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BECKMANN-TYPE PROBLEM FOR DEGENERATE HAMILTON-JACOBI
EQUATIONS

HAMZA ENNAJI†, NOUREDDINE IGBIDA†, AND VAN THANH NGUYEN‡

Abstract. The aim of this note is to give a Beckmann-type problem as well as corresponding
optimal mass transportation associated with a degenerate Hamilton-Jacobi equationH(x,∇u) =
0, coupled with non-zero Dirichlet condition u = g on ∂Ω. In this article, Hamiltionian H is
continuous in both arguments, coercive and convex in the second, but not enjoying any property
of existence of a smooth strict sub-solution. We also provide numerical examples.

1. Introduction

Hamilton-Jacobi (HJ for short) equation, coupled with a Dirichlet condition, is a first order
equation of the type {

H(x,∇u(x)) = 0 in Ω

u = g on D ⊂ Ω.
(1.1)

It has attracted the attention of mathematicians and physicists since it appears in many fields,
in particular, classical mechanics, geometry, seismic analysis, optics, image processing, etc. Our
main interest here lies in the study of the connection between these types of equation and the
Beckmann problem as well as the Monge-Kantorovich problem in the case where H is continuous
in both arguments, coercive and convex in the second, but not enjoying any property of exis-
tence of a smooth strict sub-solution. Recall that Beckmann’s problem (called by Beckmann a
continuous model of transportation [1]) is a divergence PDE-constrained optimization problem.
It is important in the study of transportation activities. As to the Monge-Kantorovich problem,
it consists in finding the best way to push forward between two given measures (usually called
goods and consumers) related to some cost function. It is a linear optimization problem which
appears in the study of optimal transportation and allocation of resources.

1.1. Beckmann’s problem and optimal transport. Beckmann’s problem appears typically
in the study of optimal transference between two distributions of masses. For instance in urban
area represented by a bounded domain Ω ⊂ RN , N = 2, it can describe some kind of optimal
traffic between two distributions of residents and services. These distributions may be represented
by two given nonnegative Radon measures µ1 and µ2, respectively. So, the signed measure
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µ := µ2 − µ1 represents the local measure of excess demand. The consumers traffic is given by
a traffic flow field, i.e. a vector field Φ : Ω → RN whose direction indicates the consumers’
travel direction and whose modulus |Φ| is the intensity of the traffic. The relationship between
the excess demand and the traffic flow is obtained from the equilibrium condition:

−div(Φ) = µ in D′(Ω).

This condition describes some kind of equilibrium: the outflow of consumers equals the excess

demand in any subregion ω ⊂ Ω, i.e.
∫
∂ω

Φ · n ds = µ(ω). In standard Beckmann’s problem, the

measures µ1 and µ2 have equal masses (a balanced condition between residents and services),
and the urban area is assumed to be isolated, i.e. no traffic flow should cross the boundary of
the city Ω. In other words, Φ is subject to the boundary condition

Φ · n = 0 on ∂Ω,

where n denotes the outward normal vector to the boundary. Assuming the transportation cost
per consumer is given by the quantity F (x,Φ(x)), for a given function F : Ω × RN → R+,
Beckmann therefore argued that one may define the transportation cost between µ1 and µ2 as

the infimum of the total cost of the traffic
∫

Ω
F (x,Φ(x)) dx.

Recall that this problem is tightly related to the Monge-Kantorovich problem (also called
optimal transport) which consists in finding the best way to push forward the measure µ1 into
µ2 related to a specified cost function. For i = 1, 2, we use the convention of denoting by πi :
RN×RN → RN , i = 1, 2 the projections: π1(x, y) := x, π2(x, y) := y. Given a nonnegative Radon
measure µ on RN × RN , its marginals are measures defined by projx(µ) := π1#µ, projy(µ) :=

π2#µ, i.e. projx(µ)(A) := µ(π−1
1 (A)) = µ(A × RN ) and projy(µ)(B) = µ(RN × B) for any

Borel subsets A,B ⊂ RN . Then, the Monge-Kantorovich (MK) problem consists in finding a
nonnegative Radon measure µ on RN × RN such that π1#µ = µ1, π2#µ = µ2 and minimizing
the total work ∫ ∫

c(x, y) dµ(x, y),

where c is a given ground cost function describing the charge one needs to pay for transporting
one unit of µ1 into a unit of µ2. A minimizer µ of the above problem is called an optimal plan.
One of basic concepts in the optimal transport theory is the Kantorovich duality that can be
restated as follows (see e.g. [23, Chapter 5]):

Theorem 1.1. Let c be a lower semicontinuous (l.s.c.) cost function and µ1, µ2 ∈ M+
b (RN ) be

nonnegative Radon measures such that µ1(RN ) = µ2(RN ). Then
(i) The (MK) problem has an optimal plan and the Kantorovich duality holds true, i.e.

min

{∫∫
c(x, y) dµ : π1#µ = µ1, π2#µ = µ2

}
= sup

{∫
u dµ1 +

∫
v dµ2 : (u, v) ∈ Sc(µ1, µ2)

}
,

where

Sc(µ1, µ2) :=
{

(u, v) ∈ L1
µ1

(RN )× L1
µ2

(RN ) : u(x) + v(y) ≤ c(x, y) ∀x, y ∈ RN
}
.
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(ii) If c(x, y) ≤ Cµ1(x) + Cµ2(y) for some (Cµ1 , Cµ2) ∈ L1
µ1
× L1

µ2
, then the dual problem on the

right-hand side (called Kantorovich dual problem) has an optimal solution.
(iii) If the cost function c satisfies the triangle inequality and c(x, x) = 0 for any x ∈ RN , then
the Kantorovich dual problem can be rewritten by using one variable u only:

sup

{∫
RN

ud(µ2 − µ1) : u ∈ L1
µ1
∩ L1

µ2
and u(y)− u(x) ≤ c(x, y) ∀x, y ∈ RN

}
.

The connection between Beckmann’s problem and the Monge-Kantorovich problem is well
known, for instance, in the case where c is given by the distance dk associated with the Rie-
mannian metric k, i.e.

dk(x, y) = inf

{∫ 1

0
k(ϕ(t)) |ϕ′(t)| dt : ϕ ∈ Lip([0, 1],Ω), ϕ(0) = x, ϕ(1) = 1

}
. (1.2)

In this case, since c = dk is a distance, the Kantorovich dual problem reads as (see Theorem 1.1)

max

{∫
Ω
u d(µ2 − µ1) : u(y)− u(x) ≤ dk(x, y) for all x, y ∈ Ω

}
, (1.3)

or equivalently,

max

{∫
Ω
u d(µ2 − µ1) : |∇u(x)| ≤ k(x) for all x ∈ Ω

}
. (1.4)

Then, using Fenchel-Rockafellar duality, one leads to another dual problem to (1.4):

inf

{∫
Ω
k(x)|Φ|(x) dx : Φ ∈ L1(Ω)N , −div(Φ) = µ2 − µ1 in D′(RN )

}
.

