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CONTINUOUS LAMBERTIAN SHAPE FROM SHADING: A PRIMAL-DUAL
ALGORITHM

HAMZA ENNAJI†, NOUREDDINE IGBIDA†, AND VAN THANH NGUYEN‡

Abstract. The continuous Lambertian shape from shading is studied using a PDE approach
in terms of Hamilton–Jacobi equations. The latter will then be characterized by a maximization
problem. In this paper we show the convergence of discretization and propose to use the well-
known Chambolle–Pock primal-dual algorithm to solve numerically the shape from shading
problem. The saddle-point structure of the problem makes the Chambolle–Pock algorithm
suitable to approximate solutions of the discretized problems.

1. Introduction

Shape from Shading (SfS) consists in reconstructing the 3D shape of an object from its given
2D image brightness. The shape of a surface u(x1, x2) is related to the image brightness I(x1, x2)
by the Horn image irradiance equation:

R(n(x1, x2)) = I(x1, x2), (1.1)
where I(x1, x2) is the brightness greylevel measured in the image at point (x1, x2); R(n(x1, x2))
is the reflectance map and n(x1, x2) is the unit normal at point (x1, x2, u(x1, x2)) given by

n(x1, x2) =
1√

1 + |∇u(x1, x2)|2
(−∂x1u(x1, x2),−∂x2u(x1, x2), 1).

In (1.1), the irradiance function I(x1, x2) is known since it is measured at each pixel of the
brightness image, for example, in terms of greylevel in the interval [0, 1]. The implicit unknown
is the surface u(x1, x2), which has to be reconstructed.

In the case of Lambertian and the surface illuminated by a simple distant light source of
direction ` = (w, r) = (w1, w2, r) ∈ R3, one has R(n(x1, x2)) = n(x1, x2) · (w1, w2, r) and, by
(1.1),

I
√

1 + |∇u|2 +∇u · w − r = 0.

This equation falls into the scope of Hamilton-Jacobi equations

H(x,∇u) = 0 in Ω, (1.2)
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where the Hamiltionian H is defined by H(x, p) = I
√

1 + |p|2 + p · w − r. In particular, if the
object is vertically enlightened, i.e., ` = (0, 0, 1), one obtains the standard Eikonal equation

|∇u(x1, x2)| =

√
1

I2(x1, x2)
− 1. (1.3)

As pointed out in [10] (see also [27]), there are three major families of numerical methods allowing
the resolution of the SfS problem. Namely, PDE methods (cf [2, 14, 22, 25, 26]), optimization
methods (cf [9, 18]) and approximating the image irradiance equation (cf [17, 23, 24]).

We are here interested in the study of the PDE formulation in terms of Hamilton-Jacobi
equations (1.2). The theory of viscosity solutions [7, 8, 21] provides a suitable framework to
study equations of the form (1.2). Applications of the viscosity theory to the SfS problem
go back to the works of Lions, Rouy and Tourin [22, 26] and recently in the work of Prados,
Camilli and Faugeras [25]. Several difficulties arise while dealing with the SfS problem, namely
compatibility of boundary conditions and the degeneracy of the Hamiltonian. It is well known
that for (1.2) coupled with the boundary condition u = g on ∂Ω, to admit a solution one needs
to check that g(x)−g(y) ≤ dσ(y, x) for all x, y ∈ ∂Ω, where dσ is the intrinsic distance associated
to the Hamiltonian, which will be defined later. In addition, imposing only boundary conditions
is not sufficient to ensure the uniqueness of solution to the Hamiltons–Jacobi equations (1.2). It
turns out that the set of degeneracy of the distance dσ, called the Aubry set, plays the role of a
uniqueness set for (1.2) (see e.g. [15]). In the case of Eikonal equation (1.3), the Aubry set A
can be taken as the zero set [k = 0] of k =

√
I−1/2 − 1. In other words, it corresponds to the

points with maximal intensity I, i.e., I(x1, x2) = 1 so that the right hand side in (1.3) vanishes.
Most of the authors (cf [4, 26, 25] for example) choose to regularize the equation to avoid these
points. We will not encounter this difficulty in our approach since we do not need to deal with
the inverse of possibly vanishing functions. We only need to perform projections onto euclidean
balls whose radii may be equal to zero.

In this paper, following our approach in [12], we characterize the maximal viscosity subsolution
of (1.2) in terms of a concave maximization problem. We then associate a dual problem and
exploit the saddle-point structure to approximate the solution of (1.2) using the Chambolle–
Pock (CP) algorithm. Our approach lies between the PDE and optimization methods since
we start by characterizing the maximal viscosity subsolution of the HJ equation thanks to the
intrinsic metric of the Hamiltonian and we end up with an optimization problem under gradient
constraint. Moreover, the convergence of discretization is also studied in detail.

