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Here, H is continuous in both arguments, coercive and convex in the second, but not enjoying any property of existence of a smooth strict subsolution. Our study here takes place in the framework of viscosity solution theory, so that the term (sub, super) solution must be understood in this sense.

Recall that the nonexistence of smooth strict subsolution is connected to the fact that the socalled Aubry set, noted by A, is not empty. It is known that in this case the problem has many solutions. Nevertheless, one needs to select the pertinent one from the physical point of view as well as the optimal control one, such as, the maximal subsolution. Such kind of equations are relevant, for instance, in the study of Shape from Shading [START_REF] Durou | Numerical methods for shape-from-shading: A new survey with benchmarks[END_REF][START_REF] Lions | Shape-from-shading, viscosity solutions and edges[END_REF][START_REF] Prados | A viscosity solution method for shape-from-shading without image boundary data[END_REF][START_REF] Rouy | A viscosity solutions approach to shape-from-shading[END_REF][START_REF] Zhang | Shape-from-shading: a survey[END_REF], granular material [START_REF] Igbida | Metric character for the sub-Hamilton-Jacobi obstacle equation[END_REF] and many other problems ranging from mechanics, geometry, seismic analysis, optics to image processing, etc.

Typical situation appears in the study of the so-called Eikonal equation subject to Dirichlet boundary condition, that is

|∇u| = f in Ω u = 0 on ∂Ω, (1.1) 
where f ≥ 0 is a continuous function. In this case the Aubry set corresponds to the zero set [f = 0]. In the case where this set is empty, i.e. f > 0 in Ω, the equation (1.1) falls into the scope of Eikonal equation of the type k |∇u| = 1, where k is a continuous positive function on Ω. Among famous numerical methods (especially for Eikonal equations), remain the Fast Sweeping Method (FSM) and the Fast Marching Method (FMM). The FSM (see e.g. [START_REF] Luo | Fast sweeping methods for factored anisotropic Eikonal equations: multiplicative and additive factors[END_REF][START_REF] Danielsson | Euclidean distance mapping[END_REF][START_REF] Zhao | A fast sweeping method for eikonal equations[END_REF]) is based on an upwind difference discretization solved via Gauss-Seidel iterations with alternating sweeping ordering. As to the FMM (see e.g. [START_REF] Albert | A fast marching level set method for monotonically advancing fronts[END_REF][START_REF] Tsitsiklis | Efficient algorithms for globally optimal trajectories[END_REF]), the Eikonal equation is again written via an upwind finite difference approximation. The grid points are divided into three categories: accepted nodes which are points where the values of the solution are already known, narrow band nodes where the computations take place and finally far nodes which will be computed in the next iterations. For other methods and commented references, the interested reader can check [START_REF] Falcone | Numerical methods for Hamilton-Jacobi type equations[END_REF][START_REF] Albert | Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science[END_REF] for a general overview of numerical methods for Hamilton-Jacobi equations and their applications.

The case where A is nonempty (degenerate HJ equation) is different. Recall that the main role of this set concerns the uniqueness of the solution. Roughly speaking a solution is characterized in a unique way by its values on the set of degeneracy, i.e. on A. So, some additional condition is imposed to single out numerically the reasonable solution among infinitely many ones: for example, it is assumed that the solution is given on the Aubry set, which becomes then a part of the boundary of the domain where the problem is discretized (see e.g. [START_REF] Rouy | A viscosity solutions approach to shape-from-shading[END_REF]). Nevertheless, in practice we do not, in general, have this knowledge. To overcome this obstruction, some methods suggest to regularize the problem by cutting from below f at some level > 0, and then let → 0. This approach was exploited in [START_REF] Camilli | Numerical approximation of the maximal solutions for a class of degenerate Hamilton-Jacobi equations[END_REF] using deeply control theoretic interpretation for the approximation of the maximal subsolution. Their scheme was based on a two-step discretization of the control problem associated with the regularized problem: first in the time variable, and then in the space variable. Under some appropriate condition, the approximated solution is shown to be convergent to the maximal solution using stability results. For comprehensive exposition of Hamilton-Jacobi equations and optimal control one can see, for example, [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF].

1.2. Main contributions. In this paper, we suggest a new approach to tackle general Hamilton-Jacobi problem without requiring any additional assumptions on the Aubry set. The way is to use variational formulation for the characterization of the maximal subsolution. Then using duality method, we give a direct PDE-constrained optimization algorithm to approximate the solution. In particular, this approach empowers the use of fast numerical optimization methods, employed in the recent development of mathematical programming, as alternatives to the commonly used methods we presented previously. We can not cover all the possibilities with this approach in this paper, but we propose to try out its prospects to tackle some examples of degenerate Hamilton-Jacobi equations. We show how one can use methods like augmented Lagrangian one to solve Hamilton-Jacobi equations and present some numerical results. Coming back to the Eikonal equation, let us outline an overview on our approach and main contributions. As a starting point, we observe that problem (1.1) aims to characterize the maximal subsolution; i.e. the maximal continuous functions subject to a Dirichlet condition and the constraint on the gradient (1.2)

|∇u| ≤ f,
For the non-degenerate case, i.e., f (x) > 0 on Ω, the Fenchel-Rockafellar strong duality result (cf. [20, Chap. III]) implies that the optimal value of (1.2) coincides with

min φ∈M b (Ω) N Ω f d|φ| : -div(φ) = ρ in D (Ω) ,
where M b (Ω) N denotes the set of vector valued measures concentrated in Ω. This duality plays an important role in our approach since wherefore the solution of (1.1) is given by the saddle-points of a problem of the type min u,q max φ L(u, q; φ)

that will be precise later. In the degenerate case; i.e. f ≥ 0, the previous duality falls out of the scope of standard Fenchel-Rockafellar duality result since the so called qualification conditions are not fulfilled. Using perturbation techniques, we prove that the duality and the saddle-points characterization still hold true in the degenerate case. As far as the degeneracy of the Hamiltonian is involved the boundary condition takes part definitely in the proofs of duality. Indeed, working with non homogeneous boundary condition like

u = g on ∂Ω,
requires to handle rigorously the trace of vector fields Φ involved both into the dual problem and the saddle point formulation. To overcome these difficulties, we make use of a trace-like operator for the so called divergence-measure field (cf. [START_REF] Chen | Some recent methods for partial differential equations of divergence form[END_REF][START_REF] Chen | Divergence-measure fields and hyperbolic conservation laws[END_REF][START_REF] Chen | Extended divergence-measure fields and the euler equations for gas dynamics[END_REF]). For numerical computation, we operate thus the saddle-point structure in the augmented Lagrangian (cf. [START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF])

L r (u, q; φ) = L(u, q; φ) + r 2 |Λu -q| 2 , for any (u, q, φ)

for a given arbitrary r > 0. Notice here that the addition of the quadratic term r 2 |Λu -q| 2 has the advantage of improving the convergence speed. Then, for numerical experiments we use the so called ALG2 algorithm 1 (also known as ADMM: alternating direction method of multipliers [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]) to construct a sequence {u i } i , {q i } i , {φ i } i by optimizing alternatively in u and q, for i ≥ 1 to lay out numerical approximations of the solutions of (1.1) in miscellaneous context that are meaningful from modeling viewpoint (degenerate, non-degenerate and/or anisotropic Eikonal equation, Riemannian case as well as polyhedral one). For further details about the ALG2 algorithm, we refer the reader to [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF][START_REF] Fortin | Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems[END_REF][START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF].