This is Beckmann’s problem with F (x, p) = k(x)|p|. For the general case of non-degenerate

Finsler metric F , one has (see e.g. [3, 17, 21, 18]), with dF (x, y) := inf
ϕ∈Lip([0,1],Ω)
ϕ(0)=x, ϕ(1)=1

∫ 1

0
F (ϕ(t), ϕ′(t))dt,

min

{∫∫
Ω×Ω

dF (x, y) dµ : π1#µ = µ1, π2#µ = µ2

}
= max

{∫
Ω
u d(µ2 − µ1) : u(y)− u(x) ≤ dF (x, y) for all x ∈ Ω

}
= inf

{∫
Ω
F (x,Φ(x)) dx : Φ ∈ L1(Ω)N , −div(Φ) = µ2 − µ1 in D′(RN )

}
.

(1.5)

1.2. Hamilton-Jacobi equation and Beckmann’s problem. The connection between HJ
equation coupled with a Dirichlet condition (1.1) and Beckmann’s problem is not straightforward.

In the case where H(x, p) = |p| − k(x) (i.e., the Eikonal equation |∇u(x)| = k(x)) comple-
mented with Dirichlet boundary condition u = g on ∂Ω, the viscosity solution of (1.1) can be
characterized through the following optimization problem

max

{∫
Ω
u dx : u(x)− u(y) ≤ dk(y, x) and u = g on ∂Ω

}
,
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where dk is given by (1.2). Thanks to (1.3), it is meaningful to consider this problem as some
kind of push-forward of µ1 := LN|Ω the restriction of Lebesgue measure on Ω. The offset is
clearly connected to the lack of a measure µ2 which can fit out the problem with the balanced
property. Actually, the linked Beckmann and Monge-Kantorovich problems aim to find moreover
the optimal µ2 concentrated on ∂Ω which will consume µ1 := χΩ. More precisely, we will prove
that the problem is connected to

min
ν∈Mb(∂Ω)

max
u

{∫
Ω
u (dx− dν)−

∫
∂Ω
g dν : u is 1− Lipschitz w.r.t dk

}
which provides the following modified Beckmann problem

min
ν∈Mb(∂Ω)

inf
Φ∈L1(Ω)N

{∫
Ω
k(x) |Φ|(x) dx+

∫
∂Ω
g dν : −div(Φ) = 1− ν in D′(RN )

}
.

as well as to the following modified Monge-Kantorovich problem

min
γ∈M+(Ω×Ω),ν∈Mb(∂Ω)

{∫
Ω×Ω

dk(x, y)dγ(x, y) +

∫
∂Ω
g dν : π1]γ = ν+, π2]γ = 1 + ν−

}
.

For the general case of degenerate HamiltonianH, we will also obtain the corresponding results
by means of the intrinsic distance dσ associated to the Hamiltonian H (see (2.7)).

The main contribution of our paper is the rigorous treatment for the case of degenerate Hamil-
tionian H and its degenerate intrinsic metric dσ, as well as non-zero Dirichlet condition. More-
over, we also illustrate numerical examples.

This paper is organized as follows. In Section 2 we recall briefly some notions around HJ equa-
tion as well as the main results establishing the connection between HJ equation and Beckmann-
type problem. Section 3 is dedicated to the proofs of the main results. Numerical examples are
presented in Section 4. Finally, Section 5 contains some comments and extensions.

2. Preliminaries and main results

2.1. Preliminaries. All the properties and notions introduced in this subsection are more or
less known. Proofs and more details can be found in [6, 19, 22].

Given a regular connected open domain Ω ⊂ RN , and a continuous Hamiltonian H : Ω×RN →
R satisfying, for any x ∈ Ω, Z(x) := {p ∈ RN , H(x, p) ≤ 0}:
(H1) coercivity: Z(x) is compact;
(H2) convexity: Z(x) is convex;
(H3) H(x, 0) ≤ 0, i.e. 0 ∈ Z(x),

we consider the following HJ equation

H(x,∇u) = 0, x ∈ Ω. (2.6)

We recall briefly some definitions related to viscosity theory. A continuous function u : Ω → R
is said to be a viscosity subsolution (respectively supersolution) of (2.6) if H(x,∇φ(x)) ≤ 0
(respectively H(x,∇φ(x)) ≥ 0) for any x ∈ Ω and any C1 function φ such that u−φ has a strict
local maximizer (respectively minimizer) at x. Finally, u is a viscosity solution of (2.6) if it is
both a subsolution and a supersolution. We denote by S−H(Ω) (respectively S+

H(Ω)) the family
of viscosity subsolutions (respectively supersolutions) of (2.6).
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For x ∈ Ω, we define the support function of the 0-sublevel set Z(x) by

σ(x, q) := sup q · Z(x) = sup{q · p | p ∈ Z(x)} for q ∈ RN .

The assumption (H1)-(H3) ensures that σ is a possibly degenerate Finsler metric, i.e., σ is a
continuous nonnegative function in Ω×RN , convex and positively homogeneous with the second
variable q. Due to the assumption (H3), σ(x, q) is possible to equal to 0 for q 6= 0, which leads
to the degeneracy and its dual σ∗, as defined below, may take the value +∞. Here, the dual σ∗

(also called polar) is defined by

σ∗(x, p) := sup
q
{p · q | σ(x, q) ≤ 1}.

Under the assumption (H1)-(H3), it is not difficult to see that there exists K > 0

0 ≤ σ(x, q) ≤ K|q| for x ∈ Ω, q ∈ RN .

We denote by Γ(x, y) the set of Lipschitz curves defined on [0, 1] joining x, y in Ω. We then
define the intrinsic distance by

dσ(x, y) := inf
ζ∈Γ(x,y)

∫ 1

0
σ(ζ(t), ζ̇(t))dt, (2.7)

which is a quasi-distance, i.e. satisfying dσ(x, x) = 0 and the triangular inequality, but not
necessarily symmetric. We summarize some basic characterizations of subsolution in terms of
intrinsic distance dσ.

Proposition 2.2. ([12])
1) dσ is a quasi-distance in the sense that for any x, y ∈ Ω dσ(x, y) ≥ 0 and dσ(x, x) = 0.

Moreover, for all x, y, z ∈ Ω one has dσ(x, y) ≤ dσ(x, z) + dσ(z, y).
2) For any x ∈ Ω one has dσ(x, .) ∈ S−H(Ω) ∪ S+

H(Ω \ {x}).
3) Compatibility condition: v ∈ S−H(Ω) if and only if v(x)−v(y) ≤ dσ(y, x) for any x, y ∈ Ω.

