
HAL Id: hal-03020330
https://hal.science/hal-03020330v1

Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete and Continuous Optimal Control for Energy
Minimization in Real-Time Systems

Bruno Gaujal, Alain Girault, Stéphan Plassart

To cite this version:
Bruno Gaujal, Alain Girault, Stéphan Plassart. Discrete and Continuous Optimal Control for
Energy Minimization in Real-Time Systems. EBCCSP 2020 - 6th International Conference on
Event-Based Control, Communication, and Signal Processing, Sep 2020, Krakow, Poland. pp.1-8,
�10.1109/EBCCSP51266.2020.9291353�. �hal-03020330�

https://hal.science/hal-03020330v1
https://hal.archives-ouvertes.fr

Discrete and Continuous Optimal Control for
Energy Minimization in Real-Time Systems

Bruno Gaujal
Univ. Grenoble Alpes, Inria,

CNRS, Grenoble INP,
LIG, 38000 Grenoble, France.

bruno.gaujal@inria.fr

Alain Girault
Univ. Grenoble Alpes, Inria,

CNRS, Grenoble INP,
LIG, 38000 Grenoble, France.

alain.girault@inria.fr

Stéphan Plassart
Univ. Grenoble Alpes, Inria,

CNRS, Grenoble INP,
LIG, 38000 Grenoble, France.

stephan.plassart@inria.fr

Abstract—This paper presents a discrete time Markov Decision
Process (MDP) to compute the optimal speed scaling policy to
minimize the energy consumption of a single processor executing
a finite set of jobs with real-time constraints. We further show
that the optimal solution is the same when speed change decisions
are taken at arrival times of the jobs as well as when decisions
are taken in continuous time.

Index Terms—Optimal Control, Real-Time Systems, Markov
Decision Process, Dynamic Voltage and Frequency Scaling.

I. Introduction

Minimizing the energy consumption of embedded system
with real time constraints is becoming more and more im-
portant. This is due to the fact that more functionalities and
better performances are expected from such systems, together
with a need to limit the energy consumption, mainly because
batteries are becoming the standard power supplies.

The starting point of this work is the seminal paper of [7]
that solves the following problem: Let (ri, ci, di)i≤K be a set
of K jobs, where ri is the release or arrival date of job i, ci
is its size (number of operations needed to complete the job)
and di is its relative deadline. The problem is to choose the
speed of the processor as a function of time s(t) such that
the processor can execute all jobs before their deadlines, and
such that the total energy consumption J is minimized. In our
problem, J is the dynamic energy consumed by the processor:
J =

∫ T
0 Q(s(t))dt, where T is the time horizon of the problem

and Q(s) is the power consumption when the speed s is used.
This problem has been solved in [7] in the off-line case,

i.e., when all jobs are known in advance, and when the power
function Q(·) is a convex function of the speed.

Several solutions for the on-line case (only the jobs released
at or before time t can be used to compute the speed s(t))
have also been investigated in [7]. The authors in [1] prove
that Optimal Available (OA), proposed in [7] has a competitive
ratio (energy spent by the on-line algorithm over energy of the
best off-line algorithm, in the worst case) equal to pp when the
power dissipated at speed s is Q(s) = sp. In CMOS circuits,
the value of p is roughly 3, so (OA) may spend 27 times more
energy than an optimal schedule in the worst case.

* This work has been partially supported by the LabEx PERSYVAL-Lab.

Here, we also consider the on-line case and we aim at
minimizing the expected energy consumption to complete all
jobs before their deadlines. In this case, the problem can be
seen as a constrained optimal control problem:

At time t the decision maker (processor) chooses the
speed s(t) based on the current state (jobs released
before t) and the expected future job arrivals.

The goal of the decision maker is to minimize the expected
total energy cost while satisfying all the deadline constraints
on the jobs.

We consider two cases, depending on the instants when the
decisions are made. The first case is a discrete time control:
decisions can only be made at the release times of the jobs.
The second case is a continuous time control: at any time
t ∈ R the controller chooses the current speed. In principle,
the continuous controller is more powerful than the discrete
one and should achieve a solution that has a lower energy cost.
The goal of this paper is to show that this is not true here:
discrete decisions are as good as continuous one. This result
has two main consequences: The optimal continuous control
can be computed efficiently, and implementation in an actual
embedded system becomes simpler.

The paper is organized as follows. The first part introduces
the notations and the optimal control problem. The second part
presents the optimal speed policy when the decisions are taken
at release times of the jobs: At the n-release time, the processor
chooses a speed s(n) that is used until the new release time
opportunity. It also shows how to compute it and gives its
computational cost. The third part deals with the optimal speed
policy when the decisions are continuous in time: at any time
t ∈ [0,T], the processor chooses the current speed s(t) and we
show that, under mild conditions, continuous speed policies
do not improve over the discrete version.

II. Presentation of the problem

A. Jobs, Processor Speeds, and Power

We consider a real-time system with one uni-core processor
that executes K real-time, sporadic, independent jobs. Each job
i is defined by 3 integers: (ri, ci, di) where ri ∈ N is the release
time (or arrival time), ci ∈ N is the size (or workload), and978-1-7281-9581-0/20/$31.00 ©2020 IEEE

di ∈ N is the relative deadline. We assume that all jobs have
a bounded size C and a bounded deadline ∆:

∀i, ci ≤ C, di ≤ ∆.

