

# Decrease in social cohesion in a colonial seabird under a perturbation regime

Meritxell Genovart, Olivier O. Gimenez, Albert Bertolero, Rémi Choquet,

Daniel Oro, Roger Pradel

## ► To cite this version:

Meritxell Genovart, Olivier O. Gimenez, Albert Bertolero, Rémi Choquet, Daniel Oro, et al.. Decrease in social cohesion in a colonial seabird under a perturbation regime. Scientific Reports, 2020, 10 (18720), 10.1038/s41598-020-75259-3. hal-03020416

## HAL Id: hal-03020416 https://hal.science/hal-03020416

Submitted on 24 Nov 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

| 1  | Decrease in social cohesion in a long-lived species under a perturbation                                                                   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | regime                                                                                                                                     |
| 3  | Genovart, M. <sup>a,b</sup> *, Gimenez, O. <sup>c</sup> , Bertolero, A. <sup>d</sup> , Choquet, R. <sup>c</sup> , Oro, D. <sup>a,b</sup> , |
| 4  | Pradel, R. <sup>c</sup>                                                                                                                    |
| 5  |                                                                                                                                            |
| 6  |                                                                                                                                            |
| 7  | <sup>a</sup> CEAB (CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Spain                                                                 |
| 8  | <sup>b</sup> IMEDEA (CSIC-UIB), Miquel Marquès 21, 07190 Esporles, Spain                                                                   |
| 9  | ° CEFE, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRD,                                                               |
| 10 | 34293 Montpellier, France                                                                                                                  |
| 11 | <sup>d</sup> Associació Ornitològica Picampall de les Terres de l'Ebre, 43580 Deltebre, Spain                                              |
| 12 |                                                                                                                                            |
| 13 | * Corresponding author: m.genovart@csic.es                                                                                                 |
| 14 |                                                                                                                                            |
| 15 |                                                                                                                                            |

## 16 Abstract

| 1 | 7 | 1. | Environmental perturbations may have a strong impact on the dynamics of a     |
|---|---|----|-------------------------------------------------------------------------------|
| 1 | 8 |    | population and their understanding may help to mitigate the effects of global |
| 1 | 9 |    | change. In social animals, social interactions can influence behavioural      |
| 2 | 0 |    | processes and can play an important role on populations' resilience. However  |
| 2 | 1 |    | little is known about the effects of perturbations on the strength of social  |
| 2 | 2 |    | cohesion that keep group-living animals connected.                            |

23 2. To explore the strength of social cohesion and its dynamics under perturbations, 24 we studied an ecological system involving a colonial, long-lived species living 25 in a site experiencing a shift to a perturbed regime. This regime, caused by the 26 invasion of predators, led an Audouin's gull Larus audouinii colony to hold 27 from 70% to only 3% of the total world population in only one decade (32% 28 mean annual decline). Birds breed aggregated in discrete and annually changing 29 patches within colonies, which allowed us to disentangle whether annual 30 aggregations were random or resulted from social ties among individuals. Our 31 goals were 1) to uncover if there were long-term social ties between individuals 32 and 2) to examine whether the perturbation regime affected social cohesion. 33 3. We explored social cohesion by means of contingency tables and by modeling 34 interdependencies among observations within the Social Network Analysis 35 framework, using additive and multiplicative effects (AME) and accounting for 36 missing data. We analysed 25 years of monitoring with an individual capture-37 recapture database of more than 3,500 individuals. 38 4. We showed that there are social ties between individuals over the years. 39 Furthermore, social cohesion strongly decreased after entering the perturbation

40 regime. We propose that sociality and individual behavioural heterogeneity play

| 41 |      | a major role driving dispersal between sites and thus population dynamics in        |
|----|------|-------------------------------------------------------------------------------------|
| 42 |      | social animals.                                                                     |
| 43 | 5.   | Perturbations may lead not only to changes in individuals' behaviour and fitness    |
| 44 |      | but also to a change in populations' social cohesion. The demographic               |
| 45 |      | consequences of the breaking down of social ties are still not well understood,     |
| 46 |      | but they can be critical for population dynamics of social species. Further studies |
| 47 |      | considering individual heterogeneity, sociality and different types of              |
| 48 |      | perturbations should be carried out to improve our understanding on the             |
| 49 |      | resilience of social species.                                                       |
| 50 |      |                                                                                     |
| 51 | Keyw | ords: Audouin's gull, colonial species, decision-making, non-linear response,       |

52 perturbations, resilience, social cohesion, social network analyses.

## 53 Introduction

54 Ecosystems are subject to perturbations, both natural and human induced, affecting 55 individuals, populations and communities. When they are strong or are maintained 56 through time, these perturbations may cause a shift between stable states at the level of 57 both individual and population and even lead to population collapses and extinctions <sup>1,2</sup>. 58 Understanding how individuals and populations will respond to these perturbations is 59 critical both from a 'pure' ecological standpoint and also from an applied point of view to mitigate the effects of global change  $^{3-5}$ . Population dynamics may be directly 60 61 affected by these perturbations through a decrease in demographic parameters such as 62 survival or fecundity, or by a change, immediate or delayed, on individual behaviour, 63 such as an increase in dispersal <sup>6</sup>. We define population resilience as the maximal pulse perturbation a population can tolerate or absorb without going extinct <sup>1,7</sup>. In social 64 65 animals, social behavioural processes, such as information sharing and decision-66 making, add another dimension to understanding the resilience of populations facing 67 perturbations. For instance, the amount of social information can be enhanced not only by positive density-dependence, but also by social cohesion  $^{8-11}$ . Social cohesion favor 68 69 the exchange of private information and consequently reduce uncertainty in resource 70 acquisition (e.g. shelter against predators, food, mates) or in decision-making in the face of disturbances, such as dispersal to non-perturbed or less perturbed sites  $^{6,12-14}$ . Thus, 71 72 the structure of a group may affect social interactions, information transfer, and collective decisions <sup>15</sup>. Some recent studies also show that spatial cohesion may be risk 73 sensitive, and that responses may differ depending on the risk and the social group <sup>16</sup>. 74 75 However, little is known about the effects of environmental perturbations on the cohesion of social groups in empirical studies of social animals <sup>17</sup>. 76

