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On the Energy Efficiency of Heterogeneous Cellular
Networks with Renewable Energy Sources

– A Stochastic Geometry Framework
Thanh Tu Lam, Student Member, IEEE and Marco Di Renzo, Fellow, IEEE

Abstract—In this paper, we introduce an analytical approach
for modeling and analyzing the performance of multi-tier cellular
networks that are powered by the power grid and by renewable
energy sources. The proposed approach relies on modeling the
locations of the base stations, either powered by the power
grid or by renewable energy sources, by using Poisson point
processes. The availability of renewable energy is modeled by
using a Poisson point process in the time domain. In particular,
the temporal dynamics of the batteries of the base stations
powered by renewable energy sources are modeled by using a
discrete Markov chain with a number of states that is equal to
the finite storage capacity of the batteries. By leveraging recent
results available in [1], the coverage probability, the spectral
efficiency, and the energy efficiency of the considered network
model are formulated in an analytical, closed-form, expression,
which depends on the probability that the typical base station
is available, i.e., it has sufficient power to serve at least one
mobile terminal in its cell. This latter probability is shown to
be the solution of the steady state equation of the Markov
chain that models the temporal dynamics of the batteries of
the base stations. Under the assumption that the batteries of
the base stations can be either empty or fully charged, we
formulate an optimization problem in order to maximize the
energy efficiency as a function of the transmit power and the
deployment density of the base stations, and identify sufficient
conditions for which the problem admits a unique solution. The
accuracy of the proposed approach and the performance trends
inferred from it are substantiated with the aid of extensive Monte
Carlo simulations.

Index Terms—Cellular networks, renewable energy, spectral
efficiency, energy efficiency, stochastic geometry.

I. INTRODUCTION

Network densification is a key enabler for increasing the
spectral efficiency in future wireless networks [2]. Increasing
the density of the Base Stations (BSs) in cellular networks
increases, however, the network power consumption [1]. Ap-
propriate solutions need, therefore, to be developed in order
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to leverage the dense and heterogeneous deployment of the
BSs in cellular networks without negatively affecting their
carbon footprint. A promising solution to reduce the cost of
deploying and operating ultra-dense cellular networks consists
of employing renewable energy sources, e.g., solar or eolic,
to power Small Cell BSs (SBSs), which are overlaid on
existing deployments of Macro BSs (MBSs) that are directly
connected to the power grid. This approach has the potential of
significantly reducing the network power consumption while
fulfilling the spectral efficiency and Energy Efficiency (EE)
needs [3]. The uncertain availability of renewable energy
sources may, however, lead to random fluctuations of the
power supplied to the SBSs, which may negatively affect the
coverage and spectral efficiency of the overall network. It is, as
a result, fundamental to quantify the performance trade-offs in
heterogeneous cellular networks powered by renewable energy
sources, and to optimize their operation accordingly.

In the present paper, motivated by these considerations, we
develop an analytical framework for analyzing and optimizing
two-tier cellular networks in which the MBSs are connected to
the power grid and the SBSs are powered solely by renewable
energy sources. To this end, we capitalize on the mathe-
matical tool of stochastic geometry [4]. Several researchers
have recently studied different application scenarios in which
renewable energy sources are employed to power cellular
BSs. Notable research contributions related to ours include
[5]-[12]. Compared with the most closely related research
works available in the literature, i.e., [5], [7], [8], [12], in
particular, the novelty and contribution of the present paper
can be summarized as follows.

Compared with [5], we consider a general Markov chain
model to describe the temporal dynamics of the SBSs, which
is not restricted to a birth-death process. We study different
load and energy harvesting models, and employ a different def-
inition of coverage probability that allows us to formulate and
solve optimization problems for some simplified but relevant
system models. Compared with [7], we consider a downlink
cellular network, and we take into account the network load
as a function of the deployment densities of BSs and users.
Our system model leads to a different formulation of the
Markov chain that describes the energy harvesting dynamics
of the batteries of the SBSs. Compared with [8] and [12], we
consider a more general Markov chain structure for modeling
the temporal dynamics of the batteries of the SBSs, and a
power transmission and consumption models that depend on
the distribution of the users.
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TABLE I: Main symbols and functions used in the paper (k ∈ {M, S}, d ∈ {L1,L2}, o ∈ {H,F})

Symbol/Function Definition
E{·}, Pr{·} Expectation operator, probability measure
λBS, λMT Reference density of base stations, mobile terminals
λk = αkλBS, λ(A)

k Density of tier k (αk is a constant number), density of available BSs in tier k
Ψk, Ψ

(A)
k , ΨMT PPP of BSs, available BSs, and MTs in tier k

Pktx,tot, Pkcirc, Pidle Total transmit, circuits, and idle (only MBSs) power in tier k
Punit Unit power level of battery storage and power of a packet harvested
rn, gn, g(0) Distance, fading power gain of a generic link and of the intended link
l (·), K(0)

k Path-loss, smallest path-loss of the intended link in tier k
κ, β > 0, Tk Path-loss constant, slope (exponent), bias factor of tier k
BWtot, N0, σ2

N = BWtotN0 Total transmission bandwidth, noise power spectral density, noise variance
γD, γA, εd,o Reliability threshold for decoding, cell association, probability that a SBS is inactive
Nk

Load Maximum number of MTs that can be served in tier k (operator-related)
Nd

Bat Maximum number of MTs that can be served in tier k (battery-related)
NRB, APk Number of resource blocks, association probability of tier k
L, λEP, pu Battery capacity of SBSs, arrival rate and probability of receiving u power packets
md

1, md Power levels to make a SBS active, to serve one MT assuming that it is available
Rd,o, vd,o Matrix of transition probabilities, vector of steady state probabilities
qke , yke Probability of having exactly and at least e MTs in a cell of tier k
NMT, NMT Number of MTs in a cell, number of MTs in a cell given that one is already in it
1 (·), 2F1 (·, ·, ·, ·), Γ(·) Indicator function, Gauss hypergeometric function, gamma function
max {x, y}, min {x, y}, b.c Maximum, minimum between x and y, floor function.
z (x), ..

z (x) First-order, second-order derivative with respect to x

Compared with other papers available in the literature, more
importantly, we: (i) propose a tractable approach for perfor-
mance evaluation that is based on the concept of availability
of SBSs, which leads to an implicit formulation of the steady
state equation that describes the temporal dynamics of the
batteries of the SBSs in which the matrix of transition prob-
abilities depends on the steady state probabilities themselves;
(ii) leverage and generalize the new definition of coverage
probability recently introduced in [1], [13], [14], which allows
us to obtain a tractable closed-form expression of the EE
of two-tier cellular networks in the presence of renewable
energy sources; and (iii) formulate and solve EE optimization
problems as a function of the transmit power and deployment
density of the BSs. We prove, in particular, that the approach
introduced in the present paper is general and tractable enough
for system-level optimization.

More specifically, we provide the following contributions.
(1) We introduce a closed-form analytical framework that
quantifies the coverage probability, spectral efficiency, power
consumption, and EE in cellular networks where the MBSs
are connected to the power grid and the SBSs are powered
solely by renewable energy sources. (2) We consider a general
system model that accounts for: (i) BSs schedulers that treat
the available resources as discrete and continuous; (ii) half-
duplex and full-duplex energy harvesting architectures; (iii)
power consumption models that depend on the number of
Mobile Terminals (MTs) associated with the BSs; (iv) batteries
for energy harvesting of finite capacity; and (v) a general
Markov chain formulation to model the temporal dynamics
of the batteries of the SBSs. (3) We formulate and solve, in

simplified but relevant case studies, EE optimization problems,
and scrutinize the analytical frameworks to gain insights into
the impact of employing renewable energy sources in cellular
networks.

The rest of this paper is organized as follows. In Section
II, the system model is introduced. In Section III, the method-
ology of analysis and some enabling results for subsequent
analysis are presented. In Section IV, the coverage probability,
the spectral efficiency, the power consumption, and the EE
are formulated in closed-form. In Section V, simplified case
studies are analyzed in order to gain insight on the impact of
renewable energy sources. In Section VI, numerical results are
illustrated to validate the proposed approach. Finally, Section
VII concludes this paper.

II. SYSTEM MODEL

In this section, the system model and the modeling assump-
tions are introduced.

A. Spatial Modeling: Locations of Base Stations and Mobile
Terminals

We consider a two-tier cellular network that consists of
MBSs (M) and SBSs (S). The MBSs (denoted also as on-grid
BSs) are connected to the power grid while the SBSs (denoted
also as off-grid BSs) are powered solely via renewable energy
sources. The MBSs and SBSs are distributed according to
two independent Poisson Point Processes (PPPs), ΨM and
ΨS, whose deployment densities are λM

∆
= αMλBS and

λS
∆
= αSλBS, where αM and αS are positive numbers and
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λBS is a reference density of BSs. The MTs are distributed
according to a homogeneous PPP, ΨMT, of density λMT,
which is independent of ΨM and ΨS. The main symbols and
notation used in the paper are available in Table I.

B. Temporal Modeling: Energy Harvesting from Renewable
Energy Sources

As for the temporal dynamics of the network, we assume
that time is slotted. The duration of the time slot is chosen
according to the mobility of the MTs, i.e., the MTs occupy
different locations in consecutive time slots. We feel important
to note that this assumption is made in the interest of analytical
tractability. In general, in fact, the optimization of the time
slots in wireless systems depends on a large number of
parameters, which include the operating frequency, the type
of service to be offered, etc. Without loss of generality,
the duration of the time slot is normalized to be unitary.
Since the fast fading usually changes on a shorter time scale
compared with the locations of the MTs, this implies that the
channel gains are independent across the time slots. Under
this assumption, the locations of the MBSs and SBSs are
considered to be fixed over multiple time slots. The spatial
distribution of the MBSs and SBSs is, however, taken into
account in the long time horizon [4].