Given a closed subset D ⊂ Ω (typically D = ∂Ω or D = ω for some ω ⊂⊂ Ω), we consider the
following HJ equation {

H(x,∇u) = 0 in Ω

u = g on D
(2.8)

where g : D → R is a continuous function satisfying the compatibility condition

g(x)− g(y) ≤ dσ(y, x) for any x, y ∈ D.

Thanks to Proposition 2.2, the unique maximal viscosity subsolution of the equation (2.8) can
be recovered via the following maximization problem

max

{∫
Ω
u dx : u(x)− u(y) ≤ dσ(y, x), ∀x, y ∈ Ω and u = g on D

}
, (2.9)

where dσ(., .) is the intrinsic distance associated to the Hamiltonian defined by (2.7).
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Note that in the case of non-degenerate Finsler metric σ (i.e., H(x, 0) < 0), the 1−Lipschitz
condition u(x) − u(y) ≤ dσ(y, x) for all x, y ∈ Ω can be characterized by u ∈ W 1,∞(Ω),
σ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω. This property still holds true for degenerate Hamiltionians H
(i.e., H(x, 0) ≤ 0) (cf. [10]).

2.2. Main results. In order to prove the connection between (2.9) and a Beckmann-type prob-
lem, we will consider a slightly more general variant of (2.9) by considering for ρ ∈ Mb(Ω), the
following maximization problem

(MD) : max

{∫
Ω
u dρ : u(y)− u(x) ≤ dσ(x, y), ∀x, y ∈ Ω and u = g on D

}
.

Then, it is not difficult to see that the solution of (2.9) can be recovered by taking ρ ≡ 1.

The connection with the Beckmann problem is given in the following theorem.

Theorem 2.3. The optimization problem (MD) coincides with the following Beckmann-type
problem

(BK) : min
φ∈Mb(Ω)N ,ν∈Mb(D)

{∫
Ω
σ(x,

φ

|φ|
(x))d|φ|+

∫
D
gdν : −div(φ) = ρ− ν in D′

(RN )

}
.

Moreover, u and (φ, ν) are optimal solutions to (MD) and (BK), respectively, if and only if

−div(φ) = ρ− ν in D′
(RN )

φ(x) · ∇|φ|u(x) = σ

(
x,

φ

|φ|
(x)

)
|φ| − a.e. x

u = g on D,

where ∇|φ|u denotes the tangential gradient with respect to |φ|, the total variation of φ (cf. [4]).

In particular, we have the following.

Corollary 2.4. Let u be the maximal viscosity subsolution to (2.8) and (φ, ν) an optimal solution
to (BK) with ρ = 1, then

−div(φ) = 1− ν in D′
(RN )

φ(x) · ∇|φ|u(x) = σ

(
x,

φ

|φ|
(x)

)
|φ| − a.e. x

u = g on D.

For the case of non-degenerate Finsler metric σ (i.e., H(x, 0) < 0) we know that, by (1.5), the
minimal value of (BK) is the same with

(MN ) : min
ν∈Mb(D)

max
u

{∫
Ω
ud(ρ− ν) +

∫
D
gdν : u is 1− Lipschitz w.r.t dσ

}
,
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as well as Monge-Kantorovich problem

(MK) : min
γ∈M+(Ω×Ω),ν∈Mb(D)

{∫
Ω×Ω

dσ(x, y)dγ(x, y)+

∫
D
gdν : π1]γ = ρ−+ν+, π2]γ = ρ++ν−

}
.

The following theorem ensures that the above-mentioned relations still hold true for the case of
degenerate HJ equation, i.e., H(x, 0) ≤ 0.

Theorem 2.5. Under the assumptions (H1-H3), we have

max(MD) = min(BK) = min(MN ) = min(MK).

As a typical example we will consider an HJ equation of Eikonal type, coupled with a zero
Dirichlet boundary condtion, {

|∇u(x)| = k(x) in Ω

u = 0 on ∂Ω.

In other words, H(x, p) = |p| − k(x) where k is a continuous, nonnegative function on Ω. In this
case, the problem (MD) can be rewritten as

sup

{∫
Ω
udx : |∇u| ≤ k and u = 0 ∂Ω

}
,

or
(P) : inf

u∈V
{F(u) + G(Λu)}

where V = C1(Ω) ∩H1
0 (Ω),

F(u) = −
∫

Ω
udx, Λu = ∇u and G(q) =

{
0 if |q| ≤ k
+∞ otherwise.

For the case of non-degeneracy, i.e., k(x) > 0 on Ω, the Fenchel-Rockafellar duality, since the
qualification conditions are satisfied (see e.g. [11, Theorem III 4.1]), gives

sup

{∫
Ω
udx : |∇u| ≤ k and u = 0 on ∂Ω

}
= min

φ∈Mb(Ω)N

{∫
Ω
k d|φ| : −div(φ) = ρ in D′

(Ω)

}
.

However, dealing with general degenerate Hamiltionians at least two difficulties arise. Firstly,
the qualification conditions are not satisfied to apply directly the Fenchel-Rockafellar duality.
Secondly, in this setting the problem (BK) is not coercive, it follows that the existence of an
optimal solution to (BK) is not trivial. These two issues will be addressed in this paper via
approximation and optimal transport techniques.

Before ending this section, let us mention that thanks to the duality result in [10], we have
the following

Corollary 2.6. The extremal values (BK) and

(OFD) : inf
φ∈DMp(Ω)

{∫
Ω
σ(x, φ(x))dx− 〈φ · n, g〉 : −div(φ) = ρ in D′

(Ω)

}
,

coincide.



8 H. ENNAJI, N. IGBIDA, AND V. T. NGUYEN

The formulation of the problem (OFD) as well as the definition of DMp(Ω) and further
comments are recalled in Remark 3.10.

3. Proofs

3.1. Preparatory results. Let ν ∈Mb(D) satisfy ρ(Ω) = ν(D). Define two functionals

T : L1(Ω)N 7→ R ∪ {+∞}, φ 7→ T (φ) =


∫

Ω
σ(x, φ(x))dx if− div(φ) = ρ− ν in D′

(RN )

+∞ otherwise,

E : Lip(Ω) 7→ R ∪ {−∞}, u 7→ E(u) =


∫

Ω
ud(ρ− ν) if σ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω

−∞ otherwise.

Lemma 3.7. Assume that σ is a degenerate Finsler metric. Let T , E be defined as above and
ρ(Ω) = ν(D). Then

inf
φ∈L1(Ω)N

T (φ) = sup
u∈Lip(Ω)

E(u).

Proof. The proof will be divided into two steps. We first prove for the case of non-degenerate
Finsler metric σ, i.e., there exist two positive constants K1,K2 such that

K1|p| ≤ σ(x, p) ≤ K2|p| for any x ∈ Ω, p ∈ RN .