To unroll the foregoing machinery we describe above from the Eikonal equation to general Hamilton-Jacobi equations H(x, ∇u) = 0, we exploit the metric character of these equations and address similar problems. More precisely, we establish the equivalence between being a viscosity subsolution of HJ equations, i.e. H(x, ∇u) ≤ 0, and ∇u ∈ B σ * where σ * is the dual of 1 ALG2 is an abbreviation of algorithm 2 in [START_REF] Fortin | Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems[END_REF] to calculate efficiently saddle points of functionals of the form Lr. It is essentially based on relaxation of Uzawa's algorithm.

the support function σ of the sublevel sets of H, which will be given later. So, in order to solve the HJ equations we will focus on the problem of the form max Ω udx : ∇u ∈ B σ * and u = g on ∂Ω (1.3) to end up in some sense with the study of problem of maximizing Ω udρ for a given measure

ρ (ρ ≡ 1 in (1.
3)), among 1-Lipschitz functions with respect to d σ . We show thereby that the aforementioned strategy for Eikonal equation works and offers further issue for very general (even degenerate) quasiconvex Hamiltonians. Up to our knowledge, most of the existing methods to approximate solutions of HJ equations of the form H(x, p) = F (p) -f (x) assuming that f > 0.

At last, let us notice that though the approach proposed in [START_REF] Camilli | Numerical approximation of the maximal solutions for a class of degenerate Hamilton-Jacobi equations[END_REF] is more concerned with the discretization of the intrinsic metric d σ , the FMM and FSM repose on a direct discretization of the equation, our strategy is more in the sprite of "optimize then discretize". Besides the degenerate case (see Tests 5.3-5.4-5.5), our approach presents a general method to solve numerically Hamilton-Jacobi equations by performing simple operations like projections into Finsler balls. Actually, it works even for general quasicovex Hamiltonians, the challenge is to be able to project efficiently onto the 0-sublevels of the Hamiltonians. These can be seen in the nontrivial Examples 5.6-5.7-5.8. In addition, let us point out that the other examples, especially the Riemannian, anispotropic and crystalline cases (see tests Examples 5.6-5.7-5.8) are not widely present in the literature. Some papers are exclusively devoted to each case (e.g. [START_REF] Luo | Fast sweeping methods for factored anisotropic Eikonal equations: multiplicative and additive factors[END_REF][START_REF] Mirebeau | Efficient fast marching with Finsler metrics[END_REF][START_REF] Mirebeau | Anisotropic fast-marching on Cartesian grids using lattice basis reduction[END_REF][START_REF] Mirebeau | Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs[END_REF] for the anisotropic and non-holonomic Eikonal equations).

Thanks to the structure of the novel variational formulation developed in this paper for (even degenerate) quasiconvex HJ equations, it is clear that other numerical optimization methods may also have potential benefits than the proposed one in this paper. One can proceed for instance also with the Chambolle-Pock method (see for instance [START_REF] Hamza Ennaji | Continuous Lambertian Shape from Shading: A Primal-Dual Algorithm[END_REF]). Preconditioning techniques should furthermore improve the numerical experiments as well.

Let us mention also that our approach is close to the one in [START_REF] Caboussat | On the numerical solution of some Eikonal equations: an elliptic solver approach[END_REF] as they consider a maximization problem. However, they deal with nonconvex constraint contrary to the convex problem we are considering.

1.3. Plan of the paper. This paper is organized as follows. In Section 2, we recall the metric character of HJ equations. More precisely, we present a distance d σ of Finsler type, constructed from the sublevel sets of the Hamiltonian, which is essential to characterize the subsolutions of HJ equations. We also show that the unique maximal subsolution is characterized by the maximization problem of the form max Ω udx : ∇u ∈ B σ * and u = g on D ⊂ Ω .

(1.4)

Dealing with the problem (1.4), it is natural to derive its dual problem. This will be the main goal of Section 3 where we discuss the duality issue for a general Hamiltonian. This will be done via perturbation techniques. Finally we present the augmented Lagrangian, and we see that thanks to the duality result, solving (1.4) amounts to finding saddle points of a Lagrangian L.

We give several numerical tests to illustrate our results.

Metric character of Hamilton-Jacobi equations

2.1. Preliminaries. In this paper Ω ⊂ R N is a regular connected bounded open domain. We consider the following HJ equation

H(x, ∇u) = 0, x ∈ Ω, (2.5) 
where The properties and notions introduced in this subsection are more or less known. Proofs and more details can be found in [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF][START_REF] Siconolfi | Hamilton-Jacobi equations and Weak KAM Theory[END_REF][START_REF] Michael | Viscosity solutions of Hamilton-Jacobi equations[END_REF]. We recall briefly some definitions related to viscosity theory. Given two continuous functions φ and ψ, one says that ψ is a strict supertangent (respectively subtangent) to φ at some point x ∈ Ω if x is a strict local maximizer (respectively minimizer) of φ -ψ. Definition 2.1. A continuous function u : Ω → R is said to be a viscosity subsolution of (2.5) if H(x, ∇φ(x)) ≤ 0 for any x ∈ Ω and any C 1 supertangent function φ to u at x. It is said to be a viscosity supersolution of (2.5) if H(x, ∇ψ(x)) ≥ 0 for any x ∈ Ω and any C 1 subtangent function to u at x. Finally, u is a viscosity solution of (2.5) if it is both a subsolution and a supersolution.

H : Ω × R N → R
We denote by S - H (Ω) the family of subsolutions of (2.5). One pertinent property of this family is its stability with respect to uniform convergence, which is not the case for a.e. solutions as we can see by considering a sawtooth function. Moreover, whenever we consider a family C ⊂ S - H (Ω) of locally equibounded functions, then inf u∈C u(x) and sup u∈C u(x) are still subsolutions to (2.5). We similarly denote by S + H (Ω) (resp. S H (Ω)) the family of supersolutions (resp. solutions) of (2.5). For x ∈ Ω, we define the support function of the 0-sublevel set Z(x) by σ(x, q) := sup q • Z(x) = sup{ q, p : p ∈ Z(x)} for q ∈ R N .

The assumptions (H1) -(H2) ensure that σ is a continuous nonnegative function in Ω × R N , convex and positively homogeneous with respect to q. Due to the assumption (H3), σ(x, q) is possible to equal to 0 for q = 0, which leads to the degeneracy and its dual σ * , as given below, may take the value +∞. Here, the dual σ * (also called polar) is defined by

σ * (x, p) := sup q∈R N { p, q : σ(x, q) ≤ 1}. For example, in the case of Eikonal equation |∇u(x)| = f (x), one has σ(x, q) = f (x)|q| and σ * (x, p) = 1 f (x)
|p|. We see that σ * (x, p) take the value +∞ for p = 0 on the zero set of f .