The amount of renewable energy harvested by the SBSs in
a time slot is discretized into power packets of fixed power
Punit. The number of power packets harvested across the
time slots are independent and identically distributed Poisson
random variables with mean λEP. The power packets are
stored in batteries of finite capacity with L power levels.
Each battery level is equal to Punit, so that the maximum
amount of power that can be stored is (L − 1)Punit. The
probability that z power packets are harvested in one time
slot is pz

∆
= (λEP)

z
exp (−λEP)/z! for z = 0, 1, . . . ,L − 2,

and pL−1
∆
= 1 −

∑L−2
z=0 pz is the probability of harvesting at

least L−1 power packets, i.e., the maximum storage capacity.
By appropriately choosing λEP, different time scales for the
mobility of the MTs and the rate at which the renewable energy
is harvested can be modeled, e.g., (i) if λEP � 1, the time
scale of energy harvesting is shorter that the time scale that
corresponds to the mobility of the MTs; (ii) if λEP � 1, the
opposite holds true. As detailed in the sequel, the temporal
dynamics of the batteries of the SBSs are modeled by using a
discrete Markov chain with L states. Based on the considered
assumptions, for ease of writing, the time index can be omitted
in our notation. It is worth mentioning that the Poisson
distribution for modeling the packets of harvested power is
not only convenient from the analytical point of view, and,
hence, widely employed in the literature, but it is accurate
enough for representing empirical data as well. For example,
the authors of [15] have shown that a Poisson distribution with
an arbitrary transformation (e.g., a translation) well matches
empirical measurements of solar-powered energy harvesting.

C. Availability of Small Cell Base Stations

For ease of description, we anticipate an important concept:
The availability of the SBSs. Since the number of power

packets that are harvested by the SBSs in a time slot is a
Poisson random variable, some SBSs may not have sufficient
power to serve the MTs located in their cells. The SBSs that
have sufficient power to serve at least one MT are referred to
as available. Otherwise, they are referred to as unavailable.
The point process of available SBSs is denoted by Ψ

(A)
S ⊆ ΨS.

Since the MBSs are connected to the power grid, we have
Ψ

(A)
M = ΨM, i.e., the MBSs are always available. The MTs

located in the cells of unavailable SBSs are offloaded either
to an available SBS or to an MBS, according to the cell
association described next. It is worth noting that the set of
available SBSs is, in general, different in every time slot.

D. Channel Modeling

In each link, small-scale and large-scale channel impair-
ments are accounted for. All links are independently and
identically distributed. The power gain of link n (in both tiers)
is denoted by gn, and it is an exponential random variable
with unit mean. The path-loss of link n in tier k ∈ {M, S}
and length rn is lk (rn)

∆
= κkr

βk
n , where βk and κk are the

path-loss exponent and constant of the kth tier. For simplicity,
we assume βk = β and κk = κ for k ∈ {M, S}.

E. Cell Association

The typical MT, MT(0), is served by the BS that provides
the highest biased average received power to it. Let Tk and
P ktx,tot be the bias factor and the total transmit power of tier

k, and K(0)
k

∆
= min

n∈Ψ
(A)
k

{lk (rn)} be the smallest path loss
of tier k, where k ∈ {M, S}. The average (over the small-
scale fading) received power at MT(0) can be formulated as
follows:

P (0)
rx

∆
=
P ktx,tot

K
(0)
k

if
Tk̃K

(0)

k̃

P k̃tx,tot

≥
TkK

(0)
k

P ktx,tot

(1)

where k̃ is defined as k̃ = S if k = M and k̃ = M if k = S,
respectively.

Since the locations of the MTs and the available SBSs may
be different in different time slots, the typical MT may, based
on (1), be served by a different BS in different time slots.

F. Load Model

Let NMT be the number of MTs in a generic cell. Two load
models are analyzed.

1) Load Model 1 (L1): Power and bandwidth are viewed
as discrete resources by the scheduler: The total transmit
power and total transmission bandwidth of the MBSs and
SBSs are split into NRB ∈ N discrete units, which are referred
to as Resource Blocks (RBs). Within a cell, each MBS and
SBS can serve only one MT in each RB. Therefore, intra-
cell interference is avoided. All MBSs and SBSs are allowed
to transmit in any RB. Therefore, inter-cell interference is
present on a per-RB basis. The transmit power and trans-
mission bandwidth of each RB are P k,L1

tx
∆
= P ktx,tot/NRB

and BWk,L1
∆
= BWL1 = BWtot/NRB, respectively, where

BWtot is the total transmission bandwidth. Under this model,
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the maximum number of MTs that can be served by each
MBS and SBS is NM,L1

max
∆
= min

{
NRB, N

M
Load

}
and NS,L1

max
∆
=

min
{
NRB, N

S
Load, N

L1
Bat

}
, respectively, where Nk

Load ∈ N for
k ∈ {M,S} is a free parameter for resource allocation, e.g., to
control the inter-cell interference in the RBs, and NL1

Bat ∈ N
denotes the maximum number of MTs that can be served
only due to the random arrival of the power packets and the
limited storage capacity of the battery of the SBSs. Further
details on NL1

Bat are given in the sequel. If NMT > NM,L1
max or

NMT > NS,L1
max , some MTs cannot be served in a given time

slot. In this case, only NM,L1
max or NS,L1

max MTs are served, and
they are chosen uniformly at random among the NMT MTs
that are available. If NMT < NM,L1

max or NMT < NS,L1
max , some

MBSs and SBSs do not transmit in some RBs, thus generating
less inter-cell interference and consuming less power.

2) Load Model 2 (L2): Power and bandwidth are viewed
as continuous resources by the scheduler: The total transmit
power and total transmission bandwidth of the MBSs and
SBSs are viewed as continuous resources, and are evenly
allocated among the maximum number of MTs that can be
served by each MBS and SBS. Similar to L1, however, no
intra-cell interference is present. By using a notation similar
to L1, the maximum number of MTs that can be served by
each MBS and SBS is NM,L2

max
∆
= min

{
NMT, N

M
Load

}
and

NS,L2
max

∆
= min

{
NMT, N

S
Load, N

L2
Bat

}
, respectively. Therefore,

the transmission bandwidth allocated by each MBS and SBS
to each MT is BWk,L2

∆
= BWtot/N

k,L2
max , and the total transmit

power of each MBS and SBS is evenly spread across the entire
transmission bandwidth BWtot, i.e., the power spectral density
is P ktx,tot/BWtot for k ∈ {M, S}. L1 and L2 are similar,
but two main differences hold. In L2: (i) the transmit power
and transmission bandwidth that are allocated to each MT are
random variables (since NMT is a random variable); and (ii)
each MBS and SBS consumes the total transmit power and
uses the entire transmission bandwidth if NMT ≥ 1 (at each
transmission instance).

In simple terms, therefore, two models for the load and two
models for the corresponding transmit power of the MBSs and
SBSs are studied. As for load model L1, the total available
bandwidth and the total transmit power are split into RBs of
fixed size. Each MT is served on an independent RB in order
to avoid intra-cell interference. The number of MTs that can
be served by an MBS depends, therefore, on the total number
of RBs. The number of MTs that can be served by an SBS
depends, on the other hand, on the total number of RBs and on
the energy harvesting process (i.e., the random arrival of the
power packets and the limited storage capacity of the battery
of the SBSs). This implies that some MTs may not be served
under load model L1. As for the load model L2, we consider
that the total available bandwidth is equally split among all
the MTs that lie in a cell. Similarly, the total transmit power
is spread across the total available bandwidth. This ensures
that all the MTs that lie in a cell are served, but without
guaranteeing any minimum constraint on the bandwidth and
transmit power that are allocated to them.

G. Power Transmission and Consumption Modeling

The MBSs and SBSs operate in two modes. The MBSs can
be either in transmit or idle mode if at least one MT or no MT
is associated to them, respectively. In the first case, the power
consumed is the summation of the transmit power PM,d

tx for
d ∈ {L1, L2} which is defined in the previous section, and the
circuits power consumption PM

cir [1]. In idle mode, the power
consumption is 0 ≤ PM

idle ≤ PM
cir. The SBSs can be either in

transmit or energy harvesting mode. They operate in transmit
mode if at least one MT is associated to them and they have
sufficient power in their batteries to serve at least one MT (i.e.,
they are available). They operate in energy harvesting mode
if either no MT is associated to them or they are unavailable.
In the first case, similar to the MBSs, the power consumed is
the summation of the transmit power P S,d

tx for d ∈ {L1, L2},
and the circuits power consumption P S

cir. The operation in the
energy harvesting mode is detailed in the next section. For
simplicity, we adopt the notation Pidle = PM

idle.
In general terms, therefore, the power consumption of the

MBSs and SBSs is obtained as the sum of the transmit power,
the circuits power, and the idle power. The main difference
between the MBSs and SBSs is that the idle power is assumed
to be equal to zero for the SBSs. The power consumption of
the SBSs is equal to zero during the harvesting process.

H. Energy Harvesting Modeling

1) Definition of Nd
Bat for d ∈ {L1, L2}: As anticipated,

the amount of renewable energy harvested by the SBSs is
discretized into packets of fixed power Punit, and each power
level of the batteries is, for simplicity, equal to Punit. Based
on the power consumption model introduced in the previous
section, we can formally define Nd

Bat ∈ N, i.e., the max-
imum number of MTs that can be served by the SBSs by
taking into account only the random arrival of the power
packets and the limited storage capacity of the SBSs. Let
P̃ S

tx,tot
∆
=
⌊
P S

tx,tot/Punit

⌋
∈ N and P̃ S

cir
∆
=
⌊
P S

cir/Punit

⌋
∈ N

be the number of power levels that correspond to P S
tx,tot and

P S
cir, respectively. Then, Nd

Bat
∆
=
⌊
(L − 1−md

1)/md
⌋

+ 1,
where md

1 ∈ N and md ∈ N are the minimum power
level that is necessary to make an SBS available and the
minimum power level that is necessary to serve one MT
conditioned on the availability of the SBS, respectively. We
have: mL1

1 = P̃ S
cir + P̃ S

tx,tot/NRB, mL2
1 = P̃ S

cir + P̃ S
tx,tot,

mL1 = P̃ S
cir + P̃ S

tx,tot/NRB, and mL2 = P̃ S
cir. The definitions

of md
1 and md account for the different assumptions under

L1 and L2. Under L2, the total transmit power is taken into
account only in mL2

1 , since it is entirely used even if a single
MT is served. This is the reason why mL2 depends only on
the circuits power consumption.

2) Half-Duplex and Full-Duplex Energy Harvesting: In
energy harvesting mode, the SBSs can operate in either half-
duplex (H) or full-duplex (F). In the first case, the SBSs need a
single battery that, in every time slot, is in either transmission
mode or energy harvesting mode. In the second case, on the
other hand, the SBSs can transmit and harvest energy during
every time slot. In full-duplex mode, the SBSs are equipped
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with two batteries. One of them is used for transmission and
the other one is used for energy harvesting. At the end of the
time slot, the latter battery transfers the harvested power to the
former battery instantly. Therefore, the power harvested in a
given time slot can be used for transmission only in subsequent
time slots.

III. METHODOLOGY OF ANALYSIS AND PRELIMINARY
RESULTS

In this section, the main methodology of analysis and some
enabling results are presented.