In this setting, due to the non-degeneracy of σ, the qualification conditions are satisfied and
the result follows directly from the Fenchel-Rockafellar duality (see e.g. [11, Theorem III 4.1]).
For the general case, we check at once that sup E ≤ inf T by taking u as a test function in the
divergence constraint −div(φ) = ρ− ν in D′

(RN ). Therefore, it remains to prove that

inf T ≤ sup E . (3.10)

We now proceed by an approximation via non-degenerate Finsler metrics. For n ∈ N∗ and
x ∈ Ω, define

σn(x, p) := max(σ(x, p),
|p|
n

) for every p ∈ RN ,

which establishes a sequence of non-degenerate Finsler metrics σn on Ω satisfying

|p|
n
≤ σn(x, p) ≤ K|p| for some constant K > 0.

Thanks to [7, Thereom 5.1], we have that dσn → dσ in the space of Finsler distances endowed
with the topology induced by uniform convergence on compact subsets of Ω × Ω. To prove the
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inverse inequality (3.10), let us introduce for n ∈ N∗ the functionals

Tn : L1(Ω)N 7→ R ∪ {+∞}, φ 7→


∫

Ω
σn(x, φ(x))dx if − div(φ) = ρ− ν in D′

(RN )

+∞ otherwise,

En : Lip(Ω) 7→ R ∪ {−∞}, u 7→


∫

Ω
ud(ρ− ν) if σ∗n(x,∇u(x)) ≤ 1 a.e. x ∈ Ω

−∞ otherwise.

It follows from the non-degeneracy of σn and the first step of the proof that inf Tn = sup En. We
are now in a position to show that sup En → sup E as n → ∞. Let un be a maximizer for En,
i.e., sup En =

∫
Ω
und(ρ − ν) and σ∗n(x,∇un(x)) ≤ 1 a.e. in Ω. Fix x0 ∈ Ω. Since ρ(Ω) = ν(D),

we see that un := un− un(x0) is still a maximizer. Thus we can assume that un(x0) = 0 for any
n. Since

un(y)− un(x) ≤ dσn(x, y) ≤ K|x− y| in Ω× Ω,

{un} is equi-Lipschitz continuous. By Ascoli-Arzelà’s theorem, there exists a Lipschitz function
u such that, up to a subsequence, un ⇒ u uniformly in Ω. Since dσn → dσ as n→∞ we deduce
that u is admissible for E , i.e. u(y)− u(x) ≤ dσ(x, y) in Ω× Ω. Consequently

lim
n

(sup En) = lim
n

∫
Ω
und(ρ− ν) =

∫
Ω
ud(ρ− ν) ≤ sup E ,

and
inf T ≤ lim

n
(inf Tn) ≤ sup E

as claimed in (3.10). �

Before ending up this subsection, we recall the notion of disintegration of measures which will
be useful in the proof of existence of optimal solution to the Beckmann-type problem.

Theorem 3.8. (cf. [21]) Let X,Y be locally compact metric spaces and π : X → Y a Borel map.
For any η ∈ M+

b (X) there exist a family of probability measures (ηy)y∈Y on X concentrated

on π−1({y}) such that for any test function u ∈ C(X), the mapping y 7→
∫
X
udηy is Borel

measurable and ∫
X
u(x)dη(x) =

∫
Y

∫
X
u(x)dηy(x)dπ]η(y).

3.2. Proofs of the main results. We get started with the proof of Theorem 2.3 by the following
result.

Proposition 3.9. We have

max(MD) = inf(BK) = inf (̃BK),



10 H. ENNAJI, N. IGBIDA, AND V. T. NGUYEN

where

(̃BK) : inf
φ∈L1(Ω)N ,ν∈Mb(D)

{∫
Ω
σ(x, φ(x))dx+

∫
D
gdν : −div(φ) = ρ− ν in D′

(RN )
}
.

Proof. First observe that

max(MD) ≤ inf(BK) ≤ inf (̃BK). (3.11)

Indeed, take u satisfying σ∗(x,∇u(x)) ≤ 1 a.e. x in Ω, u = g on D as a test function in the
divergence constraint −div(φ) = ρ− ν in D′

(RN ), we get∫
Ω
udρ =

∫
Ω

φ

|φ|
· ∇ud|φ|+

∫
D
gdν ≤

∫
Ω
σ

(
x,

φ

|φ|
(x)

)
d|φ|+

∫
D
gdν.

This implies (3.11).
So, it is sufficient to show the duality between (MD) and (̃BK), i.e. max(MD) = inf (̃BK).

We use a perturbation technique as in [8]. Define on C(D) the following functional

F : v ∈ C(D) 7→ −max
u

{∫
Ω
udρ : u ∈ Lip(Ω), σ∗(x,∇u(x)) ≤ 1, u+ v = g on D

}
,

which is well-defined. Let us show that F is convex and l.s.c.. Consider v1, v2 ∈ C(D) and set
v = tv1 + (1− t)v2 for t ∈ [0, 1]. Let u1, u2 ∈ Lip(Ω) be two maximizers corresponding to v1 and
v2 respectively, i.e. σ∗(x,∇ui(x)) ≤ 1, ui + vi = g on D and

F (vi) = −
∫

Ω
uidρ for i = 1, 2.

Define u = tu1 + (1− t)u2. It is evident that u+ v = g on D. And using the homogeneity of σ∗,
we obtain σ∗(x,∇u) ≤ tσ∗(x,∇u1) + (1− t)σ∗(x,∇u2) ≤ 1 so that u is admissible for v. Finally,
we get

F (v) ≤ −
∫

Ω
udρ = t

(
−
∫

Ω
u1dρ

)
+ (1− t)

(
−
∫

Ω
u2dρ

)
= tF (v1) + (1− t)F (v2),

which proves the convexity. For the lower semicontinuity, take a sequence vn ⇒ v uniformly on
D. For every n ∈ N, consider a maximizer un corresponding to vn such that un + vn = g on D,
un are 1-Lipschitz w.r.t. dσ (i.e., un(y) − un(x) ≤ dσ(x, y) or equivalently, σ∗(x,∇un(x)) ≤ 1
a.e. x ∈ Ω), and

F (vn) = −
∫

Ω
undρ.

Since un(y)− un(x) ≤ dσ(x, y) ≤ K|x− y|, the functions un are equi-Lipschitz in the Euclidean
distance. Since the sequence {vn} is convergent, it is bounded on D, and so is the sequence {un}.
By Ascoli-Arzelà’s theorem, there exists a Lipschitz function u such that un ⇒ u uniformly in
Ω as n→∞. It is clear that u+ v = g on D and u(y)− u(x) ≤ dσ(x, y), i.e. u is admissible for
v. The lower semicontinuity is completed by

F (v) ≤ −
∫

Ω
udρ = lim

n→∞
−
∫

Ω
undρ = lim inf

n→∞
F (vn).
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Since F is convex and l.s.c., we have F = F ∗∗, in particular F (0) = F ∗∗(0). Let us finish the
proof by computing F ∗ and F ∗∗. For any ν ∈Mb(D), we see that

F ∗(ν) = sup
v∈C(D)

∫
D
vdν − F (v)

= sup
v∈C(D), u∈Lip(Ω)

{∫
D
vdν +

∫
Ω
udρ : σ∗(x,∇u(x))) ≤ 1, u+ v = g on D

}

= sup
u∈Lip(Ω)

{∫
Ω
udρ+

∫
D

(g − u)dν : σ∗(x,∇u(x))) ≤ 1, g − u ∈ C(D)

}
.