77 The analysis of social relationships in animal populations may include a range of social 78 dynamics, from simple and ephemeral contacts, to permanent and strong bonds between individuals <sup>11,18–20</sup>. Coloniality is a life-history strategy where individuals show a social 79 link among conspecifics by breeding in large and dense groups <sup>21,22</sup>. However, many 80 81 colonial species are philopatric, thus this link may not necessarily reflect individual 82 social ties but a shared tendency to breed in the same birthplace. This tendency may 83 result from the need to share information about resources, especially when they are 84 patchy and more unpredictable, or it may result from the advantages of social defence against predators <sup>23,24</sup>. A challenge lies in disentangling whether annual association 85 86 between individuals is only due to philopatry, or also due to the existence of a social ties 87 within groups of individuals over time <sup>25</sup>. Social ties between neighbouring pairs in breeding colonies are rarely considered in behavioural and ecological studies <sup>26</sup> and, if 88 89 true, such associations may suggest the evolution of social cohesion for exploiting the 90 evolutionary advantages of social living (including social information sharing) for 91 individual fitness prospects.

92 Social network theory, which originated in sociology to study human relationships and social organization <sup>9,27,28</sup> now provides both a conceptual framework and the analytical 93 tools to explore social cohesion and social processes in animal populations <sup>29–33</sup>. 94 95 Network theory is now being simultaneously developed in a number of fields, including 96 statistical physics, sociology, molecular biology, and computer science. As a result, the 97 field is changing at a rapid pace. While not all developments can or should be applied 98 toward the study of animal societies <sup>34</sup>, this rush of novel ideas from outside disciplines 99 is enriching behavioural ecology<sup>35</sup>.

To assess the existence of social cohesion and its dynamics under perturbations, we
 studied an ecological system involving a colonial, social vertebrate (the Audouin's gull

102 *Larus audouinii*) living in a site experiencing a shift to a perturbed regime. Interestingly 103 from a social point of view, the species breeds aggregated in spatially-discrete patches 104 within large colonies. Each breeding season, some patches go extinct and some are colonized <sup>36</sup>, forcing individuals to breed in patches different from the ones they were 105 106 born in or they bred in the previous year. These colonization-extinction processes may 107 allow us to disentangle whether social aggregation among individuals is an annual 108 random association, or it rather results from social cohesion among individuals over the 109 years.

110 An extensive long-term individual monitoring program has been carried out since 1988 111 at the Ebro Delta, including the main breeding site for the species, the Punta de la 112 Banya<sup>37</sup>. At the study site, population dynamics has undergone different phases: an 113 initial growing phase after site colonization, a stable phase of dynamic equilibrium, and a final transition phase to population collapse <sup>17,38</sup> (Figure 1). This collapse was due to 114 115 the arrival of terrestrial predators, and led this colony to hold from 70% to only 3% of the total world population in only a decade (32% mean annual decline) <sup>36,37</sup> (Figure 1). 116 117 Most predators were foxes, but also badgers and other mesocarnivores. Predators invaded the site likely due to their increasing densities in recent decades <sup>39</sup> and the 118 119 attractiveness of the site in terms of food availability and lack of competition. The 120 perturbation regime caused changes in the spatial distribution of patches at the site, 121 changes in age structure, decrease in fecundity and a progressively increase of dispersal 122 to other sites  $^{6,36}$ . The response of this population to predators has been not immediate 123 probably due to strong philopatry, high site-suitability inertia and social behavioural processes, such as conspecific attraction <sup>17</sup>. This raise in dispersal was caused by social 124 125 processes, as social copying <sup>17</sup>, however it remains to assess how social cohesion among 126 individuals, if occurred, was affected by dispersal processes. One possibility is that

127 dispersal would broke social cohesion by individual heterogeneity in the willingness to

128 disperse <sup>40</sup>. In contrast, social cohesion can be maintained over time when dispersal

129 occurs collectively at the scale of social groups to the same sites  $^{25,41}$ .

130 Taking advantage of the long-term monitoring of this long-lived species, the knowledge

131 of its population dynamics, and the use of tools recently developed in the Social

132 Network Analysis (SNA) framework, we specifically addressed the following

133 questions: 1) is there any long-term social ties between individuals breeding in the same

134 patch? and 2) have perturbations, in this case a perturbation regime, affected social

135 cohesion? We finally discuss the role and consequences of social cohesion in population

136 dynamics and resilience in social species.

137

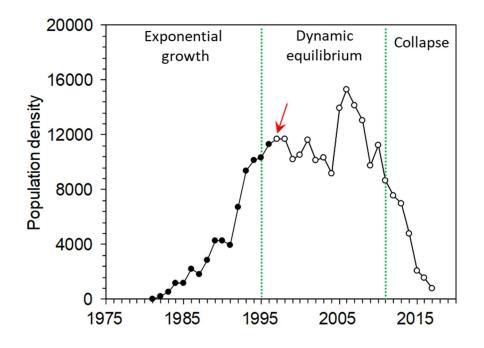



Figure 1. Number of breeding pairs in the Punta de la Banya colony from colonization
in 1981 to 2017. The observed phases in the population dynamics (growth, dynamic
equilibrium and collapse) are separated by green lines, which are identified by
chronological clustering analysis <sup>38</sup>. Red arrow indicates the arrival of predators to the

143 colony (open dots for the time series). We compared the period 2002-2010 with the

period 2011-2017 corresponding to the dynamic equilibrium and collapse phasesrespectively.