A. Methodology of Analysis

The MTs and the power packets harvested by the SBSs
are distributed according to two time-homogeneous (station-
ary in time) and spatial-homogeneous (stationary in space)
independent PPPs. For a given network realization of MBSs
and SBSs, therefore, the availability of an arbitrary SBS in a
given time slot depends on: (i) the power level of its battery
in the previous time slot and the amount of harvested power
in the previous time slot, if it was unavailable in the previous
time slot, and (ii) the power level of its battery in the previous
time slot, the number of MTs that it served in the previous
time slot, and the amount of harvested power in the previous
time slot (only for full-duplex energy harvesting), if it was
available in the previous time slot.

The availability of an arbitrary SBS in a given time slot
depends, in addition, on the availability of the other SBSs in
the previous time slot. Assume, for example, that only one SBS
is available in a given time slot. Based on the considered cell
association, the SBS has to serve all the MTs in the network.
This operation increases the likelihood of depleting the battery
of the SBS, and, thus, decreases the likelihood of the SBS
to be available in the next time slot. The spatial-temporal
coupling that originates from these interactions is difficult to
model without resorting to some approximations [16]. Some
papers where the spatio-temporal coupling is analyzed can be
found in [19], [20], [21]. In our system model, however, the
stationarity in time and space of the MTs and the random
arrivals of the power packets weaken, in part, the spatio-
temporal coupling among the SBSs. For analytical tractability,
therefore, the spatio-temporal correlations among the SBSs are
not taken into account in our analytical framework, as formally
stated below.

Approximation 1: In every time slot, the point process of the
available SBSs, Ψ

(A)
S , is approximated by an independently

thinned version of ΨS, whose retaining probability is the
probability that an SBS is available, i.e., the probability that
the SBS has sufficient power in its battery to serve at least
one MT. By denoting with εd,o the probability that an SBS
is unavailable, the point process Ψ

(A)
S is approximated with a

PPP of density λ(A)
S

∆
= (1− εd,o)λS.

Remark 1: It is worth mentioning that thinning has been
extensively employed when modeling cellular networks with
the aid of stochastic geometry. An example is the analysis of
uplink cellular networks, where thinning is used to take into
account the non-uniform spatial distribution of the MTs that

are scheduled for transmission on a given physical resource
[22]. Our application of thinning is, however, different and
peculiar to the specific problem that we intend to solve. It will
be apparent in the sequel, in fact, that εd,o jointly depends on
the spatial and temporal characteristics of the cellular network.
The computation of εd,o is, in particular, challenging and, in
general, no explicit closed-form expression exists for it (see,
e.g., (9)).

Approximation 2: To compute εd,o, our approach relies
on assuming that the discrete Markov chain that describes
the temporal dynamics of the batteries of the SBSs operates
at the steady state, i.e., at the equilibrium. The discrete
Markov chain, therefore, can be modeled via its equilibrium
distribution, i.e., the probabilities that the power level of the
battery is {0, Punit, 2Punit, . . . , (L − 1)Punit} in the long
time horizon. Under this assumption, the probability that an
SBS is available, i.e., 1− εd,o, is computed at the steady state
(equilibrium) of the discrete Markov chain. Our mathematical
approach, therefore, ignores the transient behavior of the dis-
crete Markov chain, but it is shown to be analytically tractable
and sufficiently accurate. It is worth noting, however, that this
transient behavior is taken into account in our Monte Carlo
simulations. We anticipate that the proposed approach leads
to a non-trivial formulation of the steady state probabilities
of the discrete Markov chain, since the transition probabilities
implicitly depend on the steady state probabilities through the
probability εd,o. To the best of our knowledge, the proposed
analytical formulation has never been employed and analyzed
in prior related works.

Remark 2: For analytical tractability, the batteries of the
SBSs are assumed to be statistically equivalent. Thus, a single
Markov chain is employed. This is, in part, justified by the
spatial and temporal independence of the packets of harvested
energy, the locations of the MTs, and the fast fading. We
feel important to emphasize, however, that this modeling
assumption results in approximated analytical frameworks,
since the spatial coupling among the locations of the MBSs
and SBSs has a stronger impact as compared with, e.g., fast
fading. In general, therefore, the batteries of the SBSs exhibit a
different statistical behavior across the entire network. Recent
research results tackling this issue can be found in [16]-[18].

Remark 3: In the event that no SBS is available in a given
network realization, the MTs are served by the MBSs. The
MBSs are, in fact, always available as they are connected to
the power grid. In the worst case, thus, the system model boils
down to a single-tier cellular network.

B. Preliminary Results

In this section, based on the proposed analytical methodol-
ogy, we summarize some enabling results that are useful for
formulating the analytical frameworks in the next section.

Lemma 1: Consider k̃ 6= k for k ∈ {M,S}, d ∈ {L1, L2},
and o ∈ {H,F}. The probability, APk

∆
= APk(εd,o), that the

typical MT is associated with the kth tier is as follows:

APk
∆
= Pr

(
Tk̃

P k̃tx,tot

K
(0)

k̃
≥ Tk
P ktx,tot

K
(0)
k

)
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TABLE II: Auxiliary functions used throughout this paper (k ∈ {M,S}, d ∈ {L1,L2}, o ∈ {H,F})

Function Definition

η = κγAσ
2
N, NLB = min

{
NS

Load, N
L1
Bat

}
, wk =

(
P ktx,tot/η

)2/β
c (x) = 2F1 (1,−2/β, 1− 2/β,−x)− 1

a1 (k, n) = (3.5)
3.5

Γ (4.5 + n) (λMTAk)
n+1

/
(

Γ (3.5) Γ (2 + n) (λMTAk + 3.5)
n+4.5

)
a2 (a, b, c, k) = 2F1 (a, b, c, λMTAk/ (λMTAk + 3.5))

f1 (d, o, i) =
∑md

1+imd−1

s=md
1+(i−1)md v

d,o
s , f2 (d, o, n) =

∑L−1
s=md

1+(n−1)md vd,os

z1
inc (k, n) = a1 (k, n) a2 (1, 4.5 + n, 2 + n, k) + a1 (k, n) (n+4.5)(λMTAk)

(n+2)(λMTAk+3.5)a2 (2, 5.5 + n, 3 + n, k)

z2
inc (k, n) = a1 (k, n) a2 (2, 4.5 + n, 2 + n, k)
zsel (k, n) = 1− (a1 (k, n) / (λMTAk)) ((n+ 1) a2 (1, 4.5 + n, 1 + n, k)− na2 (1, 4.5 + n, 2 + n, k))

=

1 +
λ

(A)

k̃

λ
(A)
k

(
Tk
Tk̃

P k̃tx,tot

P ktx,tot

)2/β
−1

(2)

Proof: It follows from (1) using analytical steps similar
to [23]. The difference is that the point process of the available
SBSs is approximated by a PPP of density λ(A)

S .
Lemma 2: Consider Ak

∆
= Ak(εd,o) = APk/λ

(A)
k for k ∈

{M,S}, d ∈ {L1, L2}, and o ∈ {H,F}. The probability, qke ,
that exactly e MTs, and the probability, yke , that at least e MTs
are associated with a BS of the kth tier can be formulated,
respectively, as follows:

qke
∆
= Pr (Number of MTs = e, k)

=
(3.5)

3.5
Γ (e+ 3.5) (λMTAk)

e

Γ (3.5) e!(λMTAk + 3.5)
e+3.5 (3)

yke
∆
= Pr (Number of MTs ≥ e, k)

= 1−
e−1∑
i=0

(3.5)
3.5

Γ (i+ 3.5) (λMTAk)
i

Γ (3.5) i!(λMTAk + 3.5)
i+3.5

(4)

Proof: The proof of qke follows by using the approxi-
mation for the area of a Poisson-Voronoi cell in [24], and
the approximation for the area, Ak, of a multi-tier Poisson
cellular network, i.e., Ak = APk/λ

(A)
k in [25]. Also, the point

process of the available SBSs is approximated with a PPP of
density λ(A)

S . The proof of yke follows from its definition, i.e.,
yke = 1−

∑e−1
i=0 q

k
i .

Lemma 3: Consider Ak = Ak(εd,o) = APk/λ
(A)
k for k ∈

{M,S}, d ∈ {L1, L2}, and o ∈ {H,F}. The probability, q̄ke ,
that exactly e MTs are associated with a BS of the kth tier
conditioned on one MT being associated with the BS already
can be formulated as follows:

q̄ke
∆
= Pr {Number of MTs = e|MT = 1, k}

=
3.53.5Γ (e+ 4.5)

Γ (3.5) e!

(λMTAk)
e

(3.5 + λMTAk)
e+4.5 (5)

Proof: It is similar to Lemma 2, with the exception
that the distribution of the area of a Poisson-Voronoi cell
conditioned on the presence of one MT is different [24].

Lemma 4: Consider Ak = Ak(εd,o) = APk/λ
(A)
k for k ∈

{M,S}, d ∈ {L1, L2}, and o ∈ {H,F}. Let a1(·) and a2(·)
be the functions defined in Table II. The average number of

MTs to be served by a BS of the kth tier can be formulated
as follows:

N̄k,d
MT

∆
= E {Number of MTs} = λMTAk − a1

(
k,Nk,d

max

)
× a2

(
2, 4.5 +Nk,d

max, 2 +Nk,d
max, k

)
(6)

Proof: The proof follows from (4) and from the equality
N̄k,d

MT =
∑+∞
e=0 eq

k
e =

∑Nk,d
max−1

e=0 eqke +
∑+∞
e=Nk,d

max
Nk,d

maxq
k
e . The

final result follows by computing the sums in closed-form.
Lemma 5: Consider Ak = Ak(εd,o) = APk/λ

(A)
k for k ∈

{M,S}, d ∈ {L1, L2}, and o ∈ {H,F}. Let zsel (·, ·) be the
function defined in Table II. The following identities hold true:

t−1∑
e=0

q̄ke +
+∞∑
e=t

t

e+ 1
q̄ke = zsel (k, t) (7)

+∞∑
e=1

1

e+ 1
q̄ke = zsel (k, 1)

=
1

λMTAk

(
1−

(
1 +

λMTAk
3.5

)−3.5
)

(8)

Proof: The proofs follow from (5) and by computing the
sums in closed-form.

Remark 4: zsel (k, t) in (8) can be interpreted as the proba-
bility that an MT is selected to use one out of t resources that
are available in one cell (among those with at least one MT).