For any constant c ∈ R and a Lipschitz extension g̃ of g, one can see that u := g̃ + c is an
admissible test function in the definition of F ∗(ν) and∫

Ω
udρ+

∫
D

(g − u)dν = c(ρ(Ω)− ν(D)) +

∫
Ω
g̃ dρ.

So, if ρ(Ω) 6= ν(D), then F ∗(ν) = +∞. This implies that

F ∗(ν) =


sup

u∈Lip(Ω)

{∫
Ω
udρ+

∫
D

(g − u)dν : σ∗(x,∇u(x))) ≤ 1

}
if ν(D) = ρ(Ω)

+∞ otherwise.

Following Lemma 3.7, for any ν ∈Mb(D) such that ν(D) = ρ(Ω), we have

F ∗(ν) = sup
u∈Lip(Ω)

{∫
Ω
udρ+

∫
D

(g − u)dν : σ∗(x,∇u(x))) ≤ 1
}

=

∫
D
gdν + sup

u∈Lip(Ω)

{∫
Ω
ud(ρ− ν) : σ∗(x,∇u(x))) ≤ 1

}
=

∫
D
gdν + inf

φ∈L1(Ω)N

{∫
Ω
σ(x, φ(x))dx : −div(φ) = ρ− ν in D′

(RN )
}

= inf
φ∈L1(Ω)N

{∫
Ω
σ(x, φ(x)) dx+

∫
D
gdν : −div(φ) = ρ− ν in D′

(RN )
}
.

Consequently,

max(MD) = −F (0) = −F ∗∗(0) = − sup
ν∈Mb(D)

−F ∗(ν) = inf (̃BK).

�

Remark 3.10. Following our approach in [10], it is possible to show that the optimal ν in (BK) is
somehow related to the trace of the optimal flow φ. For completeness let us recall briefly some of
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the main ingredients we used, and for a simpler presentation, consider the case where D = ∂Ω.
Then we prove in [10] the duality between (MD) and

(OFD) : inf
φ∈DMp(Ω)

{∫
Ω
σ(x, φ(x))dx− 〈φ · n, g〉 : −div (φ) = ρ in D′

(Ω)

}
,

where we define for 1 ≤ p ≤ ∞,

DMp(Ω) :=
{
φ ∈ Lp(Ω)N : div φ =: µ ∈Mb(Ω)

}
,

endowed with the graph norm

‖φ‖DMp(Ω) := ‖φ‖Lp(Ω) + |div φ|(Ω).

The main interest of introducing such a space is to give a sense to the trace term φ·n which is not
always defined for a general measure field φ. In particular, for any measure field φ ∈ DMp(Ω),
one can define a trace φ · n on ∂Ω as a linear form on Lip(∂Ω) such that

〈φ · n, ξ/∂Ω〉 =

∫
Ω
ξ divφ+

∫
Ω
∇ξ · φ, for any ξ ∈ C1(Ω).

One can see that, at least formally, ν plays the role of −φ · n in (OFD).

Our aim now is to use the optimal mass transportation interpretation to prove that the inf
in (BK) is actually a min, i.e. the existence of optimal solution to the Beckmann-type problem
(BK).

Proposition 3.11. There exist ν ∈Mb(D) and a vector measure Φ such that −div(Φ) = ρ− ν
in D′

(RN ) and

inf(BK) ≤
∫

Ω
σ

(
x,

Φ

|Φ|

)
d|Φ|+

∫
D
gdν ≤ min(MK).

In particular we see that min(BK) = max(MD).

Proof. Take (γ, ν) be a solution of (MK) and define a vector measure Φγ through

< Φγ , v >=

∫
Ω×Ω

∫ 1

0
v(ξ(t))ξ̇(t)dtdγ(x, y) ∀v ∈ C(Ω)N ,

with ξ being a geodesic joining x and y with respect to dσ. Let us check the feasibility of Φγ for
(BK), i.e.

−div(Φγ) = ρ− ν in D′
(RN ). (3.12)

For any w ∈ C1(Ω), by definition, we have

< Φγ ,∇w > =

∫
Ω×Ω

∫ 1

0

dw(ξ(t))

dt
dtdγ(x, y)

=

∫
Ω×Ω

(w(y)− w(x))dγ(x, y)

=

∫
Ω
wd(ρ− ν),
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which gives (3.12). The next task is to show that∫
Ω
σ(x,

Φγ

|Φγ |
(x))d|Φγ |+

∫
D
gdν ≤

∫
Ω×Ω

dσ(x, y)dγ(x, y) +

∫
D
gdν.

To do so, for each t ∈ [0, 1], define vector measure Et by setting Et(v) :=

∫
Ω×Ω

v(ξ(t))ξ̇(t)dγ(x, y)

for v ∈ C(Ω)N . We get Φγ =

1∫
0

Etdt and, by Jensen’s inequality,

∫
Ω
σ(x,

Φγ

|Φγ |
(x))d|Φγ | ≤

∫ 1

0

∫
Ω
σ(x,

Et
|Et|

(x))d|Et|dt. (3.13)

Now define πt : (x, y) ∈ Ω×Ω 7→ ξ(t) for t ∈ [0, 1], where ξ is as before, a geodesic joining x and
y. Consider ηt = (πt)]γ. Using disintegration theorem (see Theorem 3.8) for γ with respect to
πt, we can find probability measures γz supported on π−1

t ({z}) such that∫
Ω×Ω

u(x, y)dγ(x, y) =

∫
Ω×Ω×Ω

u(x, y)dγz(x, y)dηt(z). (3.14)

We check at once that Et << ηt with the density
dEt
dηt

(z) =

∫
Ω×Ω

ξ̇(t)dγz(x, y), which follows

from the fact that, for any test function v,∫
Ω
v(z)dEt =

∫
Ω
v(ξ(t))ξ̇(t)dγ(x, y)

=

∫
Ω×Ω×Ω

v(ξ(t))ξ̇(t)dγz(x, y)dηt(z)

=

∫
Ω
v(z)

∫
Ω×Ω

ξ̇(t)dγz(x, y)dηt(z).