Without loss of generality, we assume rn = n. This means that
a new job arrives at each time slot, this job being of size 0
(cn = 0) if no real work actually arrives at time n. The job
stream is given by probability distributions: (Pn(·, ·)) is the
probability of the size and the deadline of a job arriving at
any time n: For any 0 ≤ γ ≤ C, and for any 1 ≤ δ ≤ ∆,

Pn(γ, δ) := P(cn = γ, dn = δ) (1)

The CPU processing speed s can vary with time and takes
values in a finite set S of speeds between 0 and smax, smax
being the maximal processor speed. When the processor runs
at speed s during an interval of size 1, it executes a total
amount of work equal to s. Without loss of generality, we
will scale the speeds (as well as the sizes of the jobs), so that
all the speeds in S are integers.

We consider that the power dissipated by the CPU working
at speed s(t) at time t is Q(s(t)), so that the energy consumption
of the processor from time 0 to time T is J =

∫ T
0 Q(s(t))dt.

Classical choices for the power Q are convex increasing
functions of the speed: in CMOS circuits, we typically have
Q(s) = bsp where p is a constant between 2 and 3.

For the sake of simplicity, we only consider the following
simple situation: preemption time is null (the processor can
switch from one job to another at any time instantaneously),
and speed change time is also null.

B. Problem Statement
The objective is to choose at each time t the speed s(t) and

the schedule R(t) (which job to execute at time t among the
jobs present at time t) in order to minimize the total energy
consumption over the total time horizon, while satisfying all
the real-time constraints. Furthermore, the choice must be
made on-line, i.e., it can only be based on the characteristics
of the past and current jobs.

The information (or history) H(t) at time t is the set of all
the past and current jobs together with the past speed selection:

H(t) = {(ri, ci, di)|ri ≤ t} ∪ {s(u), u ≤ t} (2)

Notice that in this model, unlike in [4] or [5], the size ci and
the deadline di are known at the release time of job i. The
on-line energy minimization problem (P) is:

Find online speed s(t) and schedule R(t) (i.e., s(t)
and R(t) can only depend on the history H(t)) to
minimize the expectancy E

∫ T
0 Q(s(t))dt under the

constraint that no job misses its deadline.
Let (s∗,R∗) be an optimal solution to the problem (P). Since

the energy consumption does not depend on the schedule
(preemption is assumed to be time and energy-free) and
since the Earliest Deadline First1 (EDF) scheduling policy is
optimal in terms of deadline constraints (see for example [3]),

1At time t, execute the job whose deadline is the earliest, among all jobs
released before t and not yet completed.

then (s∗, EDF) is also an optimal solution to problem (P).
In the following, we will always assume with no loss of
optimality that the processor uses EDF to schedule its jobs.
This implies that we only need to focus on the speed of the
processor to obtain an optimal schedule.

III. Discrete Optimization

In this section we consider the case where the processor
can only change its speed at the times when jobs (possibly
null) arrive in the system. This will make the computation
of the optimal speed policy easier but may result a priori
in a sub-optimal result. This case has been presented in
more details with a more general model, including general
arrival sequences, context switch costs and delays for changing
speeds, in [2]. Here it is mainly useful as a reference point, to
which the analysis for the continuous case will be compared.

A. Consecutive Speeds

The set of available speeds S is consecutive when it contains
all the integer speeds between 0 and smax: S = {0, 1, . . . , smax}.
When the set S is not consecutive, one can construct the
consecutive set S that contains all the speeds missing in S.
We claim that any missing speed s ∈ S \ S can be emulated
by using speeds in S over a discrete time interval [n, n + 1) in
the following way:

First, let us define the two neighboring speeds s1 and s2 of
s in S: we have s1 < s < s2. Let us also define 0 < α < 1
such that s = αs1 + (1 − α)s2.

Over the interval [n, n + 1), if the processor uses speed s1
over [n, n + α) and speed s2 over [n + α, n + 1), then the total
amount of work executed over the whole interval is the same
as if speed s were used over the whole interval. The energy
cost is αQ(s1) + (1 − α)Q(s2).

Finally, the behavior of the system is the same as if the
speed s were available with a power function Q(s) = αQ(s1)+

(1−α)Q(s2). This trick (emulating s with two speeds) will be
called Vdd-hopping in the following.

Therefore, in the rest of this section, we always assume with
no loss of optimality that the set of speeds is consecutive (by
using Vdd-hopping). We will discuss this issue again in the
continuous case.

B. Remaining work function

The remaining work at time n is an increasing function wn(·)
defined as follows: wn(u) is the amount of work that remains
to be done before time n + u. Since all available speeds, job
sizes, and deadlines are integer numbers, the remaining work
wn(u) is an integer valued staircase function (assumed to be
right continuous with left limits).