We denote by Γ(x, y) the set of Lipschitz curves defined on [0, 1] joining x, y in Ω. We then define the intrinsic distance by

d σ (x, y) := inf ζ∈Γ(x,y) 1 0 σ(ζ(t), ζ(t))dt,
which is a quasi-distance, i.e. satisfying d σ (x, x) = 0 and the triangular inequality, but not necessarily symmetric. We summarize the basic properties of d σ in the following.

Proposition 2.2. ([22])

1) d σ is a quasi-metric, in the sense that for any x, y ∈ Ω d σ (x, y) ≥ 0 and d σ (x, x) = 0.

Moreover, for all x, y, z ∈ Ω one has

d σ (x, y) ≤ d σ (x, z) + d σ (z, y). 2) For any x ∈ Ω d σ (x, .) ∈ S - H (Ω) ∪ S + H (Ω \ {x}). 3) Compatibility condition: v ∈ S - H (Ω) if and only if v(x)-v(y) ≤ d σ (y, x)
for any x, y ∈ Ω. The so called Aubry set is defined as the set where the quasi-metric d σ degenerates. Prescribing a boundary value on ∂Ω does not guarantee the uniqueness of viscosity solutions to (2.5) unless A = ∅, which is not the case in our situation due to the assumption (H3). The Aubry set A appears then to be a uniqueness set for (2.5).

Definition 2.3. We define the Aubry set A as the set of points x ∈ Ω such that there exists

(ζ n ) n ∈ Γ(x, x) with l(ζ n ) ≥ δ > 0 and inf n 1 0 σ(ζ n (t), ζn (t))dt = 0, where l(ζ n ) is the Euclidean length of the curve ζ n .
Proposition 2.4. ( [START_REF] Fathi | PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians[END_REF], [START_REF] Camilli | Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem[END_REF])

1) The Aubry set A is a closed subset of Ω.

2) If x ∈ A then d σ (x, .) ∈ S H (Ω). Moreover, x / ∈ A if and only if (2.5) admits a strict subsolution around x.

3) If

g : A ∪ ∂Ω → R is a continuous function satisfying the compatibility condition g(x) - g(y) ≤ d σ (y, x) on A ∪ ∂Ω, then u(x) = min y∈A∪∂Ω {d σ (y, x) + g(y)}
is the unique viscosity solution of the equation (2.5) such that u = g on A ∪ ∂Ω.

2.2.

Equivalence between HJ and maximization problem. Given a closed subset D ⊂ Ω (typically D = ∂Ω or D = {x} for some x ∈ Ω), we consider the following HJ equation

H(x, ∇u) = 0 Ω \ D u = g D (2.6)
where g : D → R is continuous function satisfying the compatibility condition. Then the unique maximal viscosity subsolution of the equation (2.6) such that u(x) = g(x) for any x ∈ D, is given by u

(x) = min y∈D d σ (y, x) + g(y) (2.7)
with d σ (., .) being the intrinsic metric associated to the Hamiltonian H.

The considerations given in the introduction lead us to look for the maximal subsolutions of the HJ equation, i.e., H(x, ∇u) ≤ 0 or equivalently u(x) -u(y) ≤ d σ (y, x). We will show that such functions are precisely the ones with gradient in the unit ball of σ * . More precisely, we prove the following Proposition 2.5. S -

H (Ω) = {u ∈ W 1,∞ (Ω) and σ * (x, ∇u(x)) ≤ 1 f or a.e x ∈ Ω} := B σ * .
Then, we transform the problem into a question of maximization of the volume Ω udx among the subsolutions u. This leads to the following theorem which is an important step to treat the equation (2.6) via augmented Lagrangian methods.

Theorem 2.6. The maximal viscosity subsolution of (2.6), given by (2.7), is the unique solution of the problem

max Ω z(x)dx, σ * (x, ∇z(x)) ≤ 1 and z = g on D .
(2.8)

For the proof of Proposition 2.5, we recall that the result is more or less known in the case where H(x, 0) < 0 which corresponds to A = ∅ (see [START_REF] Igbida | Sub-gradient diffusion operator[END_REF][START_REF] Igbida | Augmented Lagrangian method for optimal partial transportation[END_REF] for example). Here, under the general condition (H3), we need the following Cauchy-Schwartz-like lemma.

Lemma 2.7. For any q ∈ R N , and for any x ∈ Ω we have

σ * (x, q) ≤ 1 ⇔ p, q ≤ σ(x, p) for any p ∈ R N .
Proof. Assume first that σ * (x, q) ≤ 1. If p, q = 0, it is obvious. For the case p, q > 0, if σ(x, p) = 0 then by homogeneity of σ, σ(x, λp) = 0 for every λ ≥ 0. Consequently, σ * (x, q) ≥ λ p, q → ∞ as λ → ∞, this contradicts σ * (x, q) ≤ 1. This implies that σ(x, p) > 0 and p σ(x, p) , q ≤ σ * (x, q) ≤ 1, as desired. Conversely, if p, q ≤ σ(x, p), by definition of σ * , we take the sup over all p such that σ(x, p) ≤ 1 in the previous inequality to obtain that σ * (x, q) ≤ 1.

Proof of Proposition 2.5. We divide the proof into two parts. Firstly, S - H (Ω) ⊂ B σ * . Take a point x ∈ Ω such that u is differentiable at x. For every vector v ∈ S N -1 on the unit sphere, we take ζ h (t) = tx + (1 -t)(x -hv) for every h > 0 and t ∈ [0, 1] and we notice that ζ h ∈ Γ(x -hv, x) and for h small enough, ζ h is close to x. We then have

∇u(x), v ≤ lim h→0 + h -1 (u(x) -u(x -hv)) ≤ lim inf h→0 + h -1 d σ (x -hv, x) ≤ lim inf h→0 + h -1 1 0 σ(ζ h , ζh )dt = lim inf h→0 + 1 0 σ(ζ h , v)dt ≤ σ(x, v),
where we have used the continuity of x → σ(., v) and Lebesgue theorem. Using the definition of σ * , we deduce that σ * (x, ∇u(x)) ≤ 1 as desired. Secondly, B σ * ⊂ S - H (Ω). Assume now that σ * (x, ∇u(x)) ≤ 1 at any differentiable point x of u, i.e., ∇u(x), p ≤ σ(x, p) for all p ∈ R N (Lemma 2.7). For smooth function u, the argument is simply given by

u(y) -u(x) = 1 0 ∇u(ξ(s)) • ξ(s)ds ≤ 1 0 σ(ξ(s), ξ(s))ds,
for Lipschitz curves ξ joining x to y in Ω. This implies that u(y) -u(x) ≤ d σ (x, y). For general Lipschitz function u, one can make use of smooth approximation (see [START_REF] Van | Monge-Kantorovich equation for degenerate Finsler metrics[END_REF]Lemma 3.1]).