146

#### 147 Results

We analysed a total of 1,610,922 dyadic interactions during the first period (2002-2011)and 368,142 during the second period (2012-2017).

150 When assessing the social ties with the contingency table approach during the period of

151 stability, the assumption that breeding aggregations in Audouin's gull were at random

152 was rejected, and those individuals that bred together during the sub-period 2002-2006

153 had a higher probability of breeding together during the sub-period 2007-2011 ( $\chi_1^2 =$ 

154 64.685, P < 0.0001). When randomly reducing sample size of the data set, results were

still statistically significant in more than 95% of the cases (1000 randomizations).

156 Accordingly, when assessing the social ties with dependent regression terms in the

157 AME function, we showed that the probability of breeding together during the second

158 sub-period (2007-2011) depended on whether they have bred previously together in the

159 first sub-period (2002-2006), with a statistically significant coefficient of regression

160 parameter (Table 1; Figure 2). When analysing this data set with permutated data, we

161 concluded that there was indeed a non-random association of individuals within the

162 patches, with our statistic being among the 5% extreme values.

163 When we analysed the social ties during the transition to collapse phase, we observed

164 that the probability of breeding together during the period 2012-2017 did not depend on

165 whether they have bred together the five previous years ( $\chi^2 = 1.957$ , p-value = 0.162)

and we could not reject the hypothesis of a random association between individuals. In

167 addition, the SNA approach showed that breeding aggregations in Audouin's gull

during the transition phase did not depend on whether they have bred together the fiveprevious years (Table 1; Figure 2).

170

171

|           | Stable period |         |        | Transition to collapse period |        |       |         |         |
|-----------|---------------|---------|--------|-------------------------------|--------|-------|---------|---------|
|           | pmean         | psd     | z-stat | p-value                       | pmean  | psd   | z-stat  | p-value |
| intercept | -1.467        | 0.087 - | 16.808 | 0.000                         | -0.231 | 0.018 | -12.629 | 0.000   |
| .dyad     | 6.420         | 0.328   | 19.576 | 0.000                         | -0.004 | 0.022 | -0.188  | 0.851   |

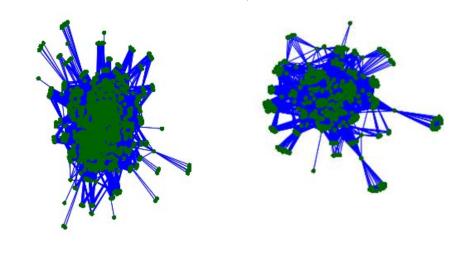
172

173 **Table 1**. Results of the AME regression function to test if there were social ties between

174 individuals while breeding during the stable period and during the transition phase to

175 collapse period. The alternative hypothesis is that individuals aggregate annually at

176 random for breeding. ".dyad": coefficient of the dependent regression term considering


177 the previous dyadic relationship between individuals; "pmean": posterior mean

178 estimate; "psd": posterior standard deviation; "z-stat ": nominal z-score.

179

181 a)

b)



4

| 182 | b)     | Figure 2. Graphical representation of social networks by the association          |
|-----|--------|-----------------------------------------------------------------------------------|
| 183 |        | between individuals of Audouin's gulls in breeding patches comparing a) the       |
| 184 |        | stability phase (2002-2011) and b) the transition phase to colony collapse (2012- |
| 185 |        | 2017) (see Figure 1). Each node represents an individual and each edge links      |
| 186 |        | those individuals that have bred together in the same patch. We used the half-    |
| 187 |        | weight association index (HWI) to estimate the strength of relationship between   |
| 188 |        | pairs of individuals an index more suitable when not all individuals within each  |
| 189 |        | group have been identified <sup>42,43</sup> .                                     |
| 190 |        |                                                                                   |
| 191 |        |                                                                                   |
| 192 | Discu  | ssion                                                                             |
| 193 | By stu | dying a particular ecological system of a colonial long-lived species that        |
| 194 | experi | ences a perturbation regime, we showed that social ties among individuals persist |
| 195 | over u | nperturbed years and that perturbations may decrease social cohesion in animal    |

196 populations.

197 The characteristic breeding behaviour of the study species that aggregates in patches 198 that change annually, allowed us to show that individuals do not annually breed 199 aggregated at random but rather there is some group stability, with individuals 200 establishing social ties that persist over time. Our study system resembles what it was 201 recorded for Slender-billed gulls (Chroicocephalus genei), a colonial breeder with weak 202 inter-annual breeding-site fidelity: some individuals bred together across breeding 203 seasons and some social groups showed tenacity despite the colony often moving every 204 year <sup>41</sup>. Group stability can emerge as a product of network self-organization, but may provide the necessary conditions for the evolution of other social processes <sup>44,45</sup>. Our 205 206 results would support the idea that social aggregation during breeding would provide 207 other advantages than the mere defence against predators <sup>46,47</sup>, such as social information sharing (e.g.<sup>48,49</sup>). Social information sharing is crucial for decision-making 208 209 in risky behaviours, such as dispersal, and previous studies showed that the perturbed 210 regime in our study site caused dispersal to other sites, including colonization of new habitats <sup>36,50</sup>. In our case study, sociality may have played a major role driving dispersal 211 212 and thus population dynamics, both during the exponential growth after colonization 213 and the collapse after the perturbation regime. This idea is also reinforced with a 214 mechanistic dynamical model that shows that population dynamics of Audouin's gulls 215 at the study site can only be explained by dispersal runaway caused by social copying 17. 216