This is illustrated in Figure 1 that shows an example of the
remaining function wn(·). The jobs released just before n = 4
are: (0, 2, 4), (1, 1, 5), (2, 2, 6), (3, 2, 4), and (4, 0, 6). The last
job having a null size, it is not shown in this figure. The speeds
chosen by the processor up to time n = 4 are: s0 = 1, s1 = 0,
s2 =2, and s3 =1. Function A(t) in green is the amount of work
that has arrived before time t. Function D(t) in blue is made
of discrete steps that show the cumulative work that must be

executed before time t. This requires a detailed explanation:
the first step of D(1) corresponds to the deadline of the first
job at n = 0+4 = 4; the second step is for the second job at
n = 1+5 = 6; the third step is for the 4th job at n = 3+4 = 7;
the fourth step is for 3rd job at n = 2+6 = 8. Hence the step
for the 4th job is before the step for the 3rd. This is because
Figure 1 depicts the situation at t=4. At t=3, we would only
have seen the first 3 jobs. Finally, the function e(t) in black
is the amount of work already executed by the processor at
time t; in Figure 1, the depicted function e(t) has been obtained
with an arbitrary speed policy (i.e., non optimal). Finally, the
remaining work function wn(u) in red is exactly the portion of
D(t) that remains “above” e(t).

t
• • • • • • • • • •

Work

•

•

•

•

•

•

•

•

•

•c1

• •

•
c2

•

•c3

• •

•c4

• •

A(t)

•

• c1

• • •

•
c2
•

•
c4

• •

• c3

•

D(t)

•

• •

•

•

e(t)

• • • •

• •

•

• wt(u)

(O
A)

Fig. 1. Construction of the remaining work function wn(·) at n = 4, for 4 jobs
(0, 2, 4), (1, 1, 5), (2, 2, 6), (3, 2, 4), (4, 0, 6), and processor speeds s0 = 1, s1 =
0, s2 = 2, s3 = 1. A(t) is the amount of work that has arrived before time t.
D(t) is the amount of work that must be executed before time t. e(t) is the
amount of work already executed by the processor at time t.

The remaining work function wn(·) is the only relevant
information at time n, out of the whole history H(n), needed
by the processor to choose its next speed. In the following,
we call wn the state of the system at time n.

C. Description of the State Space

To formally describe the state spaceW (i.e., all the possible
remaining work functions) and the evolution of the state wn
over time, we introduce several constructors.

Definition 1. We define the following operators:
• The time shift operator T f is the shift on the time axis of

function f , defined as: ∀t ∈ R, T f (t) = f (t + 1).
• The positive part of a function f is f + = max(f , 0).
• The unit step function (Heaviside function), denoted Ht,

is the discontinuous step function such that ∀u ∈ R:

Ht(u) = {0 if u < t and 1 if u ≥ t}

Lemma 1. Let (rn, cn, dn) be a job that arrives at time n = rn.
If the processor speed at time n− 1 is sn−1, then at time n the
remaining work function becomes:

wn(·) = T
[
(wn−1(·) − sn−1)+] + cnHdn (·) (3)

Proof. Between times n − 1 and n, the processor working at
speed sn−1 executes sn−1 amount of work, so the remaining
work decreases by sn−1. The remaining work cannot be nega-
tive by definition, hence the term (wn−1(·)−sn−1)+. After a time
shift by one unit, a new job i is released at time n, bringing
cn additional work with deadline n + dn, hence the additional
term cnHdn (·). �

In the following, we will use the notation wn+1(·) =

F(wn(·), s, an) to denote the state that follows immediately state
wn under speed s and work arrival an at time n.

The state space W is finite: it is included in the set of
all integer staircase functions, with at most ∆ steps, each on
them of integer height at most C. The following proposition
gives a more precise evaluation of the size of the size of the
state spaceW, using a generalization of Catalan numbers. The
proof is in [2].

Proposition 1. If C is the maximal size of a job and ∆ its
maximal deadline, then the size G(C,∆) of the state space W
satisfies:

G(C,∆) =
1

1 + C(∆ + 1)

(
(C + 1)(∆ + 1)

∆ + 1

)
(4)

≈
e
√

2π

1
(∆ + 1)3/2 (e C)∆ (5)

D. Markov Decision Process
Since the state space W is finite in discrete time, one can

effectively compute the optimal speeds in each possible state.
In this section, we provide a dynamic programming algorithm
to compute this optimal speed selection. We compute offline
the optimal speed policy σ∗n that gives the speed the processor
should use at time n in all its possible states. At runtime, at
each time n, the processor chooses the speed that corresponds
to its current remaining work wn as s∗(n) := σ∗n(wn).

The algorithm to compute the speed policy σ∗ is based on
a Markovian evolution of the jobs.

The work arriving function is denoted by An: An(·) = cHd(·),
if the job arriving at time n is of size c and relative deadline d.

Therefore, the probability distribution can also be written in
terms of arriving functions instead of jobs: with a(·) = cHd(·),

Pn(a) = Pn(cn = c, dn = d).

Now, we can compute the minimal total expected processor
energy consumption in discrete time (J∗,N) from 0 to T . We
thus want to solve the following optimization problem (PF).
If the initial state is w0, then compute

J∗,N(w0) = min
σ

E
 T∑

n=0

Q(σn(wn))

 (6)

where the minimum is taken over all policies σ: for all time
n and all state w, σn(w) denotes the speed used over the time
interval [n, n+1) if the current state is w, under speed policy σ.

There are two constraints on σ. Firstly, it must takes its
values in the set of admissible speeds, i.e., σn(w) ∈ S.
Secondly, it must be large enough to execute the remaining
work over the next interval [n, n + 1), i.e. σn(w) ≥ w(1).

This set of admissible speeds in state w will be denoted
A(w) and is therefore:

A(w) =
{
s ∈ S s.t. s ≥ w(1)

}
(7)

If the speed policy σn chooses a speed in A(w) for each
state w and each time n, then it will never miss any deadline
over the whole interval [0,T]. Of course, this requires that
A(w) is not empty, or in other words, w(1) ≤ smax. This issue
will be discussed in Section III-E.