The paper is organized as follows. In Section 2, we start by recalling briefly some notions on
HJ equations, and we present the maximization problem following [12] as well as related duality
results in continuous setting. Section 3 is devoted to the discretization issue and the proof of
convergence. We show how to apply the CP algorithm and present some numerical results to
illustrate our approach in Section 4.
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2. Maximization problem and duality in continuous setting

In this section we recall the metric character of Hamilton–Jacobi (HJ) equations, and related
duality results which will be useful to the proof of convergence of discretization in Section 3.

2.1. Metric character of HJ equations. Given a regular connected open domain Ω ⊂ Rd, and
a continuous HamiltonianH : Ω×Rd → R satisfying, for x ∈ Ω, Z(x) := {p ∈ Rd : H(x, p) ≤ 0}:
(H1) coercivity: Z(x) is compact;
(H2) convexity: Z(x) is convex;
(H3) H(x, 0) ≤ 0, i.e. 0 ∈ Z(x).

We consider the following HJ equation

H(x,∇u) = 0, x ∈ Ω. (2.4)

A continuous function u : Ω→ R is said to be a viscosity subsolution (respectively supersolution)
of (2.4) if H(x,∇φ(x)) ≤ 0 (respectively H(x,∇φ(x)) ≥ 0) for any x ∈ Ω and any C1 function
φ such that u − φ has a strict local maximizer (respectively minimizer) at x. Finally, u is a
viscosity solution of (2.4) if it is both a subsolution and a supersolution. We denote by S−H(Ω)

(respectively S+
H(Ω)) the family of viscosity subsolutions (respectively supersolutions) of (2.4).

For x ∈ Ω, we define the support function of the 0-sublevel set Z(x) by

σ(x, q) := sup q · Z(x) = sup{q · p | p ∈ Z(x)} for q ∈ RN .

The assumption (H1)-(H3) ensures that σ is a possibly degenerate Finsler metric, i.e., σ is a
continuous nonnegative function in Ω×RN , convex and positively homogeneous with the second
variable q. Due to the assumption (H3), σ(x, q) can possibly be equal to 0 for q 6= 0, which leads
to the degeneracy and its dual σ∗, as defined below, may take the value +∞. Here, the dual σ∗

(also called polar) is defined by

σ∗(x, p) := sup
q
{p · q | σ(x, q) ≤ 1}.

Let us define the intrinsic distance by

dσ(x, y) := inf
ζ∈Lip([0,1];Ω)
ζ(0)=x,ζ(1)=y

∫ 1

0
σ(ζ(t), ζ̇(t))dt,

which is a quasi-distance, i.e. satisfying dσ(x, x) = 0 and the triangular inequality, but not
necessarily symmetric. We summarize some basic characterizations of subsolutions in terms of
the intrinsic distance dσ.

Proposition 2.1. ([12, 15, 19])

1) Compatibility condition: v ∈ S−H(Ω) if and only if v(x)−v(y) ≤ dσ(y, x) for any x, y ∈ Ω.
2) We have

u(x)− u(y) ≤ dσ(y, x)⇐⇒ σ∗(x,∇u) ≤ 1 a.e in Ω.
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2.2. A maximization problem and duality. Given a closed subset D ⊂ Ω (typically D = ∂Ω
or D = {x} for some x ∈ Ω), we consider the following HJ equation{

H(x,∇u) = 0 in Ω \D
u = g on D

(2.5)

where g : D → R is a continuous function satisfying the compatibility condition

g(x)− g(y) ≤ dσ(y, x) for any x, y ∈ D.

Thanks to Proposition 2.1, the following result allows us to approach the SfS problem via a
maximization problem.

Theorem 2.2. [12] The unique maximal viscosity subsolution of the equation (2.5) can be recov-
ered via the following maximization problem

(M) := max
u∈W 1,∞(Ω)

{∫
Ω
u(x)dx, σ∗(x,∇u(x)) ≤ 1 and u = g on D

}
.

This problem can be linked to the following dual problem. For simplicity, we will state it for
the case D = ∂Ω (which is essentially the case for other numerical computations).

Theorem 2.3. We have

max
u∈W 1,∞(Ω)

{∫
Ω
u(x)dx, σ∗(x,∇u(x)) ≤ 1 and u = g on ∂Ω

}
= inf

φ∈L2(Ω)N

{∫
Ω
σ(x, φ)dx− 〈g, φ · n〉H1/2,H−1/2 : −div(φ) = 1 in D′(Ω)

}
:= (OF).

Proof. To prove the duality between (M) and (OF) in Theorem 2.3, we use a perturbation
technique as follows. Define on L2(Ω)N the following functional

E(p) := − sup
{∫

Ω
udx : u ∈ Lip(Ω), σ∗(x,∇u(x)− p(x)) ≤ 1, u = g on ∂Ω

}
.