Lemma 6: Let Rd,o for d ∈ {L1,L2} and o ∈ {H,F} be the
L×L matrix of transition probabilities of the discrete Markov
chain that describes the temporal dynamics of the batteries of
the SBSs. The (i, j)th entry of Rd,o, ri,j , is the probability
that the battery status moves from level (or state) i to level
(or state) j. Also, let vd,o be the 1×L vector of steady state
probabilities of the discrete Markov chain. The sth entry of
vd,o, vd,os , is the probability that, at the equilibrium, the battery
level is s. Then, vd,o is the solution of the following equation
[26]:

vd,oRd,o
(
vd,o

)
= vd,o subject to

L−1∑
s=0

vd,os = 1 (9)

Therefore, the probability, εd,o, that an SBS is unavailable
is equal to εd,o

∆
=
∑md

1−1
s=0 vd,os .

Proof: Eq. (9) follows by definition of equilibrium of a
discrete Markov chain, and εd,o follows by considering that
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PM,L1
InA

∆
= 1− λMTAM

NRB
+

1

NRB
×
{
z1

inc (M, NRB) if NM,L1
max = NRB

z2
inc

(
M, NM

Load

)
if NM,L1

max = NM
Load

(14)

P S,L1
InA

∆
=

NS,L1
max −1∑
NMT=1

(
1− λMTAS

NRB
+
z2

inc (S, NMT)

NRB

)
f1(L1, o,NMT)

1− εL1,o
+
f2(L1, o,NS,L1

max )

1− εL1,o

×
(

1− λMTAS

NRB
+

1

NRB
×
{
z1

inc (S, NRB) if NS,L1
max = NRB

z2
inc (S, NLB) if NS,L1

max = NLB

)
(15)

an SBS is available if its battery level is greater than md
1.

Remark 5: In contrast to conventional formulations of the
steady state equation in (9) (see, e.g., [7]), our case study
is different. The matrix of transition probabilities depends,
in particular, on the vector of steady state probabilities it-
self, which makes the calculation of vd,o, and, therefore, of
εd,o, unlikely in closed-form. Further details, the closed-form
expression of Rd,o, and some examples to understand how
to construct it are given in Section III-C. In spite of this
analytical intractability, we show, in the sequel, that relevant
key performance indicators for the network model under anal-
ysis can be formulated, given εd,o, in closed-form. Therefore,
the proposed method provides one with a semi-analytical
approach that is shown to be more efficient compared with
Monte Carlo simulations. Semi-analytical approaches have
been proposed in other papers as well. In [12], e.g., the
term semi-analytical is referred to combining, in a simplified
system model, analysis with Monte Carlo simulations. Our
approach is, on the other hand, different. In (9), in fact, all
the functions and parameters are available in closed-form.
Therefore, the term semi-analytical is referred to the need of
solving (9) numerically, but without the need of using Monte
Carlo simulation methods. In Section V, in addition, we prove
that our approach provides, in simplified case studies, insights
for system design and guidelines for system optimization.

Remark 6: In (9), we assume that the temporal evolution
of the batteries employed for energy harvesting at the SBSs is
statistically equal. This is possible because (4)-(8) are averaged
over the distribution of the area of the cells [24]. As detailed
in Remark 2, this is an approximation.

The following two propositions yield the inactive probabil-
ity of the MBSs and SBSs. Under L1, the inactive probability
is defined as the probability that a BS does not transmit on
a randomly chosen RB. Under L2, the inactive probability is
defined as the probability that a BS is not in transmission
mode. In the latter case, as discussed in the previous sections,
an inactive MBS is in idle mode, and an inactive SBS is
in energy harvesting mode. Three lemmas are, however, first
reported, since they are used to prove the two following
propositions. All the auxiliary functions used in the following
lemmas and propositions are defined in Table II.

Lemma 7: Consider an available SBS. The probability that
it has sufficient power to serve exactly NMT ≥ 1 MTs can be

formulated, for d ∈ {L1,L2} and o ∈ {H,F}, as follows:

P S
serve (d, o,NMT) (10)

∆
=

1

1− εd,o
×

{
f1 (d, o,NMT) if NMT < NS,d

max

f2

(
d, o,NS,d

max

)
if NMT = NS,d

max

Proof: See Appendix A.
Lemma 8: Consider an MBS or an available SBS that has

sufficient power to serve exactly 1 ≤ NMT ≤ Nk,d
max MTs.

Under load model L1, the probability that a BS is inactive on
an RB can be formulated, for k ∈ {M,S} and o ∈ {H,F}, as
follows:

PL1
inactive (k, o,NMT) (11)

∆
=



NRB∑
n=0

(
1− n

NRB

)
qkn if NMT ≥ NRB

NMT−1∑
n=0

(
1− n

NRB

)
qkn

+
+∞∑

n=NMT

(
1− NMT

NRB

)
qkn if NMT < NRB

Proof: The proof follows by applying the total probability
theorem as a function of the number of MTs associated to
a BS, and by taking into account that the probability of
transmitting on an RB is equal to the ratio between the number
of MTs in the cell and the number of RBs.

Lemma 9: The notable identities hold true (Ak = Ak(εL1,o)
for k ∈ {M,S} and o ∈ {H,F}):

IRB (k, o,NRB)
∆
=

NRB∑
n=0

(
1− n

NRB

)
qkn

= 1− λMTAk
NRB

+
z1

inc (k,NRB)

NRB
(12)

IMT (k, o,NMT)
∆
=

NMT−1∑
n=0

(
1− n

NRB

)
qkn

+
+∞∑

n=NMT

(
1− NMT

NRB

)
qkn

= 1− λMTAk
NRB

+
z2

inc (k,NMT)

NRB
(13)

Proof: The proof follows by inserting the analytical
expression of qkn in (4) into (12) and (13), and by subsequently
computing the resulting sums in closed-form.

Proposition 1: Define NLB
∆
= min

{
NS

Load, N
L1
Bat

}
. Under
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TABLE III: Examples of matrices Rd,o (Jb = 1−
∑b

i=0 pi): L = 5, mL1
1 = 2, mL1 = 2, mL2

1 = 3, mL2 = 1)

RL1,H =


p0 p1 p2 p3 J3

0 p0 p1 p2 J2

y1 0 p0q0 p1q0 q0J1

0 y1 0 q0p0 q0 (1− p0)
y2 0 q1 0 q0

 RL2,H =


p0 p1 p2 p3 J3

0 p0 p1 p2 J2

0 0 p0 p1 J1

y1 0 0 q0p0 q0 (1− p0)
y2 q1 0 0 q0



RL1,F =


p0 p1 p2 p3 J3

0 p0 p1 p2 J2

p0y1 p1y1 p2y1 + q0p0 p3y1 + q0p1 y1J3 + q0J1

0 p0y1 p1y1 p2y1 + q0p0 y1J2 + q0 (1− p0)
p0y2 p1y2 p2y2 + q1p0 p3y2 + q1p1 y2J3 + q1J1 + q0



RL2,F =


p0 p1 p2 p3 J3

0 p0 p1 p2 J2

0 0 p0 p1 J1

p0y1 p1y1 p2y1 p3y1 + q0p0 y1J3 + q0 (1− p0)
p0y2 p1y2 + q1p0 p2y2 + q1p1 p3y2 + q1p2 y2J3 + q1J2 + q0



load model L1, the probability that an MBS and an SBS are
inactive is available in (14) and (15) at the top of the previous
page, respectively, where Ak = Ak(εL1,o) for k ∈ {M,S} and
o ∈ {H,F}.

Proof: See Appendix B.
Proposition 2: Under load model L2, the probability that an

MBS and an SBS are inactive can be formulated as follows
(Ak = Ak(εL2,o) for k ∈ {M,S} and o ∈ {H,F}):

P k,L2
InA

∆
=

(
1 +

λMTAk
3.5

)−3.5

(16)

Proof: Under load model L2, the MBSs and SBSs are
inactive if no MT is associated to them. Then, the inactive
probability is equal to qke in (4) by setting e = 0.

Remark 7: In general, P k,L1
InA 6= P k,L2

InA . If NRB = 1 or
L = 2, i.e., the battery is only empty or full (two-state model),
it can be verified by direct inspection of Proposition 1 that
P k,L1

InA = P k,L2
InA .

C. Discrete Markov Chain – Matrix of Transition Probabilities

In this section, based on the considered system model
and the proposed approximations for performance analysis,
we provide explicit closed-form expressions of the matrix of
transition probabilities for the two considered load models
(d ∈ {L1,L2}) and for half-duplex and full-duplex energy
harvesting modes (o ∈ {H,F}). Before introducing the general
expression of Rd,o in (9), we illustrate some toy examples
in order to understand how Rd,o is constructed. The four
examples of matrices for d ∈ {L1,L2} and o ∈ {H,F} are
reported in Table III. They are obtained by considering the
following setup: L = 5, P̃ S

cir = 1, P̃ S
tx,tot = 2, and NRB = 2.

Therefore, mL1
1 = 2, mL1 = 2, mL2

1 = 3, and mL2 = 1. For
notational simplicity, since only the SBSs are of interest in
this section, we employ the simplified notation qS

e = qe and
yS
e = ye.

The matrices in Table III are obtained based on the follow-
ing considerations. The first two rows of RL1,H and RL1,F

are the same, since the SBS has no sufficient power to serve
any MTs if it is either in state s = 0 or in state s = 1. If the
battery is in state s = 2, then the SBS can serve at most one
MT depending on the current battery state and the presence
of MTs in its cell. The operation of an SBS equipped with a
half-duplex and a full-duplex battery is, however, different.
As an example, let us consider r3,3. In half-duplex mode,
a battery in state s = 3 continues to stay in state s = 3
if there are no MTs in its cell (whose probability is q0)
and, simultaneously, no power packets are harvested (whose
probability is p0). In full-duplex mode, on the other hand, r3,3

is the sum of the probabilities of two incompatible events: (i)
there is at least one MT in the cell (whose probability is y1)
and, simultaneously, two power packets are harvested (whose
probability is p2) or (ii) there are no MTs in the cell (whose
probability is q0) and, simultaneously, no power packets are
harvested (whose probability is p0). Similar considerations can
be made for RL2,H and RL2,F. In this case, however, the SBS
has no sufficient power to serve any MTs if it is in states
s = 0, s = 1, and s = 2. This is due to the different power
consumption of the SBS under load models L1 and L2. It is
apparent, therefore, that both the load model and the energy
harvesting duplexing scheme determine the steady state regime
of the batteries, and, therefore, the probability that an SBS is
available, i.e., 1− εd,o.