The importance of social information compared to private information increases under perturbations, even when the quality of social information does not increase compared to a non-perturbed regime <sup>51,52</sup>. For instance, Maldonado et al. <sup>53</sup> show that experimental disturbances applied to a social bird may impact its foraging efficiency by social instability caused by the split of social groups. In colonial birds, breeding failure, which

is a proxy of environmental stress, may trigger splitting of the social groups (e.g. <sup>41</sup>). At 222 223 demographic level, the alteration of social network structure may affect the behaviour of 224 populations. For instance, under stress conditions, sociality may operate through 225 feedback loops such as social copying for dispersal, causing non-linear population dynamics and playing a critical role on the resilience of populations (e.g. <sup>17</sup>). We 226 227 showed here that after a perturbation, not only the number of individuals in the 228 population may decrease (by increased mortality or dispersal) but also its social 229 cohesion, likely reducing but also altering the information transfer within the social 230 network composed by those individuals that remain in the site where perturbation 231 occurs. Among other demographic processes, dispersal may alter social connections of 232 both individuals remaining and those dispersing, with consequences for social network structure <sup>40</sup>. The perturbation regime suffered by the study population has likely 233 triggered a social transition <sup>54</sup> in collective behaviour from philopatric to dispersal and 234 235 with the fast diffusion of innovations such as the colonization of harbours by large number of individuals, a habitat safe from predators never occupied before <sup>50</sup>. Previous 236 237 studies have shown that responses of populations to perturbations may also depend on individual personalities in the population <sup>55–57</sup>. For example, dispersers are different 238 239 from non-dispersing individuals for a suite of phenotypic traits, including their behavioural profile <sup>58-60</sup>. Heterogeneities in personalities for dispersal decision-making 240 241 may have also played a role in our studied population, with most individuals dispersing 242 to other sites after a period of disturbance, while some individuals remaining 243 philopatric. This change may have also further consequences for social network 244 stability, as performance in social groups may improve with heterogeneity in individual personalities <sup>60,61</sup>. 245

246 Our study opens new research avenues about resilience of social populations under 247 perturbations; if perturbations affect social cohesion and heterogeneity in personalities 248 in the population, we may wonder whether this population would be equally resilient to 249 future perturbations. Additionally, in our study population, sociality seemed to operate 250 not right after the first perturbation episode but after cumulative maintained perturbation <sup>50</sup>: would the type of perturbation, either pulse or in regime  $^{62}$  influence the response of 251 252 social groups? We have shown here that a regime perturbation may decrease social 253 cohesion in animal populations, but further studies should be carried out to improve our 254 understanding on the demographic consequences of the breaking down of social ties 255 under perturbations for population dynamics and resilience in social species. 256

## 257 Material and Methods

## 258 Study species and study area

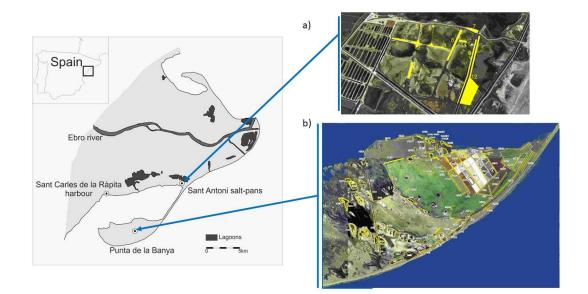
259 The Audouin's gull is a long-lived seabird with more than 80% of the global population

260 breeding in the western Mediterranean

261 (http://www.iucnredlist.org/details/22694313/0;<sup>37</sup>. The species was critically

endangered until the early 80's, when it colonized a new site, the Punta de la Banya in

the Ebro Delta (Figure 2). Here, the large availability of both suitable breeding habitat


and food resulted in a rapid and exponential growth, ending with the site holding more

than 70% of the total world population in 2006. The global population dynamics was

- 266 mainly driven by this colony and after the exponential growth, the species was
- 267 downgraded to a conservation category of "least concern" <sup>63</sup>. However, the Punta de la
- 268 Banya colony is now collapsing and even if the species is colonizing new sites, the
- 269 global population is decreasing at a 5% annual rate <sup>37</sup>. In 1997, first carnivores (mainly

foxes, but also badgers, beech martens and least weasels) arrived at Punta de la Banya,
and since then the site has been perturbed by the presence of carnivores.
Annual censuses of breeding pairs at every patch within colonies at the Ebro Delta area
have been carried out since colonization in 1981 to 2017 (Figure 1, 3 and Table S1). In
the Ebro Delta there are three colonies: Punta de la Banya, colonized in 1981 and

- 275 occupied throughout the study period, Sant Carles de la Ràpita harbour, occupied since
- 276 2011 to 2015, and Sant Antoni, occupied from 2013 up to now (Figure 3, Figure S1).
- 277 Within colonies, individuals are distributed in patches <sup>64</sup>. As patch location may change
- from one year to another, we annually geolocalized, mapped and defined the breeding
- 279 patches (Figure 3 and S2).



280

Figure 3. Map of the study area comprising the 3 main colonies and the distribution of
patches within colonies during the study period at a) Sant Antoni and b) Punta de la
Banya. Sant Carles de la Rápita colony is considered to have only one patch.

284

285 The species is monogamous, there is assortative mating by age, and from an

evolutionary point of view is a bet-hedger, laying commonly 3 eggs, although few

chicks survive, except in years with high food availability, when the strength of densitydependence is low <sup>65</sup>.

