. 120, pp. 212–224. Springer Verlag (1982), equivalence sem. op et
denotationelle

12. Ghisi, D., Agostini, A.: Extending bach: A family of libraries for real-time
computer-assisted composition in max. Journal of New Music Research 46(1),
34–53 (2017)

13. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)

14. Kahn, G.: The semantics of a simple language for parallel programming. In: pro-
ceedings of IFIP Congress’74. pp. 471–475. North Holland (1974)

15. Laurson, M., Kuuskankare, M.: PWGL: A Novel Visual Language based on Com-
mon Lisp, CLOS and OpenGL. In: Proceedings of International Computer Music
Conference. pp. 142–145. Gothenburg, Sweden (2002)

16. Mosses, P.D.: Handbook of Theoretical Computer Science, vol. 2, chap. Denota-
tional Semantics, pp. 575–631. Elsevier Science (1990)

17. Norilo, V., Rautatiekatu, P.: Introducing kronos-a novel approach to signal process-
ing languages. In: Proceedings of the Linux Audio Conference. pp. 9–16. Maynooth:
NUIM (2011)

18. Orlarey, Y., Fober, D., Letz, S.: Syntactical and semantical aspects of faust. Soft
Computing 8(9), 623–632 (2004)

19. Orlarey, Y., Fober, D., Letz, S.: Faust: an efficient functional approach to dsp
programming. New Computational Paradigms for Computer Music 290, 14 (2009)

20. Orlarey, Y., Fober, D., Letz, S.: Parallelization of audio applications with faust. In:
Proc. of the 6th Sound and Music Computing Conference, Porto, PT. pp. 99–112
(2009)

21. Puckette, M.: Max at seventeen. Computer Music Journal 26(4), 31–43 (2002)
22. Puckette, M.: A divide between ’compositional’ and ’performative’ aspects of Pd.

In: Proceedings of the First Internation Pd Convention. Graz, Austria (2004)
23. Scholl, S.: Musik — Raum — Technik. Zur Entwicklung und Anwendung der

graphischen Programmierumgebung “Max”, chap. Karlheinz Essls RTC-lib, pp.
102–107. Transcript Verlag (2014)

24. Søndergaard, H., Sestoft, P.: Referential transparency, definiteness and unfoldabil-
ity. Acta Informatica 27(6), 505–517 (1990)

25. Wang, G., Cook, P.R., Salazar, S.: Chuck: A strongly timed computer music lan-
guage. Computer Music Journal 39(4), 10–29 (2015)

26. Winkler, T.: Composing Interactive Music. The MIT Press (1998)