By using the same line of thought as for the examples in
Table III, the general formulation of the matrices of transition
probabilities, Rd,o, is reported in Table IV and Table V for
half-duplex and full-duplex operating modes, respectively. In
both tables, Ri

∆
= [ri,1 ri,2 . . . ri,L] denotes the ith row of

Rd,o and R−i
∆
= [ri,2 ri,3 . . . ri,L−2] is a reduced version

of Ri, which has L − 2 elements. Similar to Table III, the
notation qS

e = qe and yS
e = ye is used in Tables IV and V.
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TABLE IV: Algorithm for computing the matrix of transition probabilities - Half-duplex mode

Set R1 =
[
p0 p1 . . . pL−1

]
For i = 2 : 1 : md

1

Ri =
[

0 R−i−1 ri−1,L−1 + ri−1,L
]

End
For e = 1 : 1 : NS,d

max

Rmd
1+1+(e−1)md =

[
rmd

1+1+(e−1)md,j

]
, j ∈ {1, 2, . . . ,L}

rmd
1+1+(e−1)md,j =



ye, j = 1,∀e
qe−u, j = umd + 1, u ∈ {1, 2, . . . , e− 1} , e ≥ 2
q0pj−md

1−1−(e−1)md , j =
{
md

1 + 1 + (e− 1)md, . . . ,L − 1
}
,∀e

q0

(
1−

L−2−md
1−(e−1)md∑
b=0

pb

)
, j = L,∀e

0, otherwise

If e 6= NS,d
max

For c = 1 : 1 : md − 1

Rmd
1+1+(e−1)md+c =

[
0 R−

md
1+1+(e−1)md+(c−1)

rmd
1+1+(e−1)md+(c−1),L−1

+rmd
1+1+(e−1)md+(c−1),L

]
End

Else
For c = 1 : 1 : L −

(
md

1 + 1 +
(
NS,d

max − 1
)
md
)

Rmd
1+1+(e−1)md+c =

[
0 R−

md
1+1+(e−1)md+(c−1)

rmd
1+1+(e−1)md+(c−1),L−1

+rmd
1+1+(e−1)md+(c−1),L

]
End

End
End

TABLE V: Algorithm for computing the matrix of transition probabilities - Full-duplex mode

Set R1 =
[
p0 p1 . . . pL−1

]
For i = 2 : 1 : md

1

Ri =
[

0 R−i−1 ri−1,L−1 + ri−1,L
]

End
For e = 1 : 1 : NS,d

max

Rmd
1+1+(e−1)md =

[
rmd

1+1+(e−1)md,1 . . . rmd
1+1+(e−1)md,L−1 rmd

1+1+(e−1)md,L
]

rmd
1+1+(e−1)md,j = yepj−1 +

e−1∑
u=1

qe−upj−umd−1 + q0pj−md
1−1−(e−1)md , j ∈ {1, . . . ,L − 1}

rmd
1+1+(e−1)md,L = yepL−1 +

e−1∑
u=1

qe−u

(
1−

L−2−umd∑
b=0

pb

)
+ q0

(
1−

L−2−md
1−(e−1)md∑
b=0

pb

)
If e 6= NS,d

max

For c = 1 : 1 : md − 1

Rmd
1+1+(e−1)md+c =

[
0 R−

md
1+1+(e−1)md+(c−1)

rmd
1+1+(e−1)md+(c−1),L−1

+rmd
1+1+(e−1)md+(c−1),L

]
End

Else
For c = 1 : 1 : L −

(
md

1 + 1 +
(
NS,d

max − 1
)
md
)

Rmd
1+1+(e−1)md+c =

[
0 R−

md
1+1+(e−1)md+(c−1)

rmd
1+1+(e−1)md+(c−1),L−1

+rmd
1+1+(e−1)md+(c−1),L

]
End

End
End
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SIRk,d
∆
=

P ktx,totg
(0)
/
K

(0)
k∑

i∈Ψ
(A,I),d
k

Pk
tx,totgi
lk(ri)

1
(
lk (ri) > K

(0)
k

)
+

∑
i∈Ψ

(A,I),d

k̃

P k̃
tx,totgi
lk̃(ri)

1

(
lk̃ (ri) >

TkP k̃
tx,tot

Tk̃P
k
tx,tot

K
(0)
k

) (18)

IV. PERFORMANCE ANALYSIS

In this section, we introduce closed-form expressions, given
εd,o, of the coverage probability, the spectral efficiency, the
power consumption, and the EE of the cellular network model
under analysis. These key performance indicators are com-
puted based on the definition of coverage probability recently
introduced in [1]. Similar to [1], our analysis relies on the
approximation that, in each tier, the set of interfering BSs is
an independently thinned version of the set of available BSs
whose retaining probability is the probability that a BS is ac-
tive, which depends on the tier, the load model, and the energy
harvesting duplexing mode. The energy harvesting duplexing
mode is implicitly taken into account in the formulation of
the Markov chain, and, therefore, in εd,o. For these reasons,
unless necessary, it is omitted from our notation. The proposed
modeling approximation can be formalized as follows.

Approximation 3: Let Ψ
(A)
k be the PPP of available BSs in

tier k ∈ {M,S} whose density is λ(A)
k . The set of interfering

BSs in the kth tier is a PPP, denoted by Ψ
(A,I),d
k , whose density

is λ(A,I),d
k

∆
= λ

(A)
k (1−P k,dInA) for k ∈ {M,S} and d ∈ {L1,L2}.

From [1], the coverage probability of a selected MT that is
associated to an available BS is defined as P

(cov)
d (γD, γA)

∆
=∑

k∈{M,S} P
(cov)
k,d (γD, γA), where (k 6= k̃ ∈ {M,S}):

P
(cov)
k,d (γD, γA) (17)

∆
= Pr

SIRk,d ≥ γD,ASNRk,d ≥ γA,
Tk̃K

(0)

k̃

P k̃tx,tot

≥
TkK

(0)
k

P ktx,tot


and γD is the decoding threshold during data transmis-
sion, γA is the detection threshold during cell association,
ASNRk,d

∆
= P ktx,tot

/
K

(0)
k σ2

N is the Average Signal-to-Noise
Ratio (ASNR), and the Signal-to-Interference Ratio (SIR) is
defined in (18) shown at the top of this page.

Proposition 3: The coverage probability in (17) can be
formulated as follows:

P
(cov)
k,d (γD, γA)

=
1− exp

(
−πλ(A)

k

(
P ktx,tot

/(
κγAσ

2
N

))2/βDk,k̃
)

Dk,k̃
(19)

where k 6= k̃ ∈ {M,S} and the following shorthand notation
is used:

Dk,k̃
∆
= 1 +

λ
(A)

k̃

λ
(A)
k

(
TkP

k̃
tx,tot

Tk̃P
k
tx,tot

)2/β

+
λ

(A,I),d
k

λ
(A)
k

c (γD)

+
λ

(A,I),d

k̃

λ
(A)
k

(
TkP

k̃
tx,tot

Tk̃P
k
tx,tot

)2/β

c

(
γD
Tk̃
Tk

)
(20)

Proof: The proof follows by using similar steps as those
in [1, Appendix A], which are generalized to a two-tier system
model by using the same approach as in [23, Section IV].

Remark 8: In contrast with [1, Remark 9], the coverage
probability in (19) depends on the number of MTs in the
cell, and the power level of the batteries of the SBSs. Other
differences compared with [1] are the following: (i) under L1,
multiple RBs are considered, and, thus, multiple MTs can be
scheduled in each cell; (ii) under L1 and L2, there exists a
maximum number of MTs that can be scheduled in each cell,
i.e., Nk

Load in the kth tier; and (iii) the finite capacity of the
batteries and the availability of sufficient energy are taken into
account.

Before formulating the general expression of the Potential
Spectral Efficiency (PSE) [1], we report four lemmas that yield
the PSE by conditioning on the serving BS (MBS and SBS)
and the load model (L1 and L2). Each case study is, in fact,
different and deserves attention.

Lemma 10: Let the serving BS be an MBS. Under load
model L1, the PSE can be formulated as follows:

PSEM,L1
∆
= λMT (BWtot/NRB) log2 (1 + γD)

× zsel

(
M, NM,L1

max

)
P

(cov)
M,L1 (γD, γA) (21)

Proof: See Appendix C.
Lemma 11: Let the serving BS be an MBS. Under load

model L2, the PSE can be formulated as follows:

PSEM,L2
∆
= λMTBWtotlog2 (1 + γD)

× zsel (M, 1) P
(cov)
M,L2 (γD, γA) (22)

Proof: See Appendix C.
Lemma 12: Let the serving BS be an SBS. Under load model

L1, the PSE can be formulated as follows:

PSES,L1
∆
= λMT (BWtot/NRB) log2 (1 + γD)

× zsel, serve

(
S, NS,L1

max

)
P

(cov)
S,L1 (γD, γA) (23)

where the shorthand notation zsel, serve

(
S, NS,L1

max

)
=∑NS,L1

max

NMT=1 zsel (S, NMT)P S
serve (L1, o,NMT) is used.

Proof: See Appendix C.
Lemma 13: Let the serving BS be an SBS. Under load model

L2, the PSE can be formulated as follows:

PSES,L2
∆
= λMTlog2 (1 + γD) BWtot

× zsel (S, 1) P
(cov)
S,L2 (γD, γA) (24)

Proof: See Appendix C.
Remark 9: It may seem counterintuitive that (24) is inde-

pendent of P S
serve (·), i.e., the probability of serving some MTs

as a function of the power level of the battery. This originates
from the uniform allocation strategy of the resources among
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the MTs, as the proof in Appendix C elucidates. It is worth
mentioning that (24) depends on the amount of harvested
energy through the probability εd,o, and on the storage capacity
of the battery through NS,L1

max .
Proposition 4: The PSE under load model d ∈ {L1,L2}

can be formulated as follows:

PSEd
∆
= PSEM,d + PSES,d (25)

Proof: The proof follows from Lemmas 10-13 by using
the total probability theorem.

We close this section by formulating the EE. We note that
the network power consumption depends only on the MBSs,
since the SBSs are powered only through renewable energy
sources. So, there is no power expenditure for the power grid.

Proposition 5: The EE (bit/Joule) under load model d ∈
{L1,L2} can be formulated as EEd

∆
= PSEd

/
P

(grid)
d , where

P
(grid)
d is the power dissipated (Watt / unit area) by the MBSs:

P
(grid)
L1

∆
= λ

(A)
M NRB

(
PM

circ + PM
tx,tot

/
NRB

) (
1− PM,L1

InA

)
+ λ

(A)
M Pidleq

M
0 (26)

P
(grid)
L2

∆
= λ

(A)
M PM

tx,tot

(
1− qM

0

)
+ λ

(A)
M Pidleq

M
0 + λ

(A)
M PM

circN̄
M,L2
MT (27)

where N̄M,L2
MT is defined in (6), and qM

0 =
(1 + λMTAM/3.5)

−3.5, which denotes the probability
that there are no MTs inside a cell, follows from (4) by
setting e = 0.