On the other hand, by (3.14) and Jensen’s inequality,∫
Ω×Ω

σ(ξ(t), ξ̇(t))dγ(x, y) =

∫
Ω×Ω×Ω

σ(ξ(t), ξ̇(t))dγz(x, y)dηt(z)

=

∫
Ω×Ω×Ω

σ(z, ξ̇(t))dγz(x, y)dηt(z)

≥
∫

Ω
σ
(
z,

∫
Ω×Ω

ξ̇(t)dγz(x, y)
)

dηt(z)

=

∫
Ω
σ(z,

Et
|Et|

(z))d|Et|(z).

(3.15)

Finally, we observe that since ξ is a geodesic∫
Ω×Ω

dσ(x, y)dγ(x, y) +

∫
D
gdν =

∫
Ω×Ω

∫ 1

0
σ(ξ(t), ξ̇(t))dγ(x, y)dt+

∫
D
gdν
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≥
∫ 1

0

∫
Ω
σ(z,

Et
|Et|

(z))d|Et|(z) +

∫
D
gdν (by (3.15))

≥
∫

Ω
σ(x,

Φγ

|Φγ |
(x))d|Φγ |+

∫
D
gdν (by (3.13)).

Consequently

inf(BK) ≤
∫

Ω
σ(x,

Φγ

|Φγ |
(x))d|Φγ |+

∫
D
gdν ≤

∫
Ω×Ω

dσ(x, y)dγ(x, y) +

∫
D
gdν = min(MK).

�

Proof of Theorem 2.5. Following Theorem 1.1 on Kantorovich duality, one has max(MN ) =
min(MK). Combining this with Propositions 3.9 and 3.11, we conclude that the Beckmann-type
problem (BK) admits an optimal solution and max(MD) = min(BK) = max(MN ) = min(MK).

�

Proof of Theorem 2.3. The proof of the duality between max(MD) and inf(BK) is followed from
Proposition 3.9 while the existence of optimal solution to the Beckmann-type problem (BK)
is a consequence of Proposition 3.11 (see also Theorem 2.5). Let us now show the optimality
conditions. Indeed, u and (φ, ν) are optimal solutions for (MD) and (BK), respectively, if and
only if ∫

Ω
σ(x,

φ

|φ|
(x))d|φ|+

∫
D
gdν =

∫
Ω
udρ,

or ∫
Ω
σ(x,

φ

|φ|
(x))d|φ| =

∫
Ω̄
ud(ρ− ν) =

∫
Ω
φ(x) · ∇|φ|u(x)d|φ|.

This is equivalent to

σ(x,
φ

|φ|
(x)) = φ(x) · ∇|φ|u(x) for |φ|-a.e. x,

as desired.
�

4. Numerical results

As we pointed out in the previous sections, the maximization problem (MD) is linked to
the Monge-Kantorovich type problem (MK). The measure ρ needs not to satisfy the standard
mass balance condition. However, transporting a part of the mass from/to the Dirichlet region
D is allowed. In addition, taking ρ = LN|Ω the restriction of Lebesgue measure on Ω, (MD)

allows recovering the solution of HJ equation. This was essentially addressed in [10] for several
Hamiltonians. Here, we will focus essentially on the solution of (BK).
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4.1. Formulation of the problem. We set X = W 1,∞(Ω) and Y = L∞(Ω)N × C(D), with

F(u) = −
∫

Ω̄
u dρ, Λu = (∇u, u|D), for any u ∈X

and

G(η, h) =

 0 if σ∗(x, η) ≤ 1 and h = g on D

+∞ otherwise,
for any (η, h) ∈ Y .

Thus, we can rewrite the problem (MD) in the form

− inf
u∈X

F (u) + G(Λu).

Thanks to Theorem (2.5) and Proposition (3.9), we have

−min
{
F(u)+G(Λu) : u ∈X

}
= − sup

{
−F∗(−Λ∗(φ, ν))−G∗(φ, ν) : φ ∈ L1(Ω)N , ν ∈Mb(D)

}
= min

φ∈L1(Ω)N ,ν∈Mb(D)

{∫
Ω
σ(x, φ(x))dx+

∫
D
gdν : −div (φ) = ρ− ν in D′

(RN )

}
.

Introducing a new primal variable (p, q) ∈ Y , (MD) reads

− inf
(u,(p,q))∈X ×Y

Λu=(p,q)

F(u) + G(p, q).

This allows us to rewrite (MD) and (BK) in a saddle point form

(S ) : min
(u,(p,q))∈X ×Y

sup
φ∈L1(Ω)N ,ν∈Mb(D)

L(u, (p, q);φ, ν)

where

L(u, (p, q);φ, ν) = F(u) + G(p, q) +

∫
Ω
φ · (∇u− p) dx+

∫
D
ν · (u− q)dx.

As usual, it is convenient to consider the following augmented Lagrangian

Lr(u, (p, q);φ, ν) = L(u, (p, q);φ, ν) +
r

2
|∇u− p|2 +

r

2
|u|D − q|2, r > 0,

which has the same saddle points as L. Thus, the problem we will focus on is

(Sr) : min
(u,q)∈X ×Y

sup
φ∈L1(Ω)N ,ν∈Mb(D)

Lr(u, (p, q);φ, ν).

The numerical approximation of (MD) was addressed in [10]. The main difference with the
above formulation and the one in [10] is the presence of an additional Lagrange multiplier ν
corresponding to the boundary condition u = g on D. The resolution of (MD) in [10] was
used via ALG2 algorithm [11, 15] and was implemented using finite element method. Up to our
knowledge, it is not straightforward to define finite element functions ν on a closed subset D
(typically D = ∂Ω). In the next section we explain how to tackle this difficulty.
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4.2. Practical implementation. As we pointed out in the previous subsection, it is not clear
how to solve the saddle point problem (Sr) via ALG2 algorithm due to the presence of the
measure ν on the Dirichlet region. However, thanks to Corollary 2.6 and Remark 3.10 which
shows that ν is somehow linked to the trace of the optimal flow φ on D, we can restrict ourselves
to a formulation involving only the potential u and the flow φ. More precisely, for any u ∈ X
and η ∈ Z = L∞(Ω), we take

F(u) =


−
∫

Ω
u dρ if u = g on D

+∞ otherwise

, G(η) =

 0 if σ∗(x, η) ≤ 1

+∞ otherwise
, and Λu = ∇u.

Thus, following our approach in [10], we can focus on the following saddle point problem

inf
(u,q)∈X ×Z

sup
φ∈DMp(Ω\D)

L(u, q;φ)

where

L(u, q;φ) = F(u) + G(q) +

∫
Ω
φ · (Λ(u)− q) dx, for any (u, q, φ) ∈X × Z ×DMp(Ω \D).

Hence, the augmented Lagrangian reads

Lr(u, q;φ) = F(u)+G(q)+ 〈φ,Λu−q〉+ r

2
|Λu−q|2, for any (u, q, φ) ∈X ×Z×DMp(Ω\D).