Then, one can check that E is convex and lower semicontinuous. To compute E∗ we start by
observing that since u = g on ∂Ω, we can assume thanks to trace lifting Theorem that g = γ0(w)
for some w in H1(Ω), and u = ξ + w with ξ ∈ H1

0 (Ω) ∩W 1,∞(Ω).
We then have for any φ ∈ L2(Ω)N :

E∗(φ) = sup
p∈L2(Ω)N

∫
Ω
φ · p dx− E(p)

= sup
p∈L2(Ω)N ,ξ∈H1

0 (Ω)

{∫
Ω
φ · p dx+

∫
Ω
ξdρ+

∫
Ω
wdx : σ∗(x,∇(ξ + w)− p) ≤ 1

}
.

Set q = ∇(ξ + w)− p we get p = ∇(ξ + w)− q, we then have
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E∗(φ) = sup
q∈L2(Ω)N ,ξ∈H1

0 (Ω)

{∫
Ω
φ · (∇(ξ + w)− q)dx+

∫
Ω
ξdx+

∫
Ω
wdx : σ∗(x, q(x)) ≤ 1

}
= sup

ξ∈H1
0 (Ω)

q∈L2(Ω)N , σ∗(x,q(x))≤1

{∫
Ω
φ · ∇ξdx+

∫
Ω
ξdx+

∫
Ω
φ · ∇wdx+

∫
Ω
wdx−

∫
Ω
φ · qdx

}
.

The last quantity is finite if we impose that
∫

Ω
φ · ∇ξdx+

∫
Ω
ξdx = 0 for all ξ ∈ H1

0 (Ω), which

means that −div(−φ) = 1 and consequently φ ∈ Hdiv(Ω). Thus the normal trace of φ is well-
defined and φ.n ∈ H−1/2(∂Ω). Taking ν = −φ.n, then −div(−φ) = 1 − ν in D′(RN ) and
therefore, for such a φ, integrating by parts we get

E∗(−φ) = sup
q∈L2(Ω)N

{∫
Ω
φ · q dx : σ∗(x, q(x)) ≤ 1

}
+ 〈w, ν〉H1/2,H−1/2

=

∫
Ω
σ(x, φ)dx− 〈g, φ.n〉H1/2,H−1/2 .

Finally,

max(M) = −E(0) = −E∗∗(0) = − sup−E∗(−φ) = inf E∗(−φ) = inf(OF),

as desired. �

Remark 2.4. Notice here that the proof remains to be true also for the general maximization
problem

max
u∈W 1,∞(Ω)

{∫
Ω
u(x) ρ(x)dx, σ∗(x,∇u(x)) ≤ 1 and u = g on ∂Ω

}
,

where ρ ∈ L2(Ω). See that dealing with this duality, the trace of the dual variable σ on the
boundary plays an important role in the dual problem. For the context of general Radon measure
ρ, one can see the paper [12]. In this case one needs to deal with technical functional space
DMp(Ω) (space of vector fields φ ∈ Lp(Ω)N whose divergence are bounded measures). On such
a space, one can give a sense to φ · n, the normal trace of φ on ∂Ω (cf [12]). For a different
duality approach with free Radon measure boundary trace one can see the paper [13].

Remark 2.5. The so-called Aubry set, denoted by A, is defined as the set where the quasi-
distance dσ degenerates. Prescribing a boundary value on ∂Ω doesn’t guarantee the uniqueness
of viscosity solutions to (2.4) unless if A = ∅. The Aubry set A appears then to be a uniqueness
set for (2.4) (see [15] for details).

As a typical example, for the case of the vertical light ` = (0, 0, 1) and u = 0 on ∂Ω, the SfS
problem amounts to solve the following Eikonal equation{|∇u| = k in Ω

u = 0 on ∂Ω
(2.6)
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where k(x) =
√
I−1/2(x)− 1. In this case, the duality in Theorem 2.3 reads as

max
u∈W 1,∞(Ω)

{∫
Ω
udx : |∇u| ≤ k, u = 0 on ∂Ω

}
= inf

φ∈L2(Ω)N

{∫
Ω
k(x)|φ|dx : −div(φ) = 1 in D′(Ω)

}
.

The Aubry set A can then be taken as the zero set [k = 0] of k =
√
I−1/2 − 1, which corresponds

to the points with maximal intensity I, i.e., I(x) = 1 so that k(x) vanishes. As we will see in the
next section, dealing with nonempty Aubry set does not represent an obstacle in our approach.
Contrary to the works (e.g. [4, 25, 26]) where the authors approximate the degenerate HJ
equation via non-degenerate one (typically, by considering (2.6) with kε = max(k, ε) for ε > 0),
the only step where we deal with degeneracy points is the projection onto a ball of radius k,
which may be equal to zero.

Remark 2.6 (Boundary conditions). It is well known that a natural choice for boundary conditions
is the Dirichlet boundary condition. As pointed out in [10], the images we will consider in this
paper contain an occluding boundary (see Fig 1) which will be taken as the boundary ∂Ω.
Particularly, assuming that the object is placed on a flat table suggests taking u = 0 on ∂Ω or
more generally, if the height g of the surface on which is placed is known one can take u = g on
∂Ω.

Ω

∂Ω

Figure 1. An object and its occluding boundary

3. Discretization

In this section we focus on the the discretized (finite-dimensional) problems associated with
the problems (M) and (OF).