Now, J∗,N can be computed using a backward induction.
Let J∗,Nn (w) be the minimal expected energy consumption from
time n to T , if the state at time n is w (wn = w).

We use Algorithm 1, a backward induction (dynamic pro-
gramming) to recursively evaluate the expected consumption.
Specifically, we use the classical Finite Horizon-Policy Eval-
uation Algorithm from [6] (p. 80). The optimal speed policy
returned by Algorithm 1 is the union of all the optimal speeds
for each n ∈ [0,T − 1].

Algorithm 1 Dynamic Programming Algorithm (DP) to com-
pute the optimal speed for each state at each time.

n = T % Start at the time horizon T
for all w ∈ W do J∗,NT (w) = 0 end for % Initialize the
state at the horizon T
while n ≥ 1 do

for all w ∈ W do

J∗,Nn−1(w) = min
s∈A(w)

Q(s) +
∑

a

Pn(a)J∗,Nn

(
F(w, s, a)

) %

Compute the optimal state at n − 1

σ∗n−1(w) = arg min
s∈A(w)

Q(s) +
∑

a

Pn(a)J∗,Nn

(
F(w, s, a)

)
% And the corresponding optimal speed

end for
n← n − 1 % Move backward

end while
return

⋃T−1
n=0 σ

∗
n(·) % Return the optimal speed policy

The complexity to compute the optimal speed policy σ∗n(w)
for all possible states and time steps is finite. It is equal to
O(T |S|C∆G(C,∆)). The combinatorial explosion in maximum
deadline, ∆, of the state space makes this complexity very
large when ∆ is large.

E. Feasibility Issues
A set of jobs is schedulable if there exists a speed policy that

can execute them all without missing a deadline, regardless of
energy costs.

By monotonicity of the remaining work w.r.t. the current
speed, it is straightforward to check that using the maximal
speed smax all the time is the best speed policy as far as
deadline constraints are concerned. Hence, a set of jobs is
schedulable if and only if using the maximal speed all the
time will not miss any deadline.

Definition 2 (feasible speed policy). A speed policy σ is
feasible over a set of jobs if using speed σ(·), the processor
executes all jobs without missing a deadline.

The goal of this section is to show the following result,
which proves that DP is not only optimal in terms of energy
but also optimal in terms of feasibility.

Proposition 2. A finite set of jobs is schedulable if and only
if speed policy DP is feasible over this set.

Proof. We will show that for all states wn reached under DP
and all time n, executing a schedulable set of jobs, the set of
admissible speeds A(wn) is never empty. This is equivalent to
the feasibility of DP.

To show this, let us first modify the processor by allowing
unbounded speeds, and let us introduce a new energy function
Q′(·) such that ∀s ≥ smax, Q′(s) = ∞. For speed values smaller
than smax, the power function remains unchanged: if s ∈ S,
then Q′(s) = Q(s). In this new framework, the processor can
now use unbounded speeds:

S′ = S ∪ {smax + 1, smax + 2, . . .}

In that case the new set of admissible speeds

A′(w) =
{
s ∈ S′ s.t. s ≥ w(1)

}
is never empty so that all deadlines are met. However, when
DP uses a speed higher than smax, its energy consumption
becomes infinite.

Now, let us consider a set of schedulable jobs executed
by this extended processor model. Let us also define another
speed policy, namely, the simple greedy speed policy, that uses
speed smax at any time n. Under this greedy speed policy, the
expected energy consumption is Jgreedy = T Q(smax) and no job
misses its deadline, by schedulability.

Since the optimal speed policy computed by DP is optimal
in energy, it has a better expected consumption than the greedy
speed policy. Hence, J∗ for DP is finite, smaller than T Q(smax).
This implies that speeds higher than smax, which would have
resulted in an infinite energy consumption, will never be used
by the optimal speed policy.

To sum up, for any schedulable set of jobs, the set A′(wn)
always contains speeds smaller than smax. The optimal speed
policy never uses a speed higher than smax so that it coincides
with the original speed policy. Therefore the optimal policy,
as defined in Algorithm 1, will never miss a deadline if and
only if the set of jobs is schedulable. �

On a side note, since the amount of work that can arrive
at any time n is bounded by C, one can assess more explic-
itly a schedulability condition of a set of jobs. A sufficient
schedulability condition is:

smax ≥ C. (8)

The case where smax = C is borderline because the only
optimal speed policy DP degenerates to a trivial greedy speed
policy: at any time n DP executes all the arriving work:
σ∗n(wn) = An(∆) (recall that An(∆) is the total work arriving at
time n). Since An(∆) ≤ C ≤ smax by (8), this speed policy is
feasible.

If smax > C, then the previous speed policy is still feasible
but will not be optimal in terms of energy consumption. In

that case the processor has more flexibility and may use a low
speed to save energy. Doing so, it leaves some work for later,
hoping for non busy times. In the unlikely event that a lot of
work arrives in the future, the processor will still be able to
use a very large speed to execute it.

F. Monotonicity Properties

Proposition 3. For any n and any two states w1
n(·) and w2

n(·),
w1

n(·) ≥ w2
n(·) implies σ∗n(w1

n) ≥ σ∗n(w2
n).