Proof: The proof follows by taking into account the power
consumption of the MBSs when they operate in transmission
and idle modes, according to the probability of occurrence of
these two operating regimes. The term N̄M,L2

MT accounts for the
fact that, under load model L2, the circuits power consumption
depends on the (random) number of MTs inside the cells.

V. OPTIMIZATION OF THE ENERGY EFFICIENCY
– A FEW CASE STUDIES

The EE in Proposition 5 is formulated, given εd,o, in closed-
form. For its computation, in particular, only the steady state
probabilities of the discrete Markov chain that models the
temporal dynamics of the batteries of the SBSs need to be
obtained numerically. The computation of the EE is, therefore,
simple and efficient. The need, however, of computing the
steady state probabilities numerically makes it difficult to
identify important structural properties of the EE as a function
of the many system parameters. An important question is, for
example, whether there exists an optimal density of the BSs
that maximizes the EE [1]. To shed light on the EE in the
presence of renewable energy sources and to gain relevant
engineering insights for optimizing the network deployment,
we consider a few relevant case studies in the next sub-
sections.

A. Optimization as a Function of the Transmit Power of the
Base Stations

In this section, we optimize the EE as a function of
the transmit power of the BSs. For simplicity, we consider

PM
tx,tot

∆
= υMPtx,tot and P S

tx,tot
∆
= υSPtx,tot, where υM and

υS are positive constants. We are interested in the following
optimization problem:

PPtx,tot : (28)

max
Ptx,tot∈[Pmin

tx,tot,P
max
tx,tot]

{
EEd (Ptx,tot) =

PSEd (Ptx,tot)

P
(grid)
d (Ptx,tot)

}
where Pmin

tx,tot and Pmax
tx,tot are the minimum and maximum

values that are allowed for Ptx,tot.
The solution of PPtx,tot

in (28) is characterized in the
following theorem.

Theorem 1: The EE in (28) is a unimodal and strictly
pseudo-concave function in Ptx,tot.

Proof: By inspection of the EE in Proposition
5, we note that the PSE can be written as
PSEd (Ptx,tot) ∝ ā1

(
1− exp

(
−b̄1(Ptx,tot)

2/β
))

+

ā2

(
1− exp

(
−b̄2(Ptx,tot)

2/β
))

, where ā1, ā2, b̄1, and b̄2
are positive constant terms that are independent of Ptx,tot.
By computing the second-order derivative, it can be proved
that both addends are strictly concave functions in Ptx,tot

for β > 2. The PSE is, therefore, a strictly concave function
in Ptx,tot, since it is the sum of two strictly concave
functions. Also, the power consumption can be written as
P

(grid)
d (Ptx,tot) = d̄1Ptx,tot + d̄2, where d̄1 and d̄2 are

positive constant terms that are independent of Ptx,tot, i.e.,
P

(grid)
d is a linear function in Ptx,tot. Thus, the EE is the

ratio of a strictly concave function and a linear function,
i.e., it is strictly pseudo-concave in PPtx,tot

and has a single
maximizer.

Theorem 1 ensures that there exists a unique value of the
transmit power of the BSs that maximizes the EE, and it is
the zero of the first-order derivative of the EE in Proposition
5.

B. Optimization as a Function of the Density of the Base
Stations

In this section, we optimize the EE as a function of the
density of the BSs. This is not an easy task to solve under
general operating conditions, and, in particular, for an arbitrary
number of power levels of the batteries of the SBSs. To gain
relevant engineering insights, therefore, we analyze a simpli-
fied but realistic case study. We consider, in particular, load
model L1 where a single MT is scheduled for transmission,
i.e., Nk,L1

max = 1, and assume that the batteries of the SBSs have
only two power levels (states), i.e., L = 2, which implies that
the batteries can be either empty or fully charged. In addition,
we assume TM = TS = 1 and PM

tx,tot = P S
tx,tot = Ptx,tot.

For ease of writing, we introduce the simplified notation as
follows (o ∈ {H,F}):

ε
∆
= εL1,o (29)

c
∆
= c (γD) (30)

w
∆
=
(
Ptx,tot

/(
κγAσ

2
N

))2/β
(31)

∆P
∆
= Ptx,tot + Pcirc − Pidle (32)
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G ∆
= αM + αS (1− ε) (33)

F ∆
= 1−

(
1 +

1

3.5

λMT

λBS

1

G

)−3.5

(34)

Q ∆
= 1− exp (−πwλBSG (1 + cF)) (35)

In the considered case study, the EE can be formulated as
follows:

EEL1
∆
= EE (36)

= BWtotlog2 (1 + γD)
λBSFGQ/(1 + cF)

λBSαM (∆PF + Pidle)

where ε is the solution of the steady state equation in (9),
which, for o ∈ {H,F}, is:

o = F :

(
1 +

1

3.5

λMT

λBS

1

(αM + αS (1− ε))

)−3.5

=
p0 − ε

p0 (1− ε)
(37)

o = H :

(
1 +

1

3.5

λMT

λBS

1

(αM + αS (1− ε))

)−3.5

= 1− (1− p0) ε

1− ε
(38)

where the conditions 0 ≤ ε ≤ p0 ≤ 1 if o = F and 0 ≤ ε ≤
(2− p0)

−1 ≤ 1 if o = H, respectively, need to be fulfilled in
order to ensure that the solution is feasible.

To elucidate the usefulness of the proposed analytical frame-
work, we are interested in computing, if it exists, an optimal
density of BS, λBS, that optimizes the EE. In our study, the
other system parameters are kept constant, but more general
optimization problems can be formulated and studied. We
provide the detailed derivation of our findings for the full-
duplex case, while, due to space limitations, we provide only
the final result for the half-duplex case. Before going into the
details of the analysis, it is interesting to analyze the insights
that can be gained, as a function of λBS, by direct inspection
of the steady state equation in (37) and (38). As an example,
we consider the full-duplex operating mode. The finding is
summarized in the following lemma.

Lemma 14: At the equilibrium, the probability that an
SBS is available, i.e., 1 − ε, monotonically increases as the
ratio between the densities of the BSs and MTs, λBS/λMT,
increases.

Proof: Eq. (37) can be written as λMT/λBS =
S (ε, p0, αM, αS), where S (·) does not depend on λBS and
λMT. The proof follows since S (ε, ·) monotonically increases
in ε.

Remark 10: The approach employed in Lemma 14 for the
analysis of ε as a function of λMT/λBS can be used to study
the impact of other system parameters on ε, e.g., p0, αM, αS.

1) Full-Duplex Case Study: The optimization problem can
be formulated as follows:

PλBS
: (39)

max
λBS∈[λmin

BS ,λ
max
BS ]

{
F (λBS)G (λBS)Q (λBS)/(1 + cF (λBS))

(∆PF (λBS) + Pidle)

}

subject to

(
1 +

1

3.5

λMT

λBS

1

(αM + αS (1− ε (λBS)))

)−3.5

=
p0 − ε (λBS)

p0 (1− ε (λBS))
(40)

0 ≤ ε (λBS) ≤ p0 ≤ 1 (41)

where λmin
BS and λmax

BS are the minimum and maximum values
that are allowed for λBS, and we have made explicit that ε
depends on the density of the BSs, i.e., ε = ε (λBS).

The optimization problem PλBS
is not conveniently formu-

lated because of the difficulty of obtaining, from (40), an
explicit expression of ε as a function of λBS. To overcome
this issue, we formulate another optimization problem, Pε, as
a function of ε instead of λBS, and prove, in the following
proposition, that it is equivalent to the optimization problem
PλBS

.

Proposition 6: Let ε∗ be the solution of the following
optimization problem:

Pε : max
ε∈[0,p0]

{
F (ε)G (ε)Q (ε)

(∆PF (ε) + Pidle) (1 + cF (ε))

}
(42)

where the following definitions hold:

G ∆
= G (ε) = αM + αS (1− ε) (43)

F ∆
= F (ε) = 1− p0 − ε

p0 (1− ε)
=
ε (1− p0)

p0 (1− ε)
(44)

H (ε)
∆
=
λMT

3.5

((
p0 − ε

p0 (1− ε)

)−1/3.5

− 1

)−1

(45)

Q (ε)
∆
= 1− exp (−πwH (ε) (1 + cF (ε))) (46)

Then, the solution of the optimization problem PλBS
is the

following:

λ∗BS
∆
= λBS (ε∗) (47)

=
λMT

3.5

(((
p0 − ε∗

p0 (1− ε∗)

)− 1
3.5

− 1

)
(αM + αS (1− ε∗))

)−1

Proof: PλBS and Pε admit a solution by virtue of Weier-
strass extreme value theorem. Pε is obtained directly from
PλBS

by formulating all the terms as a function of ε, and by
noting that the left hand side of (40) is equal to 1−F (λBS).
The equivalence of PλBS

and Pε follows because (40) is a
bijection, i.e., the correspondence between λBS and ε is one-
to-one.

Based on Proposition 6, the following theorem yields the
solution of PλBS .

Theorem 2: Let Ptx,tot fulfill the following (sufficient)
condition:

Ptx,tot ≥ κγAσ
2
N

(
2(3.5)

2

πλMT

2 (exp (λEP)− 1)

1 + 2 (exp (λEP)− 1)

)β/2

(48)

The unique solution of PλBS
is λ∗BS in (47), where 0 ≤
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ε∗ ≤ p0 is the unique solution of:

Pidle = c∆PF2 (ε)− (∆PF (ε) + Pidle)

× (1 + cF (ε))
F (ε).
F (ε)

( .
G (ε)

G (ε)
+

.
Q (ε)

Q (ε)

)
(49)

Proof: See Appendix D.
By direct inspection of Theorem 2, the following remarks

can be made:

• The EE is a unimodal and strictly pseudo-concave func-
tion in ε and λBS if the condition in (48) is fulfilled. The
optimal deployment density of the BSs that maximizes
the EE can be obtained by simply calculating the zero of
a non-linear equation. We note, in particular, that (48) is
a sufficient condition for the strict pseudo-concavity of
the EE.