## 289 Individual data

During 1988-2017 a total of 30,290 individuals were captured and ringed as chicks at 290 291 the Punta de la Banya <sup>66,67</sup>. From 2002 to 2017, resightings were made using spotting 292 scopes from a distance all over the western Mediterranean with a total of 63,106 293 resights in the study area and 5,593 different individuals resighted. Each year we 294 recorded the breeding patch for each individual. To make sure that individuals were 295 breeding and that they did so in a particular patch, we only selected those individuals 296 seen during the breeding season in a particular patch showing unequivocal breeding 297 behaviour. Specifically, individuals making alarm calls, incubating eggs or with chicks. 298 After this selective filter, our final database included 3,548 individuals. 299 SNA framework 300 Our social network, defined as the observed pattern of breeding association, was 301 constructed taking individuals (N=3548) as the nodes of the network and each edge 302 dyad (i.e. pair of individuals) representing the fact that individuals breed in the same 303 patch. We ended with a global sociomatrix, i.e. the matrix representation of the dyadic 304 relationships among individuals, of 3,548\* 3,548. Edges showed if two individuals bred

305 in the same patch at least once in a certain period (see below). The network was not

306 directional. Based on previous results on population dynamics, and on the population

307 size of this species and colony <sup>37,50</sup>, we divided our dataset in two main periods: a period

defined as "stable phase" from 2002 to 2011, and a period of "transition phase to

309 collapse", from 2012 to 2017 (Figure 1).

310 We used the recently developed AME function from the AMEN package  $^{68,69}$ , that can

311 be applied to binary, ordinal, and continuous network data. This new approach is a

312 random-effects regression model; uses an iterative Markov chain Monte Carlo (MCMC) 313 algorithm that provides Bayesian inference of the parameters in the social relations 314 regression model (SRM;<sup>70</sup>) using additive and multiplicative effects and combining the linear regression model with the covariance structure of the SRM <sup>69</sup>. The AME method, 315 316 not currently used in research on animal social networks is also able to cope with 317 missing and censored data, our data set complying with the assumption that individuals 318 are missing at random. Coping with missing data is highly relevant when analysing 319 sociality on wild populations, as detection rate for individuals is almost always 320 imperfect, and properly controlling for missed observations is a very important step in social network analysis <sup>71,72</sup>. To create and visualize our networks we used the packages 321 322 Amen<sup>68</sup>, Asnipe<sup>73</sup>, gdata<sup>74</sup> and igraph in R<sup>75</sup>.

## 323 Are there social ties that persist over time?

We investigated if individuals create social ties that persist over time longer than one 324 325 breeding occasion by means of two approaches: i) contingency tables and ii) the inclusion of time dependent regression terms in the AME modelling framework <sup>68</sup> (see 326 327 previous section). We used both methods because this is the first application of the 328 AME approach in an ecological context. We analysed data of the period of stability, 329 from 2002 to 2011, dividing this period into two sub-periods of five years (2002-2006 330 and 2007-2011). In the contingency table approach, we tested if the probability of 331 breeding together at least once during the second sub-period was independent of having 332 bred together at least once in the first period. We built a 3x3 table of frequencies, 333 showing the frequencies of two individuals breeding or not together at least once during 334 the second sub-period depending on whether they bred together or not at least once 335 during the first sub-period, and pulling apart those dyads with missing data. We then 336 tested for deviation of random frequencies by Chi Square test.

337 With the SNA approach, we analysed the social ties between individuals using the AME

338 function provided in the Amen package in R and including data from the first period

339 (five previous years) as predictors of association during the second sub-period. We

340 considered that this time window was not too large to include important death events,

341 but large enough to account for the imperfect detection of individuals. To achieve

342 convergence, we increased the number of iterations to 100,000 from the default value of

343 10,000 and lengthened the burn-in period to 500.

344 <u>Had perturbations affected social cohesion in this species?</u>

345 To assess if perturbations affected social structure in this species, we analysed as

346 previously, with both the contingency table approach and the SNA approach, the social

347 ties during the period of "transition phase to collapse" (2012-2017). To do so, we tested

if the probability of breeding together in this phase (2012-2017) was independent of

having bred together during five previous years (2007-2011). We then compared these

350 results from those previously observed during the "stability phase".

351 A potential concern was the reduced power during the collapse period because the

352 number of individuals decreased from the stability period. In order to have a similar

353 power in both analyses, we performed the contingency table analysis during the stability

354 period by drawing at random a number of observed associations equal to the number of

355 observed associations during the collapse. We did this repeatedly (1000 times) and

356 calculated which percentage of times the resulting chi-square was significant at the 5%

357 level.

Regarding the SNA approach, it is advised <sup>76</sup> to do permutations on the raw data prior to the analysis and compare the result of some relevant statistic obtained with the original

360 data to the distribution of the same statistic over the permutations. We chose the

361 regression coefficient of the association of a dyad on the previous association of the

362 same dyad as our statistic of social cohesion. This statistic is provided by the function 363 ame of the package amen <sup>68</sup>. We calculated this statistic on the original data. Then, 364 within each year, we rearranged randomly the individuals among the patches, keeping 365 the same number of individuals within each patch. We did this 200 times and calculated 366 each time the regression coefficient. Then, we situated the value of the regression 367 coefficient from the original data among the distribution of regression coefficients from 368 the permutated data and examined how extreme it was. If it was among the 5% extreme 369 values, we concluded that there was indeed a non-random association of individuals 370 within the patches.

371

372

## 373 Acknowledgements

374 We would like to thank all the people who have helped with the fieldwork in the Ebro 375 delta over the years, particularly Julia Piccardo, Toni Curcó and the technical staff and 376 volunteers at the Ebro Delta Natural Park. We would also like to thank Peter Hoff, for 377 his advices and solving an analytical problem we encountered while using the AMEN R 378 package. We also thank the Regional Government of Catalonia, for permits to access 379 the study sites. Elisabeth Rochon corrected the English. Funding came from the Spanish 380 Ministry of Science (CGL2017-85210), grant PICS INTERACT n°07699 (2016, CSIC-381 CNRS). MG was partially supported by the European Union (MINOUW Project, 382 H2020-634495) and the Spanish Ministry of Science (CGL2017-85210). We have no 383 conflict of interest to declare.