Proof of Theorem 2.6. Let us see that for any subsolution v (2.6), we have v ≤ u. Pick any subsolution v of (2.6) satisfying the condition v = g on D. Let x ∈ Ω, we have for any

y ∈ D v(x) = v(x) -v(y) + g(y) ≤ d σ (y, x) + g(y).
This gives that v ≤ u in Ω and then 

Ω v(x)dx ≤ Ω u(x)dx. Clearly u is 1-Lipschitz with respect to d σ ,

HJ and duality results

3.1. Generalities. As we said in the introduction among our main interests in this paper is to use augmented Lagrangian methods to give a direct algorithm to approximate the solution of the Hamilton-Jacobi equations.

Actually, the problem (2.8) falls into the scope of the following class of optimization problem

(P) inf u∈X F(u) + G(Λu)
where X and Y are two Banach spaces with the topological dual spaces X * and Y * , F : X → (-∞, +∞], G : Y → (-∞, +∞] are proper, l.s.c., convex functions and Λ : X → Y is a linear operator. The main future for this kind of formulation is to look at its dual problem, which is given by

(D) sup v∈Y * -F * (-Λ * v) -G * (v) .
Here Λ * is the adjoint operator of Λ, while F * , G * are the Legendre-Fenchel transformations of F and G given by

F * (f ) = sup u∈X ( f, u -F(u)) for any f ∈ X * G * (g) = sup q∈Y ( g, q -G(q)) for any g ∈ Y * .
Using the definitions of F * , G * and Λ * , it is not difficult to get the following inequality

sup v∈Y * -F * (-Λ * v) -G * (v) ≤ inf u∈X F(u) + G(Λu),
usually called weak duality. The reverse inequality, the so-called strong duality, plays an important role since the point is that the solutions of (P) and (D) are given by the saddle-points of the problem min u,q max φ L(u, q; φ)

where L(u, q; φ) = F(u) + G(q) + φ, Λu -q . Yet, the strong duality is not true in general. Some qualification conditions are needed. For instance, one has 

max v∈Y * -F * (-Λ * v) -G * (v) = inf u∈X F(u) + G(Λu).
Moreover, u solves (P) if and only if

-Λ * u ∈ ∂F(u) and v ∈ ∂G(Λu).
As we pointed out in the introduction, because of the degeneracy of the Hamiltonian, we can not directly use Theorem 3.8 to show duality between the maximization problem and its dual problem. To see this, let us restrict ourselves to the following particular case: the Hamilton-Jacobi equation of Eikonal type, coupled with a zero Dirichlet boundary condition,

|∇u(x)| = f (x) in Ω u = 0 on ∂Ω,
where f is a continuous, nonnegative function on Ω. In this particular case, the problem (M D ) can be rewritten as where

V = C 1 (Ω) ∩ H 1 0 (Ω), F(u) = - Ω udx, Λu = ∇u and G(q) = 0 if |q| ≤ f +∞ otherwise.
For the case of non-degeneracy, i.e., f (x) > 0 on Ω, we have for u 0 = 0 that G(.) is continuous at Λu 0 = 0 in C(Ω) N equipped with the uniform convergence. It follows directly from Theorem 3.8 that

sup Ω udx : |∇u| ≤ f and u = 0 on ∂Ω = min φ∈M b (Ω) N Ω f d|φ| : -div(φ) = ρ in D (Ω) .
However, if f ≥ 0, it is not true that the functional G is continuous at Λu 0 . Therefore the sufficient conditions of Thereom 3.8 are not satisfied.

The main goal of this section is to show rigorously that the duality still holds true for such a degenerate Hamiltionian. Since the values of u are prescribed on D and the solution of (2.6) is given by the distance to D, we can consider the following problem

(M D ) : max Ω D udρ : σ * (x, ∇u(x)) ≤ 1 and u = g on Γ D ,
where

Ω D := Ω \ D, Γ D := ∂Ω D ∩ ∂D and Γ = ∂Ω D \ Γ D . In particular, if D = ∂Ω then Ω D = Ω and Γ D = ∂Ω, Γ = ∅.
As we will see, our dual formulation challenges some kind of trace-like operator for the so called divergence-measure field. To begin with let us sort out formally and briefly our approach, at least in the case where D = ∂Ω. Taking X to be the Banach space W 1,∞ (Ω) and Y to be the space L ∞ (Ω) N , we consider simply

F(u) =      - Ω u dρ if u ∈ W 1,∞ (Ω) and u = g on ∂Ω +∞ otherwise, , Λu = ∇u, and 
G(η) =    0 if σ * (x, η) ≤ 1
+∞ otherwise, so that the problem (M D ) reads as (P). For a formal computation of the dual problem, let us notice that G * : Y * → (-∞, +∞],

G * (Φ) = Ω σ(x, Φ) for any Φ ∈ Y * .
The operator Λ * : Y * → X * is given by

Λ * Φ, ξ = Φ, ∇ξ for any ξ ∈ X .
Also,

F * (-Λ * Φ) = sup u∈X ,u=g on ∂Ω Ω -Φ • ∇u dx -F(u) = sup u∈X ,u=g on ∂Ω Ω -Φ • ∇u dx + Ω u dρ = sup u∈X ,u=g on ∂Ω Ω udiv(Φ) - ∂Ω Φ • ν u + Ω u dρ =    - ∂Ω Φ • ν g if -div(Φ) = ρ +∞ otherwise.
In other words, the dual problem reads

inf Ω σ(x, Φ) - ∂Ω Φ • ν g : Φ ∈ Y * , -div(Φ) = ρ in D (Ω) . (3.9) 
Note that the above computation is very formal by the appearance of the trace-like term Φ • ν which is not well defined for all Φ.

To handle rigorously the normal trace of the vector-valued dual variable Φ in the dual problem of the type (3.9), we recall the trace-like operator for the so called divergence-measure field (cf. [START_REF] Chen | Some recent methods for partial differential equations of divergence form[END_REF][START_REF] Chen | Divergence-measure fields and hyperbolic conservation laws[END_REF][START_REF] Chen | Extended divergence-measure fields and the euler equations for gas dynamics[END_REF]). To this aim, we assume in this section that

Ω D = Ω \ D is a regular domain with a deformable Lipschitz boundary ∂Ω D .
This is achieved for instance in the case where Ω is a regular domain and D = ∂Ω or D = ω with a regular domain ω ⊂⊂ Ω.

For any 1 ≤ p ≤ ∞, we define the set

DM p (Ω D ) := F ∈ L p (Ω D ) N : div F =: µ ∈ M b (Ω D ) ,
where µ = div F is taken in D (Ω D ). See here, that for any F ∈ DM p (Ω D ), the total variation of div F is given by

|div F |(Ω D ) := sup ϕ dµ : ϕ ∈ C 0 (Ω D ), |ϕ(x)| ≤ 1 for any x ∈ Ω D = sup ϕ dµ : ϕ ∈ C 1 0 (Ω D ), |ϕ(x)| ≤ 1 for any x ∈ Ω D = sup F • ∇ϕ : ϕ ∈ C 1 0 (Ω D ), |ϕ(x)| ≤ 1 for any x ∈ Ω D .
In particular, the space DM p (Ω D ) endowed with the norm

F DM p (Ω D ) := F L p (Ω D ) + |div F |(Ω D )
is a Banach space.