• From (48), it is apparent that the EE is always strictly
pseudo-concave if λEP → 0, i.e., (48) reduces to
Ptx,tot ≥ 0. This case study boils down to a single-tier
cellular network where only the MBSs are available. The-
orem 2, thus, is consistent with the analysis conducted in
[1], where single-tier cellular networks and no renewable
energy sources are considered.

• From (48), it is apparent that the EE is always strictly
pseudo-concave if λMT → ∞, i.e., (48) reduces to
Ptx,tot ≥ 0. This finding implies that, in the fully-loaded
scenario, an optimal density of the BS exists for any
choice of the system parameters.

• From (48), a similar trend is observed if γA → 0,
i.e., the conventional definition of coverage probability
is employed. It is worth noting that, in the presence of
renewable energy sources, this case study is not trivial
as that discussed in [1], since, in the present paper, ε
depends on λBS, and the coverage probability in (19) is
a function of λBS.

• The solution stated in Theorem 2 can be simplified
in some asymptotic operating regimes. A relevant case
study is λMT/λBS � 1, which occurs in ultra-dense
network deployments in which the density of the MTs
is less than the density of the BSs. In this case, in
fact, the left-hand side in, e.g., (37) reduces to 1 −
(λMT/λBS) (αM + αS (1− ε))−1, from which an ex-
plicit expression of ε as a function of λBS is obtained.
Case studies like this are not investigated in the present
paper because of space limitations, but they provide
evidence of the usefulness of the proposed analytical
approach to get insight into the impact of renewable
energy sources on the PSE and the EE of multi-tier
cellular networks.

2) Half-Duplex Case Study: As anticipated, due to space
limitations, we do not report the details of the half-duplex case
study, but give only the final result in the following theorem.

Theorem 3: Consider the following optimization problem:

max
λBS∈[λmin

BS ,λ
max
BS ]

{
F (λBS)G (λBS)Q (λBS)/(1 + cF (λBS))

(∆PF (λBS) + Pidle)

}
(50)

subject to

(
1 +

1

3.5

λMT

λBS

1

(αM + αS (1− ε (λBS)))

)−3.5

= 1− (1− p0) ε (λBS)

1− ε (λBS)
(51)

0 ≤ ε (λBS) ≤ (2− p0)
−1 ≤ 1 (52)

Let Ptx,tot fulfill the following (sufficient) condition:

Ptx,tot ≥ κγAσ
2
N

(
2(3.5)

2

πλMT

2 exp (λEP)− 2

3 exp (λEP)− 2

)β/2

(53)

The unique solution of the optimization problem in (51) is
λ∗BS given in the following equation:

λ∗BS
∆
= λBS (ε∗) =

λMT

3.5
(54)

×

(((
1− (1− p0) ε∗

1− ε∗

)− 1
3.5

− 1

)
(αM + αS (1− ε∗))

)−1

where 0 ≤ ε∗ ≤ (2− p0)
−1 ≤ 1 is the unique solution of the

following non-linear equation:

Pidle = c∆P F̃2
(ε)−

(
∆P F̃ (ε) + Pidle

)(
1 + cF̃ (ε)

)
× F̃ (ε).
F̃ (ε)

( .
G̃ (ε)

G̃ (ε)
+

.
Q̃ (ε)

Q̃ (ε)

)
(55)

with G̃ (ε)
∆
= G (ε), F̃ (ε)

∆
= F (ε), and:

H̃ (ε)
∆
=
λMT

3.5

((
1− ε (1− p0)

1− ε

)−1/3.5

− 1

)−1

(56)

Q̃ (ε)
∆
= 1− exp

(
−πwH̃ (ε)

(
1 + cF̃ (ε)

))
(57)

Proof: The proof is similar to Theorem 2 and is omitted
due to space limitations.

We conclude this section by mentioning that the approach
employed in Theorems 2 and 3 for optimizing the EE as a
function of λBS, i.e., formulating an equivalent optimization
problem as a function of ε that is easier to solve, can be used
to analyze the impact of other system parameters, e.g., p0, αM,
and αS. Due to space limitations, these case studies are not
analyzed in this paper, but the proposed approach seems to be
general enough for unveiling the impact of other parameters.
Simplified solutions may be obtained in some special cases
(as discussed already), e.g., in fully-loaded (λMT/λBS � 1)
and lightly-loaded (λMT/λBS � 1) cellular networks.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we show numerical results in order to
substantiate the proposed approach and approximations for
modeling multi-tier cellular networks empowered by renew-
able energy sources. The simulation setup is summarized
in Table VI, and is in agreement with previous works on
evaluating the EE in cellular networks [1]. It is worth noting
that we consider a ratio between the association biases equal
to 100, in order to ensure that a sufficiently large number
of MTs is associated to the SBSs, in order to compensate
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TABLE VI: Setup of parameters (unless otherwise stated)

Parameter Value
β 3.5
κ =

(
4πfc/3 · 108

)2
fc = 2.1 GHz

N0 -174 dBm/Hz
BWtot 20 MHz
PM

cir 51.14 dBm
Pidle 48.75 dBm
PM

tx,tot 43 dBm
P S

tx,tot 23 dBm
λBS = 1/

(
πR2

cell

)
Rcell = 70 m

λMT = 1/
(
πR2

MT

)
RMT = 51.29 m

γD = γA 5 dB
L, λEP 31, 1.5 (packets per time-slot)
mL1, mL2 3, 2
mL1

1 , mL2
1 3, 6

NRB 4
NM

Load, NS
Load 8, 5

TM, TS 100, 1
αM, αS 1, 3

for the smaller transmit power of the SBSs, and for the fact
that the SBSs rely only on renewable energy sources for their
operation. We study, however, the accuracy of our proposed
approach for different values of the bias factors (TM).

As far as Monte Carlo simulations are concerned, we
implement the system model described in Section II without
enforcing any of the modeling assumptions that are made
for developing the analytical frameworks. Notably, the spatio-
temporal correlations are not ignored. The simulator accounts
for spatial and temporal dynamics as follows. First, the MBSs
and SBSs are generated according to two independent PPPs.
The system is then simulated for 1000 time slots, during which
the spatio-temporal dynamics of the network are taken into
account. Based on the assumption that time slot is chosen
according to the mobility of the MTs (see Section II-B for
details), independent realizations of the fast fading and the
locations of the MTs are generated during each time slot.
Also, in each time slot, the number of harvested power packets
is generated according to a Poisson random variable. The
performance metric of interest is computed at each time slot,
and the average, over time and space, is calculated over the
1000 time slots. The procedure is iterated for 200-400 spatial
realizations (depending on the setup) for the locations of the
MBSs and SBSs, and the (spatial) average is calculated.

In Figs. 1-6, we compare the PSE and EE that are obtained
with our proposed approach against Monte Carlo simulations.
We observe a good accuracy, and, in particular, analysis and
simulations provide similar performance trends. Besides the
good accuracy, we emphasize that the simulation results are
difficult to generate and need longer time than our analytical
approach. On average, the time that is needed to obtain
the numerical simulations is at least 10,000 longer than the
computation of the analytical formulas. In other words, it takes
weeks to obtain the simulation results depicted in Figs. 1-
6, while it takes only a few minutes by using the analytical
frameworks. The complexity and time of Monte Carlo methods
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Fig. 1: PSE and EE vs. Rcell and γD = γA. Setup: full-duplex, load
model 1. Solid lines and markers show analytical frameworks and

Monte Carlo simulations, respectively.

lie in the need of simulating the spatial dynamics of the
network and the temporal dynamics that govern the energy
harvesting. Even though our proposed approach is, in the most
general case, semi-analytical due to the need of computing nu-
merically the steady state probabilities, it advantages in terms
of computation time and insights for system design, in contrast
to Monte Carlo simulations, cannot be overlooked. Some gaps
between analysis and Monte Carlo simulations exist, however,
and they are mainly caused by the approximations employed
to derive the analytical frameworks.

In particular: (i) from Figs. 1, 2, and 4, we evince that an
optimal deployment density, transmit power, and association
bias of the MBSs, respectively, is expected to exist, as proved
in Section V in some case studies; (ii) in Figs. 4 and 6,
we compare the optimal values of the transmit power and
the association bias of the MBSs that are obtained from
the analytical framework and Monte Carlo simulations. We
observe that our approach well captures the optimal operating
regime. The inaccuracy of Monte Carlo simulations is due
to the long simulation time that is needed for estimating the
optima; (iii) from Fig. 3, we evince that both the PSE and
EE increase with λEP. If λEP is large enough, the PSE and
EE converge to a regime that is equivalent to a conventional
two-tier cellular network without energy harvesting, i.e., all
the SBSs are likely to have sufficient power to serve the
MTs in their cells; and (iv) from Figs. 4 and 3, we note that
the proposed approach is accurate for a large range of the
bias factor and the average arrival rate of the power packets,
respectively, which confirms that the temporal dynamics of the
batteries of the SBSs are taken into account sufficiently well.
Finally, even though not reported in the present paper due
to space limitations, we have not noticed, for the considered
setups, major differences (either quantitatively or qualitatively)
between the half-duplex and full-duplex operating modes.

In Figs. 7 and 8, we leverage the analytical framework
to investigate the role played by αM and αS as a function
λBS and λEP. We consider two case studies: (i) the constraint
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Fig. 2: PSE and EE vs. PM
tx,tot and γD = γA. Setup: full-duplex,

load model 2. Solid lines and markers show analytical frameworks
and Monte Carlo simulations, respectively.
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Fig. 3: PSE and EE vs. λEP and γD = γA. Setup: full-duplex, load
model 2. Solid lines and markers show analytical frameworks and

Monte Carlo simulations, respectively.

αM + αS = 1 is enforced; and (ii) αM is kept fixed and αS

takes different values. The first setup provides information on
whether, by keeping λBS fixed, the density of the MBSs can
be decreased while proportionally increasing the density of the
SBSs, and the PSE and EE can still attain appropriate values
even though the SBSs are powered only via renewable energy
sources. The second setup provides information on whether
dense deployments of SBSs enable us to improve the PSE
and EE in cellular networks without the need of modifying
the current deployments of MBSs.

In Fig. 7, we observe that the PSE decreases if αM decreases
and αS increases but their sum is kept constant. Only if
λEP is very large, the PSE tend to converge to that of a
system model where all the BSs are MBSs, i.e., αS = 0.
The increasing behavior of the PSE as a function of αS is due
to the fact that the probability that the SBSs are available
is approximately equal to one for large values of λEP. If
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Fig. 4: PSE and EE vs. TM and γD = γA. Setup: full-duplex, load
model 1. Solid lines and markers show analytical frameworks and

Monte Carlo simulations, respectively.
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full-duplex, load model 2. Stars and circles show the analytical
framework and Monte Carlo results, respectively.