384

## 385 Authors' contributions

| 386                             | M                                                                                     | G conceived the idea; MG, OG, RP and RC designed methodology; MG, DO and AB           |  |  |
|---------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| 387                             | collected the data; MG analysed the data; MG led the writing of the manuscript. All   |                                                                                       |  |  |
| 388                             | authors critically contributed to the drafts and gave final approval for publication. |                                                                                       |  |  |
| 389<br>390<br>391<br>392<br>393 |                                                                                       | <b>ta accessibility</b><br>ta is available via CSIC repository.                       |  |  |
| 394<br>395<br>396               | Re                                                                                    | ferences                                                                              |  |  |
| 397                             | 1.                                                                                    | Dai, L., Korolev, K. S. & Gore, J. Relation between stability and resilience          |  |  |
| 398                             |                                                                                       | determines the performance of early warning signals under different environmental     |  |  |
| 399                             |                                                                                       | drivers. Proc. Natl. Acad. Sci. 112, 10056-10061 (2015).                              |  |  |
| 400                             | 2.                                                                                    | Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators:     |  |  |
| 401                             |                                                                                       | prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. |  |  |
| 402                             |                                                                                       | <i>B Biol. Sci.</i> <b>370</b> , 20130263–20130263 (2014).                            |  |  |
| 403                             | 3.                                                                                    | Colchero, F. et al. The diversity of population responses to environmental change.    |  |  |
| 404                             |                                                                                       | Ecol. Lett. (2018) doi:10.1111/ele.13195.                                             |  |  |
| 405                             | 4.                                                                                    | Coulson, T. et al. Data from: Modeling adaptive and nonadaptive responses of          |  |  |
| 406                             |                                                                                       | populations to environmental change. (2017) doi:10.5061/dryad.4c117.                  |  |  |
| 407                             | 5.                                                                                    | Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, |  |  |
| 408                             |                                                                                       | 1172–1185 (2016).                                                                     |  |  |
| 409                             | 6.                                                                                    | Fernandez-Chacon, A. et al. When to stay, when to disperse and where to go:           |  |  |
| 410                             |                                                                                       | survival and dispersal patterns in a spatially structured seabird population.         |  |  |
| 411                             |                                                                                       | <i>Ecography</i> <b>36</b> , 1117–1126, (2013).                                       |  |  |
| 412                             | 7.                                                                                    | Holling, C. S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. |  |  |
| 413                             |                                                                                       | <b>4</b> , 1–23 (1973).                                                               |  |  |

- 414 8. Barrett, L., Henzi, S. P. & Lusseau, D. Taking sociality seriously: the structure of
- 415 multi-dimensional social networks as a source of information for individuals.

416 *Philos. Trans. R. Soc. B Biol. Sci.* **367**, 2108–2118 (2012).

- 417 9. Centola, D. How Behavior Spreads: the Science of Complex Contagions. (2018).
- 418 10. Firth, J. A. Considering Complexity: Animal Social Networks and Behavioural
- 419 Contagions. *Trends Ecol. Evol.* **35**, 100–104 (2020).
- 420 11. Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social
- 421 relationships despite the high fission-fusion dynamics of their groups. *Proc. R. Soc.*
- 422 *B Biol. Sci.* **278**, 2761–2767 (2011).
- 423 12. Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D.
- 424 Revealing the hidden networks of interaction in mobile animal groups allows
- 425 prediction of complex behavioral contagion. *Proc. Natl. Acad. Sci.* 112, 4690–4695
  426 (2015).
- 427 13. Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal Social
- 428 Network Theory Can Help Wildlife Conservation. *Trends Ecol. Evol.* 32, 567–577
  429 (2017).
- 430 14. Webber, Q. M. R. & Vander Wal, E. An evolutionary framework outlining the
- 431 integration of individual social and spatial ecology. J. Anim. Ecol. 87, 113–127
  432 (2018).
- 433 15. Sueur, C. & Mery, F. Social Interaction in Animals: Linking Experimental
- 434 *Approach and Social Network Analysis.* (Frontiers Media SA, 2017).
- 435 16. LaBarge, L. R., Allan, A. T. L., Berman, C. M., Margulis, S. W. & Hill, R. A.
- 436 Reactive and pre-emptive spatial cohesion in a social primate. *Anim. Behav.* **163**,
- 437 115–126 (2020).

- 438 17. Oro, D. *Perturbation, social feedbacks, and population dynamics in social animals.*439 (Oxford University Press, 2020).
- 440 18. Firth, J. A. & Sheldon, B. C. Experimental manipulation of avian social structure
- 441 reveals segregation is carried over across contexts. *Proc. R. Soc. B Biol. Sci.* 282,
- 442 20142350–20142350 (2015).
- 443 19. Genton, C. *et al.* How Ebola impacts social dynamics in gorillas: a multistate
- 444 modelling approach. J. Anim. Ecol. **84**, 166–176 (2015).
- 445 20. Leu, S. T., Farine, D. R., Wey, T. W., Sih, A. & Bull, C. M. Environment modulates
- 446 population social structure: experimental evidence from replicated social networks
- 447 of wild lizards. Anim. Behav. 111, 23–31 (2016).
- 448 21. Brown, C. R. The ecology and evolution of colony-size variation. *Behav. Ecol.*
- 449 *Sociobiol.* **70**, 1613–1632 (2016).
- 450 22. Rolland, C., Danchin, E. & de Fraipont, M. The evolution of coloniality in birds in
- 451 relation to food, habitat, predation, and life-history traits: a comparative analysis.
- 452 *Am. Nat.* **151**, 514–529 (1998).
- 453 23. Clode, D. Colonially breeding seabirds: Predators or prey? *Trends Ecol. Evol.* 8,
  454 336–338 (1993).
- 455 24. Hoogland, J. L. & Sherman, P. W. Advantages and Disadvantages of Bank Swallow
- 456 (Riparia riparia) Coloniality. *Ecol. Monogr.* **46**, 33–58 (1976).
- 457 25. Shizuka, D. *et al.* Across-year social stability shapes network structure in wintering
  458 migrant sparrows. *Ecol. Lett.* 17, 998–1007 (2014).
- 459 26. Brandl, H. B., Griffith, S. C., Farine, D. R. & Schuett, W. Wild zebra finches that
- 460 nest synchronously have long-term stable social ties. J. Anim. Ecol. 1365-
- 461 2656.13082 (2019) doi:10.1111/1365-2656.13082.