Thanks to [START_REF] Chen | Some recent methods for partial differential equations of divergence form[END_REF][START_REF] Chen | Divergence-measure fields and hyperbolic conservation laws[END_REF][START_REF] Chen | Extended divergence-measure fields and the euler equations for gas dynamics[END_REF], for any 1 < p ≤ ∞, it is possible to define a trace-like operator on the set DM p (Ω D ). Actually, for any F ∈ DM p (Ω D ), we define F • ν the normal trace of F on ∂Ω D , given by F • ν : Lip(∂Ω D ) → R the continuous linear functional such that

F • ν, ξ /∂Ω D = Ω D ξ divF + Ω D ∇ξ • F, for any ξ ∈ C 1 (Ω D ).
Moreover, since Γ D is a deformable Lipschitz boundary, then the restriction of F • ν to Γ D is well defined, this will be denoted by F • ν D (cf. [START_REF] Chen | Some recent methods for partial differential equations of divergence form[END_REF][START_REF] Chen | Divergence-measure fields and hyperbolic conservation laws[END_REF][START_REF] Chen | Extended divergence-measure fields and the euler equations for gas dynamics[END_REF], see also Remark 3.9). Remark 3.9.

(1) Thanks to [START_REF] Chen | Some recent methods for partial differential equations of divergence form[END_REF][START_REF] Chen | Divergence-measure fields and hyperbolic conservation laws[END_REF][START_REF] Chen | Extended divergence-measure fields and the euler equations for gas dynamics[END_REF], for any F ∈ DM p (Ω D ), with 1 < p ≤ ∞, it is possible to define the normal trace F • ν locally by using Lipschitz deformation of the boundary. This formulation is very useful in the case where the boundary is partitioned into disjoint deformable Lipschitz patches.

(2) In the case where p = 1 as well as the case where L p (Ω D ) N is replaced by the space M b (Ω D ) N , the trace may be defined as well, but only as continuous linear form on a subset of Lip(∂Ω D ) (cf. [START_REF] Chen | Some recent methods for partial differential equations of divergence form[END_REF][START_REF] Chen | Divergence-measure fields and hyperbolic conservation laws[END_REF][START_REF] Chen | Extended divergence-measure fields and the euler equations for gas dynamics[END_REF]). Now, combining this consideration with the formal computation for (3.9), we introduce the following optimization problem

(OF D ) : inf φ∈DM p (Ω D ) Ω D σ(x, φ(x))dx -φ • ν D , g : -div (φ) = ρ in D (Ω D \ Γ D ) ,
where the divergence constraint is understood as follows:

Ω D ∇ξ • φ dx -φ • ν D , ξ = Ω D \Γ D ξdρ, for any ξ ∈ Lip(Ω D ),
with φ•ν D being trace-like term on Γ D as defined above. In other words, we impose that φ•ν Γ = 0 on Γ.

Our main result in this section is the following duality result. 

F (h) = inf φ∈DM p (Ω D ) Ω D σ(x, φ(x))dx+ Γ D gdh-φ•ν D , g : -div(φ) = ρ+h in D (Ω D \ Γ D ) ,
for any h ∈ M b (Ω D ). Then F is convex and l.s.c. Indeed, take h 1 , h 2 ∈ M b (Ω D ) and set 

h := th 1 + (1 -t)h 2 for t ∈ [0, 1]. Let φ 1,n , φ
) = ρ + h i , in D (Ω D \ Γ D ) and F (h i ) = lim n Ω D σ(x, φ i,n (x))dx + Γ D g dh i -φ i,n • ν D , g for i = 1, 2.
Set φ n = tφ 1,n + (1 -t)φ 2,n . We clearly see that φ n are admissible for h and

F (h) ≤ lim n Ω D σ(x, φ n (x))dx + Γ D g dh -φ n • ν D , g = lim n Ω D σ(x, tφ 1,n + (1 -t)φ 2,n )dx + Γ D g dh -(tφ 1,n + (1 -t)φ 2,n ) • ν D , g ≤ lim n t Ω D σ(x, φ 1,n )dx + Γ D g dh -φ 1,n • ν D , g + (1 -t) Ω D σ(x, φ 2,n )dx + Γ D g dh -φ 2,n • ν D , g ≤ tF (h 1 ) + (1 -t)F (h 2 )
and this proves convexity. For the lower semicontinuity, take a sequence h n h in M b (Ω D ). For every n ∈ N, we consider a sequence (φ k n ) k∈N of DM p (Ω D ) such that

F (h n ) = lim k→∞ Ω D σ(x, φ k n (x))dx + Γ D g dh n -φ k n • ν D , g .
We may find some

ψ n ∈ L 1 (Ω D , R N ) such that -div(ψ n ) = h -h n in D (Ω D \ Γ D ), ψ n L 1 → 0 and ψ n • ν D , g → 0. In fact, we have h -h n ∈ M b (Ω D ) → W -1,p (Ω D ) for p > N and p := p p -1
. We consider the following p-Laplace equation

           -∆ p u n = h -h n in Ω D u n = 0 on Γ D |∇u n | p-2 ∇u n • ν Γ = 0 on Γ.
(3.10)

The system (3.10) admits a unique solution u n ∈ W 1,p (Ω D ) such that u n = 0 on Γ D . Hence, if we set ψ n = |∇u n | p-2 ∇u n , we see that ψ n ∈ L p (Ω D ), and then in L 1 (Ω D ). Moreover, we have

-div(ψ n ) = h -h n in D (Ω D ). Since h -h n is bounded in W -1,p (Ω D )
, it is not difficult to prove that u n is bounded in W 1,p (Ω D ). So, by taking a subsequence if necessary, we have u n u in W 1,p (Ω D ), and uniformly in Ω D . On the other hand, we have

Ω D |ψ n | p dx = Ω D |∇u n | p dx = h -h n , u n W -1,p (Ω D ),W 1,p (Ω D ) -→ n→∞ 0.
In particular, this implies that |ψ n | -→ n→∞ 0 in L 1 (Ω D ). Moreover, taking g ∈ Lip(Ω D ) be such that g = g on Γ D , we have

ψ n • ν D , g = Ω D ψ n • ∇g dx - Ω D g d(h -h n ) -→ n→∞ 0.
This being said, we clearly have -div(φ k n + ψ n ) = ρ + h, i.e. φ k n + ψ n are admissible fluxes for h. By semicontinuity of the integral, we have

F (h) ≤ Ω D σ(x, (φ k n + ψ n )(x))dx + Γ D g dh -(φ k n + ψ n ) • ν D , g ≤ Ω D σ(x, φ k n (x))dx + Γ D g dh n -φ k n • ν D , g + Ω D σ(x, ψ n (x))dx + Γ D g d(h -h n ) -ψ n • ν D , g .
Letting k → ∞ we get

F (h) ≤ F (h n ) + Ω D σ(x, ψ n (x))dx + Γ D g d(h -h n ) -ψ n • ν D , g .
Now, letting n → ∞, and using the fact that ψ n → 0 in L 1 (Ω D ) N , and h n h in M b (Ω D ), as n → ∞, we obtain the lower semicontinuity, i.e.