3.1. Discretization of the domain and operators. Let Ω ⊂ Rd be an image domain, which
can be taken as Ω = [0, 1]2. Following [5], we discretize the domain Ω using a regular grid m×n:
{(ih, jh) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} for a fixed h > 0. We denote by Dd = {(i, j) : (ih, jh) ∈ D}
the indexes whose spatial positions belong to D and by ui,j the values of u at (ih, jh). The space
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X = Rm×n is equipped with a scalar product and an associated norm as follows:

〈u, v〉 = h2
m∑
i=1

n∑
j=1

ui,jvi,j and ‖u‖ =
√
〈u, u〉.

For 1 ≤ i ≤ m and 1 ≤ j ≤ n, we define the components of the discrete gradient operator via
finite differences:

(∇hu)1
i,j =


ui+1,j − ui,j

h
if i < m

0 if i = m
, (∇hu)2

i,j =


ui,j+1 − ui,j

h
if j < n

0 if j = n.

Then the discrete gradient ∇h : X −→ Y = Rm×n×2 given by (∇hu)i,j =
(

(∇hu)1
i,j , (∇hu)2

i,j

)
.

Similar to the continuous setting, we define a discrete divergence operator divh : Y → X, which
is the minus of the adjoint of ∇h, given by divh = −∇∗h. That is, 〈−divhφ, u〉X = 〈φ,∇hu〉Y for
any φ = (φ1, φ2) ∈ Y and u ∈ X. It follows that div is explicitly given by

(divh φ)i,j =



φ1
i,j

h
if i = 1

φ1
i,j − φ1

i−1,j

h
if 1 < i < m

−φ1
m−1,j

h
if i = m

+



φ2
i,j

h
if j = 1

φ2
i,j − φ2

i,j−1

h
if 1 < j < n

−φ2
i,n−1

h
if j = n.

Proposition 3.7. ([5, 6]) Under the above-mentioned definitions and notations, one has that
• The adjoint operator of ∇h is ∇∗h = −divh .
• Its norm satisfies: ‖∇h‖2 = ‖ divh ‖2 ≤ 8/h2.

3.2. Discretization of the optimization problem. Based on the discrete gradient and di-
vergence operators, we propose a discrete version of (M) as follows

(M)d : min
u∈X

ui,j=gi,j ∀(i,j)∈Dd

{
− h2

m∑
i=1

n∑
j=1

ui,j + IBσ∗ (∇hu)
}

where Bσ∗ := {v ∈ Y : σ∗(ih, jh, vi,j) ≤ 1, ∀(i, j)} the unit ball w.r.t. σ∗, and IBσ∗ is the
indicator function in the sense of convex analysis, that is,

IBσ∗ (v) =

{
0 if v ∈ Bσ∗
+∞ otherwise.

In other words, the discrete version (M)d can be written as

min
u∈X
Fh(u) + Gh(∇hu),

where

Fh(u) =

−h
2
m∑
i=1

n∑
j=1

ui,j if ui,j = gi,j ∀(i, j) ∈ Dd

+∞ otherwise

, and Gh = IBσ∗ .
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Let u∗ ∈ X∗, we then have

F∗h(u∗) = sup
u∈X
〈u, u∗〉X −Fh(u) = sup

u∈X
ui,j=gi,j ∀(i,j)∈Dd

h2
m∑
i=1

n∑
j=1

ui,ju
∗
i,j + h2

m∑
i=1

n∑
j=1

ui,j

= sup
u∈X

ui,j=gi,j ∀(i,j)∈Dd

h2
m∑
i=1

n∑
j=1

ui,j(u
∗
i,j + 1)

=


h2

∑
(i,j)∈Dd

gi,j
(
u∗i,j + 1

)
if − u∗i,j = 1 for (i, j) /∈ Dd

+∞ otherwise.

It follows that

F∗h(divhφ) =


h2

∑
(i,j)∈Dd

gi,j ((divhφ)i,j + 1) if (−divhφ)i,j = 1 for (i, j) /∈ Dd

+∞ otherwise.

On the other hand, we have for q = (q1, q2) ∈ Y ∗

G∗h(q) = sup
p=(p1,p2)∈Y

〈p, q〉Y−Gh(p) = sup
p∈Bσ∗

h2
m∑
i=1

n∑
j=1

(
p1
i,jq

1
i,j + p2

i,jq
2
i,j

)
= h2

m∑
i=1

n∑
j=1

σ(ih, jh, qi,j).

Consequently, the corresponding discrete dual problem is given by

(OF)d : max
φ∈Y

{
−F∗h(divhφ)− G∗h(φ)

}
= − min

φ∈Y
(−divhφ)i,j=1 for (i,j)/∈Dd

h2


m∑
i=1

n∑
j=1

σ(ih, jh, φi,j) +
∑

(i,j)∈Dd

gi,j ((divhφ)i,j + 1)

 .