Proof. Consider two systems starting at n, with respective
states w1

n(·) and w2
n(·). We “couple” the job arrivals an, an+1, . . .

in both systems and use the optimal speeds for the first system,
namely:

sn = σ∗n
(
w1

n

)
,

sn+1 = σ∗n
(
F(w1

n, sn, an)
)
,

sn+2 = σ∗n
(
F(w1

n+1, sn+1, an+1)
)
,

...

sT−1 = σ∗n
(
F(w1

T−2, sT−2, aT−2)
)
.

Hence the states in the first system are

w1
n+1 = F(w1

n, sn, an),
...

w1
T−1 = F(w1

T−2, sT−2, aT−2).

And the states in the second system are

w2
n+1 = F(w2

n, sn, an),
...

w2
T−1 = F(w2

T−2, sT−2, aT−2).

By monotonicity of the function F w.r.t. its first coordinate,
the initial comparison between the two systems carries on:
w1

n+i ≥ w2
n+i for all i. This implies that the sequence of speeds

sn, sn+1, . . . is also admissible (i.e. sn+i ≥ w1
n+i ≥ w2

n+i) in the
second system. This implies that on all trajectories, a lower
speed can be used in the second system at time n. A direct
backward induction on n now implies that the optimal speed at
time n in the second system is smaller that in the first one. �

IV. Continuous Optimization

Let us now consider the continuous version of energy
optimization. To ease the analysis of the continuous case, let us
first extend the function Q over the continuous speed interval
[0, smax] by affine interpolation between the points Q(s), s ∈ S:

For any s ∈ [0, smax], if s1 and s2 are the two neighboring
speeds of s in S, we set Q(s) = αQ(s1) + (1− α)Q(s2), where
α is defined by s = αs1 + (1 − α)s2.

Notice that if Q is convex over the discrete set S, then the
interpolation remains convex over [0, smax]. Notice also that
this extension can always be done since the processor will only
really use integer speeds anyways. It just artificially makes the
processor able to use any (virtual) speed s, as a combination
of existing speeds (Vdd-hopping).

In the continuous case, the processor may change its speed
at any time t ∈ [0,T]. However, the jobs and the set of speeds
remain discrete.

In that case, the state at time t, under any online speed pol-
icy π, is still well-defined and satisfies a differential equation:

∀u ≥ 0, wπ
0(u) = 0

∀t > 0 and ∀n ∈ N with n < t ≤ n + 1,

wπ
t (u) =

(
wπ

n(u) −
∫ t

n
π(wπ

v)dv
)+

+ at(u). (9)

Let us call J∗,R the minimal expected energy consumption
over [0,T], and π∗,Rt (·) the optimal speed policy, resulting in
state w∗t (·) at time t.

The energy consumed by the optimal speed policy π∗,Rt ,
starting in state w0, is

J∗,R(w0) = E

∫ T

0
Q

(
π∗,Rt (w∗t)

)
dt (10)

= E
T−1∑
n=0

∫ n+1

n
Q

(
π∗,Rt (w∗t)

)
dt

≥ E
T−1∑
n=0

Q
(∫ n+1

n
π∗,Rt (w∗t) dt

)
(11)

= E
T−1∑
n=0

Q
(
smean(n)

)
(12)

= E
T−1∑
n=0

αQ
(
s∗1(n)

)
+ (1 − α)Q

(
s∗2(n)

)
(13)

Let us detail these computations. Eq. (10) is the definition
of the optimal speed policy. Eq. (11) comes from Jensen
inequality for the convex function Q extended over [0, smax].

In Eq. (12), smean =
∫ n+1

n π∗,Rt (w∗t)dt is the average speed
used between n and n + 1 by the optimal speed policy.

Finally, s∗1(n) and s∗2(n) in Eq. (13) are the neighboring
speeds in S of the average speed smean(n).

Ineq. (12) implies that the speed policy πmean that chooses
constant speed smean(n) during each time interval n to n + 1,
is better than the optimal speed policy.

Furthermore, since deadlines and release times are integers,
there is no deadline constraints in (n, n + 1). This means that
the speed policy πmean is feasible: using the speeds s∗1(n) and
s∗2(n) over [n, n +α) and [n +α, n + 1], resp. does not miss any
deadline.

Therefore, the speed policy πmean, which only changes its
(virtual) speed smean at discrete times, is optimal in continuous
time.

The difference with the discrete optimal speed policy is that,
in the discrete case, the speed used in each interval must be
integer-valued, while πmean may use any virtual speed smean in
the continuous interval [0, smax].

This additional degree of freedom in the continuous case
could be beneficial in terms of energy consumption.

Here is a simple example illustrating this fact: If the
processor can use speed s = 0 over the sub-interval [n, n+1/3]

and speed s′ = 1 over the sub-interval [n + 1/3, n + 1], then, in
total over the interval [n, n+1], this can be seen as a processor
using a virtual speed smean = 2/3, with an energy consumption
Q(0)/3+2Q(1)/3. In the discrete optimization problem such a
possibility is not available: over [n, n + 1], the processor must
use either speed 0 or speed 1. This could be detrimental for
the expected energy consumption.

In the following, we will show that this is not the case:
choosing integer speeds is always optimal.

Theorem 1. If the set S is made of consecutive speeds (i.e.
S = {0, 1, 2, . . . , smax}) and the power function Q is increasing
and convex, then there is no energy gain for the processor
to use non-integer speeds: for all initial state w, J∗,R(w) =

J∗,N(w).

Proof. To keep notations simple, we also skip the super-index
in J∗,N in the proof up to the last part of the proof.