F (h) ≤ lim inf n F (h n ).
Next let us compute F * . For any u ∈ C(Ω D ), we have

F * (u) = sup h∈M b (Ω D ) Ω D udh -F (h) = sup h∈M b (Ω D ) φ∈DM p (Ω D ) Ω D udh - Ω D σ(x, φ(x))dx - Γ D g dh + φ • ν D , g : -div(φ) = ρ + h in D (Ω D \ Γ D ) = I 1 (u) + I 2 (u),
where I 1 (u) := -

Ω D
udρ and

I 2 (u) := sup h∈M b (Ω D ) φ∈DM p (Ω D ) Ω D \Γ D ud(ρ + h) - Ω D σ(x, φ(x))dx + Γ D (u -g) dh + φ • ν D , g : -div(φ) = ρ + h in D (Ω D \ Γ D ) .
Using Lemma 3.11 below, we deduce that, for any u ∈ Lip(Ω D ), we have

F * (u) =          - Ω D udρ if σ * (x, ∇u) ≤ 1 and u = g on Γ D ∞ otherwise.
Finally, using the fact

inf(OF D ) = F (0) = F * * (0) = sup u∈Lip(Ω D ) -F * (u) = max(M D ),
we deduce the result. 

Ω D \Γ D ud(ρ + h) - Ω D σ(x, φ(x))dx + Γ D (u -g) dh + φ • ν D , g : -div(φ) = ρ + h in D (Ω D \ Γ D ) =          0 if σ * (x, ∇u) ≤ 1 and u = g on Γ D ∞ otherwise.
Proof. Take u as a test function in the divergence constraint -div(φ

) = ρ + h in D (Ω D \ Γ D ),
we get

I(h, φ) := Ω D \Γ D ud(ρ + h) - Ω D σ(x, φ(x))dx + Γ D (u -g) dh + φ • ν D , g = Ω D ∇u • φdx - Ω D σ(x, φ(x))dx + Γ D (u -g) dh + φ • ν D , g -u .
If σ * (x, ∇u) ≤ 1 and u = g on Γ D , then following Lemma 2.7, we obtain sup I(h, φ) ≤ 0.

Actually, sup I(h, φ) = 0 in this case by taking h ≡ -ρ and φ ≡ 0. If u(x 0 ) = g(x 0 ) for some x 0 ∈ Γ D , then we consider Dirac mass at x 0 , h = n sign(u(x 0 ) -g(x 0 ))δ x 0 for n ∈ N, and fix

Φ 0 ∈ DM p (Ω D ) such that -div Φ 0 = ρ in D (Ω D \ Γ D ), we have sup I(h, φ) ≥ Ω D Φ 0 • ∇u - Ω D σ(x, Φ 0 (x))dx + n|u(x 0 ) -g(x 0 )| + Φ 0 • ν D , g -u .
Letting n → ∞, we get the result. For the remaining case, i.e. u = g on Γ D and σ * (x, ∇u) > 1 on a non negligible set, we see first that, for any u ∈ Lip(Ω D ), there exists a measurable function that we denote by q u : Ω D → R N , such that q u (x) • ∇u(x) = σ * (x, ∇u(x)), a.e. in Ω D .

Indeed, recall that σ * (x, ∇u(x)) = max p { p, ∇u(x) : σ(x, p) = 1} and the function x → p, ∇u(x) + II [σ(x,.)=1] is measurable. Then, q u is given by the measurable representation in the set arg max

p { p, ∇u : σ(x, p) = 1} . Now, if u = g on Γ D and σ * (x, ∇u) > 1 in a subset A ⊂ Ω D such that |A| = 0, we consider Φ n = n q u |q u | χ A * η , where η is a sequence of mollifiers. It is clear that there exists h ∈ M b (Ω D ),
such that -div Φ n = ρ + h. For any n, we have

sup I(h, φ) ≥ Ω D Φ n • ∇u - Ω D σ(x, Φ n (x))dx.
Letting → 0, we get

sup I(h, φ) ≥ n A 1 |q u | (q u • ∇u -σ(x, q u )) dx ≥ n A 1 |q u | (σ * (x, ∇u(x)) -1) dx.
Then, letting n → ∞, we get the result.

Remark 3.12. Going over the duality inferred by Theorem 3.10, we have inf

Ω D σ(x, φ(x))dx -φ • ν D , g : φ ∈ DM p (Ω D ), -div (φ) = ρ in D (Ω D \ Γ D ) = max Ω D u(x)dρ, σ * (x, ∇u(x)) ≤ 1 a.e. x in Ω D and u = g on Γ D .
It is not clear if the inf is a min . This is closely connected to the regularity of the trace of divergence-measure field. However, one sees that if this is true, i.e. the inf is a min, then the respective extremums u and φ satisfy the following PDE:

                           -div(φ) = ρ in D (Ω D \ Γ D ) φ(x) • ∇u(x) = σ(x, φ(x)) in Ω D u = g on Γ D σ * (x, ∇u(x)) ≤ 1 in Ω D φ • ν Γ = 0 on Γ.

The augmented Lagrangian technique

4.1. Formulation of the problem. We set again

X = W 1,∞ (Ω D ) and Y = L ∞ (Ω D ) N .
For any u ∈ X and η ∈ Y , we define

F(u) =        - Ω D u dρ if u = g on Γ D +∞ otherwise , G(η) =    0 if σ * (x, η) ≤ 1 +∞ otherwise
, and Λu = ∇u.

Thus, the problem (M D ) can be rewritten in the form

-min u∈X F(u) + G(Λu).
Introducing a new primal variable q ∈ Y we can write (M D ) in the following alternative form min

(u,q)∈X ×Y Λu=q F(u) + G(q)
so that (M D ) and (OF D ) can be recast in a saddle point form

min (u,q)∈X ×Y sup φ∈DM p (Ω D ) L(u, q; φ)
where

L(u, q; φ) = F(u) + G(q) + Ω D φ • (Λu -q) dx, for any (u, q, φ) ∈ X × Y × DM p (Ω D ).
More precisely, we have Proposition 4.13. u is a solution of (M D ) if and only if the couple (u, q) ∈ X × Y with q := Λu is a solution of sup

φ∈DM p (Ω D ) min (u,q)∈X ×Y L(u, q; φ)
which is equal to min

(u,q)∈X ×Y sup φ∈DM p (Ω D )
L(u, q; φ).