(3.7)
In particular, for the case of Eikonal equations |∇u(x)| = k(x), the primal-dual relations can be
explicitly written as

min
u∈X

ui,j=gi,j ∀(i,j)∈Dd

{
− h2

m∑
i=1

n∑
j=1

ui,j + IB(0,ki,j)(∇hui,j)
}

= − min
φ∈Y

(−divhφ)i,j=1 for (i,j)/∈Dd

h2


m∑
i=1

n∑
j=1

ki,j‖φi,j‖+
∑

(i,j)∈Dd

gi,j ((divhφ)i,j + 1)

 ,

where IB(0,ki,j) is the indicator function of the Euclidean ball with center 0 and radius ki,j , the
latter being the value of k at (ih, jh).

To end this subsection, let us recall that a pair (u, φ) ∈ X × Y solves the primal and dual
problems (M)d and (OF)d if and only if

divh(φ) ∈ ∂Fh(u) and φ ∈ ∂Gh(∇hu),
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or equivalently, they satisfy the following system
−(div(φ))i,j = 1 for (i, j) 6∈ Dd

φi,j · ∇hui,j = σ(ih, jh, φi,j) for all (i, j)

ui,j = gi,j for every (i, j) ∈ Dd.

(3.8)

3.3. The convergence of discretization. In this subsection, we will show a result on the
convergence of discretization, i.e, where the solutions of the discrete optimization and its discrete
dual problem converge to the ones of the corresponding problems in continuous setting. For
technical reason (see Remarks 3.10, 3.11) we focus on the non-degenerate case; i.e. H(x, 0) < 0
for any x ∈ Ω, as well as to the case where g ≡ 0.

First, let us describe how to interpolate elements of X and Y . We know the values of uh ∈ X
at the vertices (i, j), (i, j+ 1), (i+ 1, j+ 1), (i+ 1, j) of a small square (see Fig 2). We interpolate
uh ∈ X by piecewise affine functions on the sub-triangles, i.e., taking ũh ∈ L2(Ω) as an affine
function on the sub-triangles and coincides with uh on all the vertices. Then ũh is Lispchitz
function and its gradient is, by the definition of ũh, given by

∇ũh(x, y) =

(
uh(i+ 1, j)− uh(i, j)

h
,
uh(i, j + 1)− uh(i, j)

h

)
(3.9)

on the sub-triangle of the vertices (i, j), (i, j + 1), (i+ 1, j); and

∇ũh(x, y) =

(
uh(i+ 1, j + 1)− uh(i, j + 1)

h
,
uh(i+ 1, j + 1)− uh(i+ 1, j)

h

)
(3.10)

on the sub-triangle of the vertices (i, j + 1), (i+ 1, j + 1), (i+ 1, j).

Let φ̃h ∈ L2(Ω)2 be an interpolation of φh ∈ Y such that
∫

Ω
σ(x, φ̃h)dx = h2

m∑
i=1

n∑
j=1

σ(ih, jh, (φh)i,j).

(i,j) (i+1,j)

(i+1,j+1)(i,j+1)

Figure 2. Sub-triangles
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Proposition 3.8 (Convergence of discretization). Assume that the Finsler metric σ associated
with the Hamiltionian H is non-degenerate (i.e. H(x, 0) < 0, ∀x ∈ Ω) and that g = 0. Let
uh ∈ X and φh = (φ1

h, φ
2
h) ∈ Y be a pair of primal-dual solutions to the discrete optimization

problem (M)d and its dual problem (3.7). Then ũh ⇒ u and φ̃h ⇀ φ weakly* in Mb(Ω), as
the step size h → 0. Moreover, u and φ are optimal solutions to (M) and its dual problem,
respectively, in the following sense

(OF) = min
ψ∈Mb(Ω)N

{∫
Ω
σ

(
x,

ψ

|ψ|

)
d|ψ| : −div(ψ) = 1 in D′(Ω)

}

=

∫
Ω
σ

(
x,

φ

|φ|

)
d|φ| =

∫
Ω
udx

= (M),

where
φ

|φ|
the density of φ with respect to |φ|, the total variation of φ.

Proof. Since uh is feasible for the discrete optimization problem (M)d, its discrete gradient

∇huh ∈ Bσ∗ is bounded for all small h > 0. In other words, the sequences
{
uh(i+ 1, j)− uh(i, j)

h

}
and

{
uh(i, j + 1)− uh(i, j)

h

}
are bounded for h > 0 and i = 1, ...,m, j = 1, ..., n. Following (3.9)

and (3.10), the sequence {ũh} is equi-Lispchitz. Combining with the fact that uh = 0 on Dd, by
Ascoli-Arzela’s Theorem, up to a subsequence, ũh converges uniformly to some Lipschitz function
u on Ω as the step size h→ 0. By the optimality of uh and φh, we have

Fh(uh) + Gh(∇huh) = −F∗h(divhφh)− G∗h(φh).