Let us first consider that the processor can change its speed
at times t ∈ N as well as at times t + 1/2. We will show that
this does not bring any energy gain.

The time horizon is T and the minimal energy at time t
under state w can be decomposed into two actions (taken at
times t and t + 1/2):

J∗
t+ 1

2
(w) = min

v∈A2(w)

Q(v)
2

+
∑

a

Pt(a)J∗t+1

(
T2

(
w −

v
2

)+

+ a
)

J∗t (w) = min
u∈A1(w)

(
Q(u)

2
+ J∗

t+ 1
2

(
T2

(
w −

u
2

)+))
,

where A2(w) = {s ∈ S : s ≥ 2w(1)}, A1(w) = S and the
operator T2(f) only shifts the function f by 1/2: T2(f (x)) =

f (x + 1/2).
This is a similar dynamic programming equation as used in

Algorithm 1, where we take into account the fact that there
are no arrival at time t + 1/2, and a modified admissibility
condition on the speeds: to meet all deadlines, the speed at
time t + 1/2 must execute all the work with deadline t + 1,
hence the speed u must be larger than 2w(1) while the speed
chosen at time t does not have any constraint: indeed, no job
can have a deadline at time t +1/2. These two equations show
that the new state space should also include the step functions
with step sizes in N/2.

By replacing the value of J∗t+1/2 in the second equation, one
gets J∗t as a function of J∗t+1:

J∗t (w) = min
u∈A1(w),v∈A2(w)

(
Q(u)

2
+

Q(v)
2

+
∑

a

Pt(a)J∗t+1

(
T

(
w −

u + v
2

)+

+ a
)

where we have used the distributivity of + over max to get
the second line.

This says precisely what was asserted without proof at
the beginning: changing speed at half times is equivalent to
choosing half speeds at integer times.

The first property that one can get from the last equation is
the following: The speeds u, v achieving the min are such that
|u − v| ≤ 1. Indeed, if |u − v| > 1, then one can choose u′, v′ ∈

A1(w),A2(w) such that |u′ − v′| ≤ 1 and u + v = u′ + v′. By
convexity of Q, we have Q(v)/2+ Q(u)/2 ≥ Q(v′)/2+ Q(u′)/2,
implying that the choice u′, v′ is better than the choice u, v.

With no loss of generality, we will assume in the following
that either u = v (in which case we are back to an integer
speed) or v = u + 1.

A second property is that both speeds u and v = u + 1
are admissible in state w: If u + 1 ∈ A2(T2(w − u/2)+), then
u+1+u ≥ 2w(1). This implies u ≥ w(1)−1/2, so that u ≥ w(1)
because both u and w(1) are integers (and of course u + 1 ≥
w(1)).

We are now ready for the proof, which proceeds by back-
ward induction on t. Let us prove the two following properties
simultaneously:
(P1) For all w with integer steps sizes, J∗t (w) is obtained by

using integer speeds only.
(P2) For all w, a and all u ∈ A(w), then using v = u + 1,

J∗t
((

w −
u + v

2

)+

+ a
)

=
1
2

(
J∗t

(
(w − u)+ + a

)
+ J∗t

(
(w − v)+ + a

))
.

Both properties are obviously true at time T where there is
nothing to prove. Now, let us prove (P1) at time t:

Under state w with integer steps, let us consider the ran-
domized speed policy that chooses at time t, speed u ∈ A(w)
with probability 1/2 and speed u + 1 with probability 1/2 and
is optimal from time t + 1 on.

The energy of this speed policy is

1
2

Q(u) +
∑

a

Pt(a)J∗t+1
(
T(w − u)+ + a

)
+

1
2

Q(u + 1) +
∑

a

Pt(a)J∗t+1
(
T(w − u − 1)+ + a

)
=

Q(u)
2

+
Q(u + 1)

2

+
∑

a

Pt(a)J∗t+1

(
T

(
w −

u + u + 1
2

)+

+ a
)

where (P2) at time t +1 is used for states (T(w−u)+ +a,T(w−
u − 1)+ + a,T(w − u+u+1

2)+ + a) to get the second inequality.
This says that this randomized speed policy has the same

energy cost as the deterministic speed policy that uses speed
(u + u + 1)/2 at time t. The theory of MDP says that there
exists an optimal speed policy that does not randomize. Here,
this implies that there exists an optimal speed policy at time
t that uses an integer speed. This is exactly property (P1).

As for property (P2), we first notice that the arrival of jobs a
can be included in the state w for simplicity. Therefore, let us
consider two states with integer step sizes, w2 := (w − u + 1)+

and w1 := (w−u)+ at time t. Using (P1), the optimal speed used
in both states are integers. Let us denote by σ1 the optimal
speed used in state w1.

Since w2 ≥ w1 point-wise, then by monotony of the total
energy with respect to the state and by using Proposition 3 and

an induction on t, the optimal speed σ2 in state w2 is higher
than σ1: σ2 ≥ σ1.

We further claim that σ2 ≤ σ1 + 1. We show this by
contradiction: assume that σ2 = σ1 + k, with k ≥ 2. Convexity
of the power implies

Q(σ1 + k) − Q(σ1 + 1) ≥ Q(σ1 + k − 1) − Q(σ1).