- 462 27. Moreno, J. L. Who shall survive?: A new approach to the problem of human
- 463 *interrelations.* (Nervous and Mental Disease Publishing Co, 1934).
- 464 doi:10.1037/10648-000.
- 465 28. Scott, J. Social Network Analysis. Sociology 22, 109–127 (1988).
- 466 29. Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks. (Princeton
- 467 University Press, 2008).
- 468 30. Farine, D. R. Structural trade-offs can predict rewiring in shrinking social networks.
- 469 *J. Anim. Ecol.* 1365-2656.13140 (2019) doi:10.1111/1365-2656.13140.
- 470 31. Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal
- 471 social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).
- 472 32. Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals.
- 473 (Springer International Publishing, 2016).
- 474 33. Whitehead, H. *Analyzing Animal Societies Quantitative Methods for Vertebrate*
- 475 Social Analysis. (2014).
- 476 34. James, R., Croft, D. P. & Krause, J. Potential banana skins in animal social network
  477 analysis. *Behav. Ecol. Sociobiol.* 63, 989–997 (2009).
- 478 35. Hasenjager, M. J. & Dugatkin, L. A. Chapter Three Social Network Analysis in
- 479 Behavioral Ecology. in *Advances in the Study of Behavior* (eds. Naguib, M. et al.)
- 480 vol. 47 39–114 (Academic Press, 2015).
- 481 36. Payo-Payo, A. et al. Predator arrival elicits differential dispersal, change in age
- 482 structure and reproductive performance in a prey population. *Sci. Rep.* **8**, 1971
- 483 (2018).
- 484 37. Genovart, M., Oro, D. & Tenan, S. Immature survival, fertility, and density
- 485 dependence drive global population dynamics in a long-lived species. *Ecology* 99,
- 486 2823–2832 (2018).

- 487 38. Almaraz, P. & Oro, D. Size-mediated non-trophic interactions and stochastic
- 488 predation drive assembly and dynamics in a seabird community. *Ecology* 92, 1948–
  489 1958 (2011).
- 490 39. Martínez-Abraín, A., Jiménez, J. & Oro, D. Pax Romana: 'refuge abandonment' and
- 491 spread of fearless behavior in a reconciling world. *Anim. Conserv.* **22**, 3–13 (2019).
- 492 40. Shizuka, D. & Johnson, A. E. How demographic processes shape animal social
- 493 networks. *Behav. Ecol.* arz083 (2019) doi:10.1093/beheco/arz083.
- 494 41. Francesiaz, C. et al. Familiarity drives social philopatry in an obligate colonial
- breeder with weak interannual breeding-site fidelity. *Anim. Behav.* **124**, 125–133
- 496 (2017).
- 497 42. Ginsberg, J. R. & Young, T. P. Measuring association between individuals or
- 498 groups in behavioural studies. Anim. Behav. 44, 377–379 (1992).
- 499 43. Cairns, S. J. & Schwager, S. J. A comparison of association indices. *Anim. Behav.*500 35, 1454–1469 (1987).
- 501 44. Cantor, M. & Farine, D. R. Simple foraging rules in competitive environments can
- 502 generate socially structured populations. *Ecol. Evol.* **8**, 4978–4991 (2018).
- 503 45. Cantor, M. et al. Animal social networks: revealing the causes and implications of
- *social structure in ecology and evolution*. https://osf.io/m62gb (2019)
- 505 doi:10.32942/osf.io/m62gb.
- 506 46. Anderson, D. J. & Hodum, P. J. Predator Behavior Favors Clumped Nesting in an
- 507 Oceanic Seabird. *Ecology* **74**, 2462–2464 (1993).
- 508 47. Oro, D. Colonial Seabird Nesting in Dense and Small Sub-Colonies: An Advantage
- against Aerial Predation. *The Condor* **98**, 848–850 (1996).