Proof. The duality of the previous section takes part of this result. For completeness let us give here the main arguments. It is not difficult to see that

min F(u) + G(Λu) : u ∈ X = min (u,q)∈X ×Y :Λu=q F(u) + G(q) = min (u,q)∈X ×Y sup φ∈DM p (Ω D ) F(u) + G(q) + Ω D φ (Λu -q) = min (u,q)∈X ×Y sup φ∈DM p (Ω D )
L(u, q; φ).

In a similar way, using the definition of F * , G * and Λ * , one sees that

sup -F * (-Λ * φ) -G * (φ) : φ ∈ DM p (Ω D ) = sup φ∈DM p (Ω D ) min (u,q)∈X ×Y L(u, q; φ).
On the other hand, thanks to the strong duality given in Theorem 3.10 and direct computation for the last line below, we get

-min F(u) + G(Λu) : u ∈ X = max(M D ) = inf Ω D σ(x, φ(x))dx -φ • ν D , g : φ ∈ DM p (Ω D ), -div (φ) = ρ in D (Ω D \ Γ D ) = -sup -F * (-Λ * φ) -G * (φ) : φ ∈ DM p (Ω D ) .
Thus, sup

φ∈DM p (Ω D ) min (u,q)∈X ×Y L(u, q; φ) = min (u,q)∈X ×Y sup φ∈DM p (Ω D )
L(u, q; φ).

For a given r > 0, we recall that the augmented Lagrangian (cf. [START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF]) is given by

L r (u, q; φ) = F(u) + G(q) + φ, Λu -q + r 2 |Λu -q| 2 , for any (u, q, φ) ∈ X × Y × DM p (Ω D ).
In the same way, it can easily be proved that Proposition 4.14. Let r > 0. Then, u is a solution of (M D ) if and only if the couple (u, q) ∈ X × Y with q := Λu is a solution of

sup φ∈DM p (Ω D ) min (u,q)∈X ×Y L r (u, q; φ)
which is equal to (S r ) : min

(u,q)∈X ×Y sup φ∈DM p (Ω D )
L r (u, q; φ). Now for the numerical computation concerning the problem (M D ), we will focus on the saddle point problem (S r ). Recall that the addition of the quadratic term r 2 |Λu -q| 2 has the advantage of improving the convergence of the dual approach (one can see [START_REF] Ekeland | Convex analysis and variational problems[END_REF][START_REF] Glowinski | Numerical methods for nonlinear variational problems[END_REF]).

4.2. Application of ALG2. We approximate the domain Ω D via a triangulation T h . For k ≥ 1, we denote by P k the space of polynomials with real coefficients and of degree at most k. We define

X h ⊂ W 1,∞ (Ω D )
as the space of continuous functions on Ω D belonging to P k on each triangle. Similarly, Y h is the space of vector valued functions belonging to (P k-1 ) d on each triangle. Then the problem (M D ) is discretized by the following finite-dimensional optimization problem:

inf u∈X h F(u) + G(Λu).
Then, for a given q 0 ∈ Y h , φ 0 ∈ Y * h , using ALG2 algorithm (also called ADMM [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]) we construct a sequence {u i } i , {q i } i , {φ i } i by optimizing alternatively in u and q, for i ≥ 1. Convergence of the algorithm in the finite-dimensional setting is well known (cf. [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF]). The convergence can be also established in the case of infinite-dimensional Hilbert spaces. For further details in this direction and about the ALG2, we refer the reader to [START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF][START_REF] Fortin | Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems[END_REF][START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF].

Algorithm 1 ALG2 iterations 1st step: u i+1 ∈ arg min u∈X h F(u) + φ i , Λ(u) + r 2 |Λ(u) -q i | 2 .
2nd step: q i+1 ∈ arg min

q∈Y h G(q) -φ i , q + r 2 |Λ(u i+1 ) -q| 2 .
3rd step: We update the multiplier φ by

φ i+1 = φ i + r(∇u i+1 -q i+1 ).
Remark 4.15.

• The first step amounts to solve a Laplace equation with mixed boundary conditions. Indeed, we have for every z ∈ X h with z = 0 on Γ D r ∇u i+1 , ∇z = ρ, z + (rq i -φ i ), ∇z which is equivalent to solve • The second step is a pointwise projection. Indeed, we use P 1 finite element for q and φ, we have at each vertex

-r∆u = ρ + div(φ -rq) in Ω D ,
x k 0 ∈ ∂II B * (x k ,.) (q i+1 (x k )) -φ i (x k ) -r(∇u i+1 (x k ) -q i+1 (x k )),
which is equivalent to perform pointwise projections:

q i+1 (x k ) = Proj B * (x k ,.) φ i (x k ) r + ∇u i+1 (x k )
where B * (x, .) = {p ∈ R N : σ * (x, p) ≤ 1}.

Error criterion.

Basing on the primal-dual optimality conditions, we use the following stopping criterion

1. MaxLip := sup x σ * (x, ∇u(x)), 2. Div := -div(φ) -ρ L 2 , 3. Dual := σ(x, φ(x)) -φ(x) • ∇u L 2 , 4. NBD φ := Γ(φ • ν) 2 1/2
.

We expect MaxLip ≤ 1 and Div, Dual, NBD φ to be small. In addition, we compute u -u exact for different norms where u is the computed solution and u exact is the exact solution, whenever the latter is easily found. Let us mention that NBD φ will concern only the Test 2 where we prescribe data on a closed set D, so that Γ = ∅.

To implement the algorithm we use FreeFem++ [START_REF] Hecht | New development in Freefem++[END_REF], which is particularly adapted to solve the Laplace equation in the first step of ALG2. We use P 2 finite element for u and P 1 finite element for φ and q (see e.g. [START_REF] Benamou | Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations[END_REF]). All the tests are executed on a macOs Mojave 10.14.4. The exact solution is u exact (x, y) = d((x, y), ∂Ω) = min(x, 1 -x, y, 1 -y). We measure u -u exact in different norms, with different mesh sizes N h and for 1000 iterations. This test shows us that ALG2 iteration converges to the accurate solution u as the mesh is refined.

Numerical experiments

N h Time execution u -u exact L 2 u -u exact L 1 u -u exact L ∞ 30 

Test 2:

We consider the same equation |∇u| = 1 on Ω = (-1, 1) 2 \ D where D is the euclidean ball centered at (0.05, 0.09) and of radius 0.25, and we set u to be equal to 0 on D.

(a) (a) In this case B * is an ellipse and the projection can be computed as in the Riemannian case [START_REF] Yu | Algorithms of projection of a point onto an ellipsoid[END_REF]:

N h Time execution u -u exact L 2 u -u exact L 1 u -u exact L ∞ 30 
Proj B * (q) = q if q ∈ B * (ζM + I n ) -1 q otherwise,
where ζ is the unique positive root of the function

F (ζ) = q † ζ M qζ -1 with qζ = (ζM + I n ) -1
q, which can be found with a dichotomy method. We perform a test as in [START_REF] Luo | Fast sweeping methods for factored anisotropic Eikonal equations: multiplicative and additive factors[END_REF]Example 2] by taking Given a compact convex set K of R N such that 0 ∈ int(K), then its gauge function reads g K (p) = inf{λ ≥ 0; λp ∈ K}.