More concretely,

h2
m∑
i=1

n∑
j=1

ui,j = h2
m∑
i=1

n∑
j=1

σ(ih, jh, (φh)i,j)

or equivalently ∫
Ω
ũhdx =

∫
Ω
σ(x, φ̃h)dx.

Since σ is non-degenerate and ũh is bounded, φ̃h is also bounded in L1(Ω). Hence, φ̃h ⇀ φ

weakly* in Mb(Ω)N . Using the lower-semicontinuity of the integrand (see [1, Theorem 2.38]),
we deduce that∫

Ω
σ

(
x,

φ

|φ|

)
d|φ| ≤ lim

h→0

∫
Ω
σ(x, φ̃h)dx = lim

h→0

∫
Ω
ũhdx =

∫
Ω
udx.

This implies that

(OF) = min
ψ∈Mb(Ω)N

{∫
Ω
σ

(
x,

ψ

|ψ|

)
d|ψ| : −div(ψ) = 1 in D′(Ω)

}
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≤
∫

Ω
σ

(
x,

φ

|φ|

)
d|φ| ≤

∫
Ω
udx ≤ (M).

By the duality result in the continuous setting given in Section 2 (Theorem 2.3), we deduce the
optimality of u and φ. �

Remark 3.9. In general we do not know if (OF) has a solution in L2(Ω)N , even if we do believe
that this is not true in general. We are convinced that the weak* convergence of φ̃h inMb(Ω)N ,
as the step size h→ 0, is optimal. For the special case where σ is given by the Euclidean norm,
(OF) admits a solution in L2(Ω)N (see e.g. [11]).

Remark 3.10. See that in the case where σ is a degenerate Finsler metric, even if the duality
between (OF) and (M) holds to be true and the dual problem (OF) still have a solution in
Mb(Ω)N , we loose the compactness of φ̃h. However, we still have the uniform convergence of ũh
to the optimal solution of the maximization problem (M).

Remark 3.11. The convergence of φ̃h, even in the non degenerate Finsler metric case, is more
subtle. This connected to the weak* convergence of φ̃h inMb(Ω)N , and the normal trace of Radon
measure vectors valued measure whose divergence is a bounded measures. In other words, it is
not clear how to handle the convergence of the boundary term

∑
(i,j)∈Dd

gi,j ((divhφ)i,j + 1) to the

corresponding continuous one of the type 〈g, φ · n〉.

4. Numerical resolution

In this section we focus on the case where the light direction is vertical, i.e., ` = (0, 0, 1).

4.1. Saddle-point structure. As we pointed out in Section 3, the discrete version (M)d of
(M) can be rewritten in the form

inf
u∈X
Fh(u) + Gh(∇hu) (4.11)

or in an inf-sup form as
inf
u∈X

sup
φ∈Y
Fh(u) + 〈φ,∇hu〉 − G∗h(φ)

where

Fh(u) =

−h
2
m∑
i=1

n∑
j=1

ui,j if ui,j = gi,j ∀(i, j) ∈ Dd

+∞ otherwise

, and Gh = IBσ∗ .

Both the functions Fh and Gh are lower-semicontinuous, convex and they are "proximable", i.e.
we can compute their proximal operators:

proxτFh(u) = argmin
v∈X

1

2
‖u− v‖2 + τFh(v)

proxηGh(ψ) = argmin
φ∈Y

1

2
‖ψ − φ‖2 + ηGh(φ)

where τ, η > 0. Then the Chambolle–Pock algorithm [6] can be applied to (4.11):



12 H. ENNAJI, N. IGBIDA, AND V. T. NGUYEN

Algorithm 1 Chambolle–Pock iterations

1st step. Initialization: choose η, τ > 0, θ ∈ [0, 1], u0 and take φ0 = ∇hu0, ū0 = u0.
2nd step. For k ≤ Itermax do

φk+1 = proxηG∗h
(φk + η∇h(ūk));

uk+1 = proxτFh(uk − τ∇∗h(φk+1));

ūk+1 = uk+1 + θ(uk+1 − uk).

It was shown in [6] that when θ = 1 and ητ‖∇h‖2 < 1, the sequence {uk} converges to an
optimal solution of (4.11). Contrary to the augmented Lagrangian approach in [12] (see also
[3, 19, 20]), the Chambolle–Pock algorithm does not require to solve a Laplace equation at
each iteration, we only need to perform some algebraic operations, namely the multiplication
by apply the gradient and the divergence in each iteration. The Chambolle–Pock algorithm is
easy to implement on Matlab which allows working on images easily contrary to the augmented
Lagrangian approach which was implemented using FreeFem++ to solve linear PDEs.

In order to compute proxηG∗h
we make use of the celebrated Moreau identity

φ = proxηG∗h
(φ) + ηproxη−1Gh(φ/η), ∀φ ∈ Y.

Moreover, proxη−1Gh is nothing but the projection onto B(0, ki,j). Indeed

proxη−1Gh(ψ) = arg min
q∈Y

1

2
|q − ψ|2 +

1

η
Gh(q)

= arg min
qi,j∈B(0,ki,j)

1

2
|q − ψ|2

= ProjB(0,ki,j)(ψi,j).