The definition of the space DMp(Ω \D) is recalled in Remark 3.10 and the application of ALG2
algorithm for the augmented Lagrangian Lr can be found in [10]. The interested reader can
check [9, 11, 14, 15, 13, 16, 5, 2] for more details on saddle-point problems and ALG2 algorithm.

4.3. Some examples. We take Ω = [0, 1] × [0, 1] and g = 0 on ∂Ω. The first three examples
are performed with a Finsler distance dσ of Riemannian type

dσ(x, y) = inf
ζ∈Lip([0,1];Ω)
ζ(0)=x,ζ(1)=y

∫ 1

0
k(ζ(t))|ζ̇(t)|dt.

For the first test we take k(x, y) = 1 and ρ+ = 2, ρ− = δ(0.5,0.5).
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IsoValue
-0.201262
-0.167517
-0.145021
-0.122524
-0.100028
-0.0775314
-0.055035
-0.0325386
-0.0100422
0.0124543
0.0349507
0.0574471
0.0799435
0.10244
0.124936
0.147433
0.169929
0.192426
0.214922
0.271163

(a)

IsoValue
-0.408451
2.77465
5.95775
9.14085
12.3239
15.507
18.6901
21.8732
25.0563
28.2394
31.4225
34.6056
37.7887
40.9718
44.1549
47.338
50.5211
53.7042
56.8873
60.0704

Vec Value
0
0.0897011
0.179402
0.269103
0.358805
0.448506
0.538207
0.627908
0.717609
0.80731
0.897011
0.986712
1.07641
1.16611
1.25582
1.34552
1.43522
1.52492
1.61462
1.70432

(b)

Figure 1. (A): the potential u, (B): the flow φ.

In the second test we take ρ+ = 4χ[(x−0.3)2+(y−0.2)2<0.03] and ρ− = 4χ[(x−0.7)2+(y−0.8)2<0.03]

and k(x, y) = 5− 3e−2∗((x−0.5)2+(y−0.5)2).

IsoValue
-0.799859
-0.684195
-0.607086
-0.529977
-0.452868
-0.375759
-0.29865
-0.221541
-0.144432
-0.0673228
0.00978628
0.0868954
0.164004
0.241113
0.318223
0.395332
0.472441
0.54955
0.626659
0.819432

(a)

IsoValue
-4.22222
-3.77778
-3.33333
-2.88889
-2.44444
-2
-1.55556
-1.11111
-0.666667
-0.222222
0.222222
0.666667
1.11111
1.55556
2
2.44444
2.88889
3.33333
3.77778
4.22222

Vec Value
0
0.0578684
0.115737
0.173605
0.231474
0.289342
0.34721
0.405079
0.462947
0.520816
0.578684
0.636552
0.694421
0.752289
0.810157
0.868026
0.925894
0.983763
1.04163
1.0995

(b)

Figure 2. (A): the potential u, (B): the flow φ.

In the third test we take two Gaussian densities ρ+ = e−40∗((x−0.75)2+(y−0.3)2) and ρ− =

e−40∗((x−0.3)2+(y−0.65)2). We change the distance dσ by taking a degenerate k. In particular, we
choose

k(x, y) =
√

(1− 2x)2(y − y2)2 + (1− 2y)2(x− x2)2χB

where B = {(x, y) ∈ [0, 1]2 :
√

(x− 0.5)2 + (y − 0.5)2 > 0.25}. We clearly see that the flux is
concentrated essentially on the region where k vanishes, i.e, on Bc, which in terms of optimal
transport with respect to dσ represents a free transport region.
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IsoValue
-0.0331756
-0.0281316
-0.024769
-0.0214064
-0.0180438
-0.0146811
-0.0113185
-0.00795591
-0.00459329
-0.00123067
0.00213195
0.00549457
0.00885719
0.0122198
0.0155824
0.0189451
0.0223077
0.0256703
0.0290329
0.0374395

(a)

IsoValue
-0.949998
-0.849998
-0.749998
-0.649999
-0.549999
-0.449999
-0.349999
-0.249999
-0.15
-0.0499999
0.0499999
0.15
0.249999
0.349999
0.449999
0.549999
0.649999
0.749998
0.849998
0.949998

Vec Value
0
0.0140747
0.0281495
0.0422242
0.056299
0.0703737
0.0844484
0.0985232
0.112598
0.126673
0.140747
0.154822
0.168897
0.182972
0.197046
0.211121
0.225196
0.239271
0.253345
0.26742

(b)

Figure 3. (A): the potential u, (B): the flow φ privileging the zero set of k .

In the last test we consider a Finsler metric of cystalline type, namely

σ(v) = max
i=1,··· ,5

v · di

with d1 = (1,−1), d2 = (1,−0.8), d3 = (−0.8, 1), d4 = (−1, 1), d5 = (−1,−1).

IsoValue
-0.162111
-0.138935
-0.123484
-0.108033
-0.0925827
-0.077132
-0.0616814
-0.0462308
-0.0307801
-0.0153295
0.000121148
0.0155718
0.0310224
0.0464731
0.0619237
0.0773743
0.092825
0.108276
0.123726
0.162353

(a)

IsoValue
-4.22222
-3.77778
-3.33333
-2.88889
-2.44444
-2
-1.55556
-1.11111
-0.666667
-0.222222
0.222222
0.666667
1.11111
1.55556
2
2.44444
2.88889
3.33333
3.77778
4.22222

Vec Value
0
0.101396
0.202792
0.304187
0.405583
0.506979
0.608375
0.70977
0.811166
0.912562
1.01396
1.11535
1.21675
1.31814
1.41954
1.52094
1.62233
1.72373
1.82512
1.92652

(b)

Figure 4. (A): the potential u, (B): the flow φ .

5. Comments and extentions

A natural extension one can think of is the HJ equation with double obstacles on the boundary.
More precisely one can consider the equation

H(x,∇u) = 0 on Ω, g1 ≤ u ≤ g2 on ∂Ω

where gi : ∂Ω→ R are continuous functions satisfying the compatibility condition g1(x)−g2(y) ≤
dσ(y, x) for any x, y ∈ ∂Ω.

In order to establish the link between this problem and a Bekmann-type problem, we consider
as previously the following maximization problem

(MD)o : max

{∫
Ω
u dρ : u ∈W 1,∞(Ω), σ∗(x,∇u) ≤ 1 and g1 ≤ u ≤ g2 on ∂Ω

}
.
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Similarly, we can state the following result.

Theorem 5.12. The optimization problem (MD)o coincides with the following Beckmann-type
problem, denoted by (BK)o,

min
φ∈Mb(Ω)N ,ν∈Mb(∂Ω)

{∫
Ω
σ(x,

φ

|φ|
(x))d|φ|+

∫
∂Ω
g2dν+ −

∫
∂Ω
g1dν− : −div(φ) = ρ− ν in D′

(RN )

}
.