Since σ2 = σ1 + k is optimal for w2, we get

Q(σ1 + k) +
∑

a

Pt(a)J∗t+1
(
T (w − u + 1 − σ1 − k)+ + a

)
< Q(σ1 + 1) +

∑
a

Pt(a)J∗t+1
(
T (w − u + 1 − σ1 − 1)+ + a

)
.

Together with the previous inequality this implies

Q(σ1 + k − 1) +
∑

a

Pt(a)J∗t+1
(
T (w − u − σ1 − k + 1)+ + a

)
< Q(σ1) +

∑
a

Pt(a)J∗t+1
(
T (w − u − σ1)+ + a

)
.

The first term is the energy cost of using speed σ1 +k−1 in
state w1. The second term is the energy cost of using speed σ1
in state w1. This inequality contradicts the optimality of σ1.
Therefore, σ2 ≤ σ1 + 1.

Now, let us compute the optimal speed σ3 in the “middle”
state w3 = (w − u+u−1

2)+. By monotonicity, σ1 ≤ σ3 ≤ σ2.
Therefore, there only exist two possibilities:
If σ1 = σ2 then σ3 = σ1. In this case,

J∗t (w3)

= Q(σ1) +
∑

a

Pt(a)J∗t+1

(
T

(
w −

2u − 1
2
− σ1

)+

+ a
)

= Q(σ1) +
∑

a

Pt(a)J∗t+1

(
T

(
w −

2(u + σ1) − 1
2

)+

+ a
)

=
1
2

Q(σ1) +
∑

a

Pt(a)J∗t+1
(
T(w − u − σ1)+ + a

)
+

1
2

Q(σ1) +
∑

a

Pt(a)J∗t+1
(
T(w + 1 − u − σ1)+ + a

)
=

1
2

J∗t (w1) +
1
2

J∗t (w2)

where the third equality comes from (P2) at time t + 1.
If σ2 = σ1 + 1 then using the same reasoning, we can to

prove that σ1 ≤ σ2 ≤ σ1 + 1, then the optimal speed in state
w3 is σ3 = (σ1 + σ2)/2. In this case,

J∗t (w3)

=
1
2

Q(σ1) +
1
2

Q(σ2)

+
∑

a

Pt(a)J∗t+1

(
T

(
w −

u + u − 1
2

−
σ1 + σ1 + 1

2

)+

+ a
)

=
1
2

Q(σ1) +
1
2

Q(σ2)

+
∑

a

Pt(a)J∗t+1
(
T(w − u − σ1)+ + a

)
=

1
2

J∗t (w1) +
1
2

J∗t (w2).

This shows that changing speeds at half times does not help.
A straightforward generalization says that changing speeds at
times t ∈ N/2i will not help either for any i. By continuity
of the total energy with respect to the speed function, this
shows that changing speeds at times t ∈ R will not help either:
J∗,S,R(w) = J∗,S,N(w). This concludes the proof. �

When the available speeds do not form a consecutive set,
it is possible that all the optimal speed schedules use virtual
speeds over unit intervals that are not available speeds. Here
is a simple example. Consider the following degenerated case:
A single arrival at time t = 0 with probability one, of a job of
size 4 with relative deadline 3: P0(4, 3) = 1 and Pt(0, 1) = 1
for all t > 0 (no arrival after time 0).

If S = {0, 1, 3} (non-consecutive set), then all optimal speed
schedules must use speed s = 3 during 1/2 a unit of time
before time 3, speed 1 during 5/2 units of time before time 3,
and then speed 0 from time 3 on. Therefore, a mean speed
that is not in {0, 1, 3} must be used in at least one time unit
interval.

As a side note, if the set of available speeds were consec-
utive, S = {0, 1, 2, 3}, then all optimal speed schedules would
use speed 2 during one time unit, speed 1 during two time
units, and speed 0 from time 3 on.

In the following, we show that if S is not consecutive, it is
always possible to go back to the consecutive case.

Theorem 2. If the set S is not consecutive, then the optimal
speed policy in continuous time can be constructed using inte-
ger speed changing instants under an augmented consecutive
set of speeds and then using Vdd-hopping.

Proof. Let S be the extended set of speeds to all integer speeds
below smax: S = {0, 1, 2, . . . , smax}.

First, we assign to each non available integer speed a power
consumption by using a linear interpolation. More precisely,
for each s < smax and s < S, let s1, s2 ∈ S be the two
neighboring speeds in S such that s1 < s < s2. The speed
s can be seen as a convex combination of s1 and s2:

s = αs1 + (1 − α)s2, with α =
s2 − s
s2 − s1

. (14)

We define the power consumption of s as:

Q(s) = αQ(s1) + (1 − α)Q(s2). (15)

Once this is done for each non available speed, we can solve
the problem over S with integer speed changing instants (the
unavailable speeds being seen as, available with the power cost
defined in Eq. (15)). According to our notation, the optimal
energy when starting in x is J∗,S,N(x). The optimal speed policy
with integer speed changing instants are denoted {s∗(t)}t∈N ∈
{0, 1, 2, . . . , smax}.

The following transformation is done at each integer time
step t ∈ N (this is Vdd-hopping). In the time interval [t, t+1), if
the optimal speed s∗(t) was not originally available (s∗(t) < S),
then it is replaced by its two neighboring available speeds s1
and s2 over sub-intervals [t, t+α) and [t+α, t+1) respectively.
Since the deadlines are integers, no job will miss its deadline
during the interval (t, t + 1).