Consequently, (
proxηG∗h

(ψ)
)
i,j

= ψi,j − ηProjB(0,ki,j)(ψi,j/η).

Let us now compute the proximal operator of Fh. We have

proxτFh(u) = argmin
v∈X

1

2
‖v − u‖2 + τFh(v) = argmin

v=g on Dd

1

2
‖v − u‖2 − τh2

m∑
i=1

n∑
j=1

vi,j .

Writing the first-order optimality condition we get

(proxγFh(u))i,j − ui,j − τh2 = 0⇔ (proxγFh(u))i,j = ui,j + τh2, ∀i = 1, ...,m, j = 1, ..., n.

So in practice, we update un+1 via the previous formula and we then set its values to g on the
Dirichlet domain.

For applications in image, as usual, one can always assume that h = 1 since it only scales the
domain. The details of the 2nd step in Algorithm 1 are then given by
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• compute φk+1:

φ̄k+1 = φk + η∇hūk

φk+1
i,j = φ̄k+1

i,j − ηProjB(0,ki,j)(φ̄
k+1
i,j /η), 1 ≤ i ≤ m, 1 ≤ j ≤ n;

• compute uk+1:
vk+1 = uk + τdivh(φk+1)

uk+1
i,j = vk+1

i,j + τ, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Remark 4.12. Another way to formulate the problem (M) (in the continuous setting) is to take

F(u) = −
∫

Ω
udx, and G(q, v) =

{
0 if |q| ≤ k and v = g on ∂Ω

∞ otherwise,

for all u ∈ W 1,∞(Ω), and (q, v) ∈ L∞(Ω)d × L2(∂Ω). In this case, the problem (M) can be
rewritten as

inf
u
F(u) + G(K(u))

where K = (∇, γ0), and γ0 is the trace operator on the boundary. This being said, at the second
step of the Algorithm 1 we need to compute γ∗0 which turns requiring to solve a PDE. Indeed,
we define

γ0 : H1(Ω)→ L2(∂Ω)

through γ0(u) = u|∂Ω for every u ∈ H1(Ω). By definition, for any (u, v) ∈ H1(Ω)× L2(∂Ω)

〈γ0u, v〉L2(∂Ω) = 〈u, γ∗0v〉H1(Ω).

This means that ∫
∂Ω
uvdS =

∫
Ω
u(γ∗0v)dx+

∫
Ω
∇u∇(γ∗0v)dx

for any u ∈ H1(Ω). In other words γ∗0v solves the following PDE

−∆z + z = 0 in Ω and ∂nz = v on ∂Ω.

Thus we opt for the first formulation in order to avoid additional costs to the computations.

4.2. Error criterion. As usual, we can check the optimality conditions (3.8) associated to (M)d
and (OF)d. Namely we check the following conditions:

• Divergence error: ‖ − divh(φ)− 1‖2.
• Dual error: ‖σ(x, φ)−∇hu · φ‖1.
• Lip error: sup

i,j
σ∗(ih, jh,∇hui,j).

We expect Divergence error and Dual error to be small. Note that for vertical light direction,
the support function σ is easy to compute. More particularly, one has for every p ∈ Rd, σ(x, p) =
k(x)|p| where |p| is the euclidean norm of p. Thus, for the Lip error, we can check the value
sup
i,j

(‖∇hui,j‖ − ki,j) and expect it to be close to zero.
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4.3. Numerical examples. We test for some commonly used images: Mozart and vase images
taken from [27] and Basilica and vaso images taken from [16]. In these cases, the shapes are
reconstructed by solving the Eikonal equation |∇u(x, y)| = k(x, y) in 2D with g ≡ 0, i.e, with
homogeneous Dirichlet boundary condition u = 0 on ∂Ω. The algorithm was implemented in
Matlab and executed on a 2,3 GHz CPU running macOs Catalina system.

Figure 3. Left to right: Initial image, the reconstructed shape
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Figure 4. Error criterion for 5000 iterations and τ = 0.01 and η = 8/τ
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Figure 5. Left to right: Initial image, the reconstructed shape
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Figure 6. Error criterion for 5000 iterations and τ = 0.01 and η = 8/τ
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(a)

(b)

Figure 7. Left to right: Initial image, the reconstructed shape
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Figure 8. Error criterion for 5000 iterations and τ = 0.001 and η = 8/τ
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(a)

(b)

Figure 9. Left to right: Initial image, the reconstructed shape
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Figure 10. Error criterion for 5000 iterations and τ = 0.001 and η = 8/τ

Shape Execution Time
vase 20.10s
vaso 76.03s

Mozart 76.82s
Basilica 79.31s
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Let us mention that for most shapes, only a hundred of iterations is enough to reconstruct a
reasonable solution. We took 5000 iterations in order to check that the error criteria are getting
smaller.

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity
problems. Oxford: Clarendon Press, 2000.