Moreover, u and (φ, ν) are optimal solutions to (MD)o and (BK)o, respectively if and only if

−div(φ) = ρ− ν in D′
(RN )

φ(x) · ∇|φ|u(x) = σ

(
x,

φ

|φ|
(x)

)
for |φ| − a.e. x

g1 ≤ u ≤ g2 on ∂Ω and u = g1 for ν− − a.e. x and u = g2 for ν+ − a.e. x.

Sketch of proof. We define on C(∂Ω)× C(∂Ω) the following functional on C(∂Ω)× C(∂Ω) by, for
(v, w) ∈ C(∂Ω)× C(∂Ω),

E(v, w) = − sup
{∫

Ω
udρ : u ∈ Lip(Ω), σ∗(x,∇u(x)) ≤ 1, g1 ≤ u+ v, u+ w ≤ g2 on ∂Ω

}
.

Most of the arguments of Section 3 can be reproduced to show that E is convex and lower
semicontinuous, which gives E(0, 0) = E∗∗(0, 0). It follows that max(MD)o = min(BK)o. We
now turn to the optimality conditions. First observe that, for any feasible u and (φ, ν), we get∫

Ω
udρ =

∫
Ω
∇|φ|u(x)

φ

|φ|
(x)d|φ|+

∫
Ω
udν

≤
∫

Ω
σ(x,

φ

|φ|
(x))d|φ|+

∫
D
g2dν+ −

∫
∂Ω
g1dν−,

(5.16)

where we have used ∇|φ|u(x)φ(x) ≤ σ(x,
φ

|φ|
(x)) for |φ|− a.e. x by the fact that u is 1-Lipschitz

w.r.t. dσ.
On the other hand, u and (φ, ν) are optimal for (MD)o and (BK)o respectively, if and only if∫

Ω
udρ =

∫
Ω
σ(x,

φ

|φ|
(x))d|φ|+

∫
∂Ω
g2dν+ −

∫
∂Ω
g1dν−,

i.e. the equality holds in (5.16), which is equivalent to the system of optimality conditions as
desired. �

Let us mention that problems of the form (MD)o and (BK)o can arise when studying optimal
transport problems with some import/export costs on the boundary. In the case where the
transport cost is given by the Euclidean distance c(x, y) = |x− y| (in our case when considering
the Eikonal equation |∇u| = 1) we refer the reader to [20].



20 H. ENNAJI, N. IGBIDA, AND V. T. NGUYEN

References

[1] Martin Beckmann. A continuous model of transportation. Econometrica: Journal of the Econometric Society,
20(4): 643–660, 1952.

[2] Jean-David Benamou and Guillaume Carlier. Augmented Lagrangian methods for transport optimization,
mean field games and degenerate elliptic equations. Journal of Optimization Theory and Applications,
167(1):1–26, 2015.

[3] Jean-David Benamou, Guillaume Carlier, and Roméo Hatchi. A numerical solution to Monge’s problem with
a Finsler distance as cost. ESAIM: Mathematical Modelling and Numerical Analysis, 52(6):2133–2148, 2018.

[4] Guy Bouchitté and Guiseppe Buttazzo. Characterization of optimal shapes and masses through Monge-
Kantorovich equation. Journal of the European Mathematical Society, 3(2):139–168, 2001.

[5] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends R© in Machine
Learning, 3(1):1–122, 2011.

[6] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity solutions of second order
partial differential equations. Bulletin of the American mathematical society, 27(1):1–67, 1992.

[7] Andrea Davini. Smooth approximation of weak Finsler metrics. Differential and Integral Equations, 18(5):
509–530, 2005.

[8] Luigi De Pascale and Chloé Jimenez. Duality theory and optimal transport for sand piles growing in a silos.
Advances in Differential Equations, 20(9-10):859–886, 2015.

[9] Jonathan Eckstein and Dimitri P Bertsekas. On the Douglas–Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55(1-3):293–318, 1992.

[10] Hamza Ennaji, Nouredine Igbida and Van Thanh Nguyen. Augmented Lagrangian method for Hamilton-
Jacobi equtions. submitted, 2020.

[11] Ivar Ekeland and Roger Temam. Convex Analysis and Variational Problems. Classics in Applied Mathematics,
SIAM, 1999.

[12] Albert Fathi and Antonio Siconolfi. PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians.
Calculus of Variations and Partial Differential Equations, 22(2):185–228, 2005.

[13] Michel Fortin and Roland Glowinski. Augmented Lagrangian methods: applications to the numerical solution
of boundary-value problems, volume 15. Elsevier, 2000.

[14] Roland Glowinski and J Tinsley Oden. Numerical methods for nonlinear variational problems. 1985.
[15] Ronald Glowinski and Patrick Le Tallec. Augmented Lagrangian and operator-splitting methods in nonlinear

mechanics, volume 9. SIAM, 1989.
[16] Noureddine Igbida and Van Thanh Nguyen. Augmented Lagrangian method for optimal partial transporta-

tion. IMA Journal of Numerical Analysis, 38(1):156–183, 2018.
[17] Noureddine Igbida and Van Thanh Nguyen. Optimal partial mass transportation and obstacle

Monge–Kantorovich equation. Journal of Differential Equations, 264(10): 6380–6417, 2018.
[18] Noureddine Igbida and José M Mazón, and Julio D Rossi, and Julián Toledo, Optimal mass transportation

for costs given by Finsler distances via p-Laplacian approximations, Advances in Calculus of Variations,
11(1): 1-28, 2018.

[19] Pierre-Louis Lions. Generalized solutions of Hamilton-Jacobi equations, volume 69. Pitman, London, 1982.
[20] José M. Mazón and Julio D. Rossi and Julián Toledo, An optimal transportation problem with a cost given

by the Euclidean distance plus import/export taxes on the boundary. Revista Matemática Iberoamericana,
30(1): 277–308, 2014.

[21] Filippo Santambrogio. Optimal transport for applied mathematicians. Calculus of variations, PDEs, and
modeling, volume 87. Cham: Birkhäuser/Springer, 2015.

[22] Antonio Siconolfi. Hamilton-Jacobi equations and Weak KAM Theory, pages 4540–4561. Mathematics of
Complexity and Dynamical Systems, 2011.

[23] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2009.


	1. Introduction
	1.1. Beckmann's problem and optimal transport
	1.2. Hamilton-Jacobi equation and Beckmann's problem

	2. Preliminaries and main results
	2.1. Preliminaries
	2.2. Main results

	3. Proofs
	3.1. Preparatory results
	3.2. Proofs of the main results

	4. Numerical results
	4.1. Formulation of the problem
	4.2. Practical implementation
	4.3. Some examples

	5. Comments and extentions
	References