This new speed policy only uses speeds in S but contains
speed changes at non-integer times. We denote by JVdd,S,R(w)
its energy consumption.

Since the power cost Power(s∗(t)) is a linear interpolation of
the power cost of the neighboring available speeds s1 and s2,
the energy consumption over the interval [t, t + 1) is the same
using speed s∗(t) on [t, t+1] and using the neighboring speeds
s1 and s2 over the two sub-intervals [t, t + β] and [t + β, t + 1].
This also means that the total energy consumption is the same
before and after using Vdd-hopping:

JVdd,S,R(w) = J∗,S,N(w).

On the one hand, Theorem 1 states that, with consecutive
speeds, integer speed changing instants minimize the total
energy consumption. In other words, this can be written as:

J∗,S,R(w) = J∗,S,N(w).

On the other hand, the optimal solution only using the subset
composed by the available speeds must use at least as much
energy as when all the intermediate speeds are available. This
implies

J∗,S,R(w) ≤ J∗,S,R(w).

Putting everything together yields the following sequence
of inequalities:

JVdd,S,R(w) ≥ J∗,S,R(w) ≥ J∗,S,R(w) = J∗,S,N(w) = JVdd,S,R(w).

This shows that JVdd,S,R(w) = J∗,S,R(w), meaning that the
Vdd-hopping speed policy is optimal. This concludes the proof.

�

This optimal speed policy can be computed easily: Use
Algorithm 1 to compute the optimal solution with integer
decision time over the extended consecutive set of speeds and
add Vdd-hopping in all unit intervals where it is necessary.

V. Convexification of the power function

The previous section uses the fact that Q is convex.
However, in most real processors, measurements of the

power function show that it is not a convex function of
the speed. In most cases, a more realistic approximation is
Q(s) = Qstat + Qdyn(s), where Qdyn(s) is convex. An even more
accurate model is Q(s) = Qstat(s) + Qdyn(s), where Qdyn(s) is
convex but the leakage power Qstat(s) depends on s and is not
convex.

If the power function is not convex, then we will show that
replacing Q(·) by its convex hull Q̂(·), and solving the speed
selection problem with Q̂(·) instead of Q(·) also provides the
optimal solution with Q(·), by using speed replacements as
described in the proof of Theorem 2.

Now we will present how to convexify the Q function. Let
us consider a processor, whose speeds belong to the set S =

{s0, s1, s2, smax} and the power function of the processor Q(·) :
S → R.

If the power function is not convex, some speeds are not
relevant, because using these speeds is more expensive in
term of energy than using a combination of other speeds.

It is always better to only select the speeds whose power
consumption belongs to the convex hull of the power function.
Indeed if Q̂(s) < Q(s), then, instead of selecting speed s
during any time interval [t, t + 1), the processor can select
speed s1 during a fraction of time α1, and then speed s2
during a fraction of time α2, such that α1s1 + α2s2 = s, and
such that Q̂(s) = α1Q(s1) + α2Q(s2). The total quantity of
work executed during the time interval [t, t + 1) will be the
same as with s, but the energy consumption will instead be
Q̂(s) = α1Q(s1)+α2Q(s2), which is less than Q(s). Again, this
approach uses the Vdd-hopping technique.

As a result, we can always consider that the power function
is convex, as long as switching from one speed to another
is instantaneous and has no energetic cost. This is very
useful and rather realistic in practice. Indeed, the actual power
consumption of a CMOS circuit working at speed s is a non-
convex function of the form Q(s) = bsp + L(s), where the
constant b depends on the activation of the logical gates, p is
between 2 and 3, and L(s) is the leakage, with L(0) = 0 and
L(s) , 0 if s > 0. In this case, convexification removes the
small values of s from the set of useful speeds.

VI. Conclusion
We have studied the problem of continuous time mini-

mization of the energy consumption of a processor with a
discrete set of speeds executing jobs with discrete features
(arrival times, sizes and deadlines). Our main result is that this
continuous time optimization problem can be solved in discrete
time. This is very useful in practice because the discrete
optimal speed policy can be computed effectively using a
finite (admittedly large) Markov Decision Process. Moreover,
a discrete time speed policy is much easier to implement in
an embedded system.

References
[1] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage

energy and temperature. Journal of the ACM, 54(1), 2007.
[2] Bruno Gaujal, Alain Girault, and Stephan Plassart. Dynamic speed scaling

minimizing expected energy consumption for real-time tasks. Technical
Report hal-01615835, Inria, 2017.

[3] Bruno Gaujal, Alain Girault, and Stéphan Plassart. A Discrete Time
Markov Decision Process for Energy Minimization Under Deadline
Constraints. Research report, Grenoble Alpes ; Inria Grenoble Rhône-
Alpes, Université de Grenoble, December 2019.

[4] F. Gruian. On energy reduction in hard real-time systems containing
tasks with stochastic execution times. In IEEE Workshop on Power
Management for Real-Time and Embedded Systems, pages 11–16, 2001.

[5] J.R. Lorch and A.J. Smith. Improving dynamic voltage scaling algorithms
with PACE. In ACM SIGMETRICS 2001 Conference, pages 50–61, 2001.

[6] Martin L. Puterman. Markov Decision Process : Discrete Stochastic
Dynamic Programming. Wiley, wiley series in probability and statistics
edition, February 2005.

[7] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced
CPU energy. In Proceedings of IEEE Annual Foundations of Computer
Science, pages 374–382, 1995.