M = l 1 (x, y) -l 3 (x, y) -l 3 (x, y) l 2 (x, y) with l 1 (x, y) = 1 e -2
We consider the following HJ equation H(x, ∇u) = g K * (∇u) -1, in Ω and u = 0 on ∂Ω, where K * is the polar set of K defined through K * = {p ∈ R N : p, q ≤ 1, ∀q ∈ K}.

It is well known (see e.g. [START_REF] Rockafellar | Convex analysis[END_REF][START_REF] Hiriart-Urrut | Convex analysis and minimization algorithms[END_REF]) that g K * = σ K . In the last two examples we take some explicit forms of the support function σ.

5.7. Riemannian case. We take σ((x, y), v) = β 1 v 2 1 + β 2 v 2 2 , with β 1 , β 2 > 0. It is not difficult to see that σ * (q) = q 2 1 β 1 + q 2 2 β 2 . As in [START_REF] Benamou | A numerical solution to Monge's problem with a Finsler distance as cost[END_REF], the projection onto the unit ball of σ * , B * = {q, σ * (q) ≤ 1} is given by

Proj B * (q) =    q if q ∈ B * β 1 q 1 β 1 + ζ , β 2 q 2 β 2 + ζ otherwise,
where ζ is the zero of the function

F (ζ) = 1 - β 1 q 1 (β 1 + ζ) 2 + β 2 q 1 (β 2 + ζ) 2 ,
which can be computed with a dichotomy algorithm.

For this test, we take .

(a) The projection onto B * can be performed easily (see [START_REF] Benamou | A numerical solution to Monge's problem with a Finsler distance as cost[END_REF][START_REF] Igbida | Augmented Lagrangian method for optimal partial transportation[END_REF]). We start by determining the vertices s 1 , • • • , s k of B * and the corresponding outward normal vectors ν i to the edges of B * . Afterwards, if v ∈ B * , we distinguish to cases: either v ∈ [s i , s i+1 ] + R + ν i , and in this case we project v onto the segment [s i , s i+1 ], or it belongs to a sector s i + R + ν i + R + ν i+1 and in this case its projection is s i . We perform a test with p 1 = (1, -1), p 2 = (1, -0.8), p 3 = (-0.8, 1), p 4 = (-1, 1), p 5 = (-1, -1). We take N h = 64 and 600 iterations. 

1 . Introduction 1 . 1 .

 111 Motivation and related works. Our main interest lies in the study from theoretical and numerical point of view the Hamilton-Jacobi (HJ) equation H(x, ∇u) = 0 in an open bounded domain Ω ⊆ R N coupled, for instance, with a Dirichlet boundary condition on ∂Ω.

  which can be rewritten as ∇u ∈ B |.| (0, f ) where |.| stands for the Euclidean norm. This enables to rewrite the problem into the following sub-gradient constrained optimization max Ω udx : ∇u ∈ B |.| (0, f ) and u = 0 on ∂Ω .

  hence by Proposition 2.5 we have σ * (x, ∇u) ≤ 1. Consequently u solves (2.8). If w is another solution, then Ω u(x)dx = Ω w(x)dx and w ≤ u in Ω by the first step. Consequently u = w, as desired.

Theorem 3 . 8 .

 38 (Strong duality [20, Chap. III]) Assume moreover that there exists u 0 ∈ X such that F(u 0 ) < +∞, G(Λu 0 ) < +∞ and G is continuous at Λu 0 . Then the dual problem admits at least a solution v ∈ Y * and the strong duality holds, i.e.

  sup Ω udx : |∇u| ≤ f and u = 0 ∂Ω , or equivalently (P) : inf u∈V {F(u) + G(Λu)}

3. 2 .

 2 Duality for HJ equation. To the duality, we consider a more general problem by considering, for a nonnegative Radon measure ρ ∈ M + b (Ω) and a closed subset D ⊂ Ω, the problem max Ω udρ : σ * (x, ∇u(x)) ≤ 1 and u = g on D .

Theorem 3 . 10 .

 310 Let ρ ∈ M + b (Ω). Then we have the following strong duality (M D ) := max Ω D udρ : σ * (x, ∇u(x)) ≤ 1 and u = g on Γ D = inf φ∈DM p (Ω D ) Ω D σ(x, φ(x))dx -φ • ν D , g : -div (φ) = ρ in D (Ω D \ Γ D ) := (OF D ). Proof. Consider on M b (Ω D ) the following functional F : M b (Ω D ) →] -∞, ∞] defined by

Lemma 3 . 11 .

 311 Let u ∈ Lip(Ω D ), we have sup h∈M b (Ω D ) φ∈DM p (Ω D )



  together with the following mixed boundary conditions:   Dirichlet boundary condition u = g on Γ D Homogeneous Neumann boundary condition (r∇u + φ -rq) • ν Γ = 0 on Γ.

5. 1 .

 1 Test 1: We first examine the case |∇u| = f (x, y) ≡ 1 in Ω = (0, 1) 2 and u = 0 on ∂Ω.

Figure 1 .

 1 Figure 1. Left to right: 3D plot of the solution u, contour plot of u, the flux φ

Figure 2 .

 2 Figure 2. Error criterion for 1000 iterations with N h = 120

Figure 3 .

 3 Figure 3. Left to right: 3D plot of the solution u, contour plot of u, the flux φ

Figure 4 . 5 . 3 .

 453 Figure 4. Error criterion for 500 iterations with N h = 50
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 56544 Figure 5. Left to right: 3D plot of the solution u, contour plot of u, the flux φ

Figure 7 .Figure 8 . 5 . 5 .

 7855 Figure 7. Left to right: 3D plot of the solution u, contour plot of u, the flux φ

Figure 9 .

 9 Figure 9. Left to right: 3D plot of the solution u, contour plot of u, the flux φ

Figure 10 .

 10 Figure 10. Error criterion for 600 iterations with N h = 120
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Figure 11 .

 11 Figure 11. Left to right: 3D plot of the solution u, contour plot of u, the flux φ

Figure 12 .

 12 Figure 12. Error criterion for 300 iterations with N h = 80.

2 e - 2 √ 2 (

 222 -0.5) 2 +2(x-0.5)(y-0.5)+(y-0.5) 2 ) and β 2 = x-0.5) 2 +2(x-0.5)(y-0.5)+(y-0.5) 2 )

Figure 13 .

 13 Figure 13. Left to right: 3D plot of the solution u, contour plot of u, the flux φ

Figure 14 .

 14 Figure 14. Error criterion for 400 iterations with N h = 64

Figure 15 .

 15 Figure 15. Left to right: 3D plot of the solution u, contour plot of u, the flux φ

Figure 16 .

 16 Figure 16. Error criterion for 600 iterations with N h = 64.
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