λEP is not sufficiently large, on the other hand, the SBSs
are likely not to be available and the PSE decreases. The
EE, on the other hand, always monotonically increases with
αS. By increasing αS, in other words, we decrease the PSE
but noticeably decrease the power consumption as well, since
the latter is determined only by the MBSs. Therefore, the
EE increases. This is another net example that reminds us
that the EE is an efficiency metric given by the ratio of two
functions. Optimizing the EE does not necessarily imply that
the PSE is optimized as well. We conclude, therefore, that it
is not sufficient to consider a single criterion of optimization,
i.e., the EE. A multi-objective optimization problem, which
jointly considers the PSE and the EE, is a more appropriate
choice, and an interesting generalization of the results obtained
in this paper and in [14] where no renewable energy sources
are considered.

In Fig. 8, we observe that by sufficiently increasing αS,
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Fig. 6: Optimal TM that maximizes PSE (a) and EE (b). Setup: full-
duplex, load model 2. Stars and circles show the analytical framework

and Monte Carlo results, respectively.
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analytical frameworks.

while keeping αM fixed, good performance can be obtained.
In particular, both the PSE and EE increase as a function of αS.
Figure 8 highlights that the use of renewable energy sources
is a promising solution in cellular networks as it enables them
to obtain good PSE and EE at the same time. To achieve this
target, however, a sufficiently large number of SBSs need to be
deployed in order not to compromise the coverage probability
of the typical MT. The coverage probability corresponding
to Fig. 8 is depicted in Fig. 9. It can be noted that it first
decreases and then increases, by reaching appropriate values
if αS is sufficiently large. In contrast to the PSE and the EE
that are network metrics, the coverage probability is related to
the typical MT, and the insufficient deployment of SBSs may
be deleterious for it. Figures 8 and 9 confirm that cellular
networks empowered by renewable energy sources have great
potential, but the trade-off between the performance of the
typical user and the network need to be judiciously optimized.
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Fig. 8: PSE and EE vs. αS and γD = γA = 5 dB. Scenario: αM = 0.5
and Rcell = 200 m. The solid lines with markers show the analytical
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In this case as well, therefore, embracing a multi-objective
optimization framework seems to be a wise choice.

VII. CONCLUSION

In this paper, we have proposed a new analytical approach
for modeling, analyzing, and optimizing multi-tier cellular
networks in which some base stations are powered solely
through renewable energy sources. By capitalizing on the
theory of Poisson point processes, tractable analytical expres-
sions of the coverage probability, spectral efficiency, power
consumption, and energy efficiency have been obtained. The
proposed approach relies upon a few approximations that
have been validated via Monte Carlo simulations. With the
aid of the proposed analytical framework, some optimization
problems have been formulated and comprehensively studied.
It is proved, notably, that there exist optimal and unique values
of the transmit power and density of the base stations that
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maximize the energy efficiency. This finding is rigorously
proved under the assumption of a two-state model for the
batteries of the base stations. Numerical results have confirmed
these findings for more general system models. Finally, several
important trends associated to the presence of renewable
energy sources have been illustrated.

The proposed approach can be generalized in multiple ways.
For example, multi-objective optimization problems can be
formulated in order to capture the contrasting effects that
renewable energy sources bring about in the design and
optimization of cellular networks.

APPENDIX A
PROOF OF LEMMA 7

Let P denote a generic power level of the battery. Let us
define q ∆

= mL1
1 +NMTm

L1−1 if NMT 6= NS,d
max and q ∆

= L−1
if NMT = NS,d

max, respectively. By definition, we have:

P S
serve (d, o,NMT) (58)

∆
= Pr

{
mL1

1 + (NMT − 1)mL1 ≤ P ≤ q
∣∣P ≥ mL1

1

}
(a)
=

Pr
{
mL1

1 + (NMT − 1)mL1 ≤ P ≤ q ∩ P ≥ mL1
1

}
Pr
{
P ≥ mL1

1

}
=

Pr
{
mL1

1 + (NMT − 1)mL1 ≤ P ≤ q
}

Pr
{
P ≥ mL1

1

}
(b)
=

1

1− εd,o

(
1
(
NMT 6= NS,d

max

) s2∑
s=s1

vd,os

)

+
1

1− εd,o

(
1
(
NMT = NS,d

max

) s4∑
s=s3

vd,os

)
where (a) follows from the fact that, by definition,
P S

serve (d, o,NMT) is conditioned upon the set of SBSs that
are available, i.e., the normalization by Pr

{
P ≥ mL1

1

}
is nec-

essary; (b) follows by definition of steady state probabilities,
from the identity Pr

{
P ≥ mL1

1

}
= 1 − εd,o, and defining

s1 = mL1
1 + (NMT − 1)mL1, s2 = mL1

1 + NMTm
L1 − 1,

s3 = mL1
1 +

(
NOFF,d

max − 1
)
mL1, s4 = L − 1.

APPENDIX B
PROOF OF PROPOSITION 1

The proof of PM,L1
InA follows by noting that, by defini-

tion, PM,L1
InA = PL1

inactive (M, o,NRB) = IRB (k, o,NRB) if
NM,d

max = NRB, and PM,L1
InA = PL1

inactive

(
M, o,NM

Load

)
=

IMT

(
k, o,NM

Load

)
if NM,d

max = NM
Load, respectively. The proof

of P S,L1
InA follows by capitalizing on the total probability

theorem as a function of the number of MTs that can be served
due to the power level in the battery and the number of MTs
associated with the SBS. More precisely, the following holds:

P S,L1
InA =

NS,L1
max∑

NMT=1

PL1
inactive (S, o,NMT)P S

serve (L1, o,NMT)

(59)
which is obtained by considering every possible number of
MTs that can be served as a function of the power level
in the battery, and by taking into account the probability of

occurrence of these events. The final result is obtained by using
Lemmas 7-9.

APPENDIX C
PROOF OF LEMMAS 10-13

The proof of Lemma 10 follows from its definition, as
follows:

PSEM,L1 = λMTlog2 (1 + γD) P
(cov)
M,L1 (γD, γA) (60)

×

NM,L1
max −1∑
e=0

BWtot

NRB
· 1 · q̄ke +

+∞∑
e=NM,L1

max

BWtot

NRB
· N

M,L1
max

e+ 1
· q̄ke


where the term in the brackets is obtained by applying the
total probability theorem to the number of MTs that lie in
a cell. In each summation: (i) the first term corresponds
to the bandwidth allocated to an MT; (ii) the second term
corresponds to the probability of scheduling an MT for trans-
mission, which depends on the number of MTs in the cell and
the available resources; and (iii) the third term corresponds to
the probability of occurrence of a given number of MTs in the
cell by conditioning on one MT being in the cell already. The
proof follows from (8).

The proof of Lemma 11 follows from its definition, as:

PSEM,L2 = λMTlog2 (1 + γD) P
(cov)
M,L2 (γD, γA) (61)

×

NM
Load−1∑
e=0

BWtot

e+ 1
· 1 · q̄ke +

+∞∑
e=NM

Load

BWtot

NM
Load

· N
M
Load

e+ 1
· q̄ke


= λMTBWtotlog2 (1 + γD) P

(cov)
M,L2 (γD, γA)

+∞∑
e=0

1

e+ 1
· q̄ke

where the same rationale as for the proof of Lemma 10 is
used. The difference is that the bandwidth allocated to the MTs
(the first term in each summation) depends on the minimum
between the number of MTs in the cell and the available
resources. The proof follows from (8).

The proof of Lemma 12 follows from its definition, as:

PSES,L1 = λMTlog2 (1 + γD) P
(cov)
S,L1 (γD, γA) (62)

×
NS,L1

max∑
NMT=1

(
NMT−1∑
e=0

BWtot

NRB
· 1 · q̄ke +

+∞∑
e=NMT

BWtot

NRB
· NMT

e+ 1
· q̄ke

)
× P S

serve (L1, o,NMT)

where the first summation accounts for the number of MTs that
can be served as a function of the power levels of the batteries
and the term in the brackets accounts for the number of MTs
that lie in a cell. The two sums are obtained by applying the
total probability theorem as a function of the latter two events.
The rest of the proof is similar to the previous cases.

The proof of Lemma 13 follows from its definition, as:

PSES,L2 = λMTlog2 (1 + γD) P
(cov)
S,L2 (γD, γA) (63)

×
NS,L2

max∑
NMT=1

(
NMT−1∑
e=0

BWtot

e+ 1
· 1 · q̄ke +

+∞∑
e=NMT

BWtot

NMT
· NMT

e+ 1
· q̄ke

)
× P S

serve (L2, o,NMT)
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= λMTlog2 (1 + γD) BWtot

(
+∞∑
e=0

1

e+ 1
· q̄ke

)

×

 NS,L2
max∑

NMT=1

P S
serve (L2, o,NMT)

P
(cov)
S,L2 (γD, γA)

where the same rationale as in the previous case is
employed. The proof follows by using the identity∑NS,L2

max

NMT=1 P
S
serve (L2, o,NMT) = 1 along with (8).

APPENDIX D
PROOF OF THEOREM 2

Since the proof is lengthly, we report only its main idea
and omit the algebraic details. The proof follows by taking
into account that: (i) G (ε) is an affine and monotonically de-
creasing function in ε; (ii) F (ε) is a monotonically increasing
and convex function in ε; and (iii) Q (ε) is a monotonically de-
creasing function in ε. Also, it is concave in ε if the condition

C1 : Ptx,tot ≥ κγAσ
2
N

(
2(3.5)

2
/

(πλMT (1 + c))
)β/2

is ful-
filled. The findings (i) and (ii) originate by direct inspection of
the functions. The finding in (iii) originates by computing the
first-order and second-order derivatives of Q (ε) as a function
of ε. If 0 ≤ ε∗ ≤ p0, the first-order derivative is negative. It is
not easy to prove that the second-order derivative is negative
for every parameters. A sufficient condition that makes the
latter derivative negative for 0 ≤ ε∗ ≤ p0 is when the system
parameters fulfill C1. The proof follows by computing the first-
order derivative of the EE as a function of ε, and by proving
that sufficient conditions for it to have a unique zero, which is
the maximizer of the EE, are that C1 and C2 : (1/(1 + c))

β/2 ≤
(2 (exp (λEP)− 1)/(1 + 2 (exp (λEP)− 1)))

β/2 are fulfilled
simultaneously. By combining C1 and C2, we obtain (48).
Finally, (49) is obtained by equating the first-order derivative
of the EE to zero.
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