| 510 | 48. Gil, M. A., Hein, A. M., Spiegel, O., Baskett, M. L. & Sih, A. Social Information   |
|-----|-----------------------------------------------------------------------------------------|
| 511 | Links Individual Behavior to Population and Community Dynamics. Trends Ecol.            |
| 512 | <i>Evol.</i> <b>33</b> , 535–548 (2018).                                                |
| 513 | 49. Lewanzik, D., Sundaramurthy, A. K. & Goerlitz, H. R. Insectivorous bats integrate   |
| 514 | social information about species identity, conspecific activity and prey abundance to   |
| 515 | estimate cost-benefit ratio of interactions. J. Anim. Ecol. 88, 1462-1473 (2019).       |
| 516 | 50. Payo-Payo, A. et al. Colonisation in social species: the importance of breeding     |
| 517 | experience for dispersal in overcoming information barriers. Sci. Rep. 7, (2017).       |
| 518 | 51. Arganda, S., Pérez-Escudero, A. & Polavieja, G. G. de. A common rule for decision   |
| 519 | making in animal collectives across species. Proc. Natl. Acad. Sci. 109, 20508-         |
| 520 | 20513 (2012).                                                                           |
| 521 | 52. Pérez-Escudero, A. & Polavieja, G. G. de. Adversity magnifies the importance of     |
| 522 | social information in decision-making. J. R. Soc. Interface 14, 20170748 (2017).        |
| 523 | 53. Maldonado-Chaparro, A. A., Blumstein, D. T., Armitage, K. B. & Childs, D. Z.        |
| 524 | Transient LTRE analysis reveals the demographic and trait-mediated processes that       |
| 525 | buffer population growth. Ecol. Lett. 21, 1693–1703 (2018).                             |
| 526 | 54. Pruitt, J. N. et al. Social tipping points in animal societies. Proc R Soc B 285,   |
| 527 | 20181282 (2018).                                                                        |
| 528 | 55. Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of         |
| 529 | personality: consistent individual differences from an adaptive perspective. Ecol.      |
| 530 | Lett. 7, 734–739 (2004).                                                                |
| 531 | 56. Doering, G. N., Scharf, I., Moeller, H. V. & Pruitt, J. N. Social tipping points in |
| 532 | animal societies in response to heat stress. Nat. Ecol. Evol. 2, 1298–1305 (2018).      |
| 533 | 57. Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. Life-history trade-offs    |
| 534 | favour the evolution of animal personalities. Nature 447, 581-584 (2007).               |

- 535 58. Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal,
- beterogeneity in animal dispersal syndromes and the dynamics of spatially
- 537 structured populations. *Ecol. Lett.* **12**, 197–209 (2009).
- 538 59. Cote, J., Clobert, J., Brodin, T., Fogarty, S. & Sih, A. Personality-dependent
- 539 dispersal: characterization, ontogeny and consequences for spatially structured
- 540 populations. *Philos. Trans. R. Soc. B Biol. Sci.* **365**, 4065–4076 (2010).
- 541 60. Fogarty, S., Cote, J. & Sih, A. Social Personality Polymorphism and the Spread of
- 542 Invasive Species: A Model. Am. Nat. 177, 273–287 (2011).
- 543 61. O'Shea-Wheller, T. A., Masuda, N., Sendova-Franks, A. B. & Franks, N. R.
- 544 Variability in individual assessment behaviour and its implications for collective
- 545 decision-making. *Proc. R. Soc. B Biol. Sci.* **284**, 20162237 (2017).
- 546 62. Nimmo, D. G., Mac Nally, R., Cunningham, S. C., Haslem, A. & Bennett, A. F.
- 547 Vive la résistance: reviving resistance for 21st century conservation. *Trends Ecol.*548 *Evol.* 30, 516–523 (2015).
- 549 63. IUCN. Larus audouinii: BirdLife International: The IUCN Red List of Threatened
- 550 Species 2018: e.T22694313A132541241. (2018) doi:10.2305/IUCN.UK.2018-
- 551 2.RLTS.T22694313A132541241.en.
- 552 64. Genovart, M., Jover, L., Ruiz, X. & Oro, D. Offspring sex ratios in subcolonies of
- 553 Audouin's gull, *Larus audouinii*, with differential breeding performance. *Can. J.*
- 554 *Zool.* **81**, 905–910 (2003).
- 555 65. Oro, D. Audouin's gull account. in *The Birds of Western Palearctic* (ed.
- 556 Ogilvie, M.A.) 47–61 (Oxford University Pres, 1998).
- 557 66. Genovart, M., Pradel, R. & Oro, D. Exploiting uncertain ecological fieldwork data
- 558 with multi-event capture-recapture modelling: an example with bird sex assignment.
- 559 *J. Anim. Ecol.* **81**, 970–977 (2012).

- 560 67. Oro, D., Tavecchia, G. & Genovart, M. Comparing demographic parameters for
- philopatric and immigrant individuals in a long-lived bird adapted to unstable
  habitats. *Oecologia* 165, 935–945 (2010).
- 563 68. Hoff, P. D. Additive and multiplicative effects network models. *ArXiv180708038*564 *Stat* (2018).
- 565 69. Minhas, S., Hoff, P. D. & Ward, M. D. Inferential Approaches for Network
- 566 Analyses: AMEN for Latent Factor Models. *ArXiv161100460 Stat* (2016).
- 567 70. Warner, R. M., Kenny, D. A. & Stoto, M. A new round robin analysis of variance
- 568 for social interaction data. J. Pers. Soc. Psychol. **37**, 1742–1757 (1979).
- 569 71. Gimenez, O. et al. Inferring animal social networks with imperfect detection. Ecol.
- 570 *Model.* **401**, 69–74 (2019).
- 571 72. Hoppitt, W. J. E. & Farine, D. R. Association indices for quantifying social
- 572 relationships: how to deal with missing observations of individuals or groups. *Anim.*
- 573 Behav. 136, 227–238 (2018).
- 574 73. Farine, D. R. Animal social network inference and permutations for ecologists in R
- 575 using asnipe. *Methods Ecol. Evol.* **4**, 1187–1194 (2013).
- 576 74. Warnes G.R. *et al* gdata: various R programming tools for data manipulation. R
- 577 package version 2.18.0. <u>https://CRAN.R-project.org/package=gdata</u> (2017)
- 578 75. Csardi, Gabor; Tamas N. The igraph software package for complex network
  579 research. *InterJournal* (2006).
- 580 76. Farine, D. R. A guide to null models for animal social network analysis. *Methods*
- 581 *Ecol. Evol.* **8**, 1309–1320 (2017).