[2] M. Bardi and M. Falcone. Discrete approximation of the minimal time function for systems
with regular optimal trajectories. Analysis and optimization of systems, Proc. 9th Int. Conf.,
Antibes/Fr. 1990, Lect. Notes Control Inf. Sci. 144, 103-112, 1990.

[3] J.-D. Benamou and G. Carlier. Augmented Lagrangian methods for transport optimization,
mean field games and degenerate elliptic equations. Journal of Optimization Theory and
Applications, 167(1):1–26, 2015.

[4] F. Camilli and L. Grüne. Numerical approximation of the maximal solutions for a class of
degenerate Hamilton-Jacobi equations. SIAM J. Numer. Anal., 38(5):1540–1560, 2000.

[5] A. Chambolle. An algorithm for total variation minimization and applications. J. Math.
Imaging Vis., 20(1-2):89–97, 2004.

[6] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. J. Math. Imaging Vis., 40(1):120–145, 2011.

[7] M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order
partial differential equations. Bull. Am. Math. Soc., New Ser., 27(1):1–67, 1992.

[8] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi equations. Trans.
Am. Math. Soc., 277:1–42, 1983.

[9] A. Crouzil, X. Descombes, and J.-D. Durou. A multiresolution approach for shape from
shading coupling deterministic and stochastic optimization. IEEE Trans. Pattern Anal.
Mach. Intell., 25(11):1416–1421, 2003.

[10] J.-D. Durou, M. Falcone, and M. Sagona. Numerical methods for shape-from-shading: A
new survey with benchmarks. Comput. Vis. Image. Underst., 109(1):22–43, 2008.

[11] S. Dweik and F. Santambrogio. Summability estimates on transport densities with Dirichlet
regions on the boundary via symmetrization techniques. ESAIM: Control, Optimisation and
Calculus of Variations, 24(3):1167–1180, 2018.

[12] H. Ennaji, N. Igbida, and V. T. Nguyen. Augmented Lagrangian method for Hamilton-
Jacobi equations. submitted, 2020.

[13] H. Ennaji, N. Igbida, and V. T. Nguyen. Beckmann-type problem for degenerate Hamilton-
Jacobi equations. submitted, 2020.

[14] M. Falcone, T. Giorgi, and P. Loreti. Level sets of viscosity solutions: Some applications to
fronts and rendez-vous problems. SIAM J. Appl. Math., 54(5):1335–1354, 1994.

[15] A. Fathi and A. Siconolfi. PDE aspects of Aubry-Mather theory for quasiconvex Hamilto-
nians. Calc. Var. Partial Differ. Equ., 22(2):185–228, 2005.

[16] A. Festa. Analysis and Approximation of Hamilton Jacobi equations on irregular data. PhD
thesis.



19

[17] H. Hayakawa, S. Nishida, Y. Wada, and M. Kawato. A computational model for shape
estimation by integration of shading and edge information. Neural Netw, 7(8):1193–1209,
1994.

[18] B. K. P. Horn and M. J. Brooks. The variational approach to shape from shading. Comput.
Vis. Graph. Image Process., 33:174–208, 1986.

[19] N. Igbida and V. T. Nguyen. Augmented Lagrangian method for optimal partial transporta-
tion. IMA J. Numer. Anal., 38(1):156–183, 2018.

[20] N. Igbida, V. T. Nguyen, and J. Toledo. On the uniqueness and numerical approximations
for a matching problem. SIAM Journal on Optimization, 27(4):2459–2480, 2017.

[21] P.-L. Lions. Generalized solutions of Hamilton-Jacobi equations. Research Notes in Math-
ematics, 69. Boston - London - Melbourne: Pitman Advanced Publishing Program., 1982.

[22] P. L. Lions, E. Rouy, and A. Tourin. Shape-from-shading, viscosity solutions and edges.
Numer. Math., 64(3):323–353, 1993.

[23] A. P. Pentland. Local shading analysis. IEEE Trans. Pattern Anal. Mach. Intell., (2):170–
187, 1984.

[24] T. Ping-Sing and M. Shah. Shape from shading using linear approximation. Image Vis.
Comput., 12(8):487–498, 1994.

[25] E. Prados, F. Camilli, and O. Faugeras. A viscosity solution method for shape-from-shading
without image boundary data. ESAIM Math. Model. Numer. Anal., 40(2):393–412, 2006.

[26] E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-shading. SIAM J.
Numer. Anal., 29(3):867–884, 1992.

[27] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape from shading: a survey. IEEE Trans.
Pattern Anal. Mach. Intell., 21:690–706, 1999.


	1. Introduction
	2. Maximization problem and duality in continuous setting
	2.1. Metric character of HJ equations
	2.2. A maximization problem and duality

	3. Discretization
	3.1. Discretization of the domain and operators
	3.2. Discretization of the optimization problem
	3.3. The convergence of discretization

	4. Numerical resolution
	4.1. Saddle-point structure
	4.2. Error criterion
	4.3. Numerical examples

	References

