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AUGMENTED LAGRANGIAN METHODS FOR DEGENERATE
HAMILTON–JACOBI EQUATIONS

HAMZA ENNAJI†, NOUREDDINE IGBIDA†, AND VAN THANH NGUYEN‡

Abstract. We suggest a new approach to solve a class of degenerate Hamilton–Jacobi equa-
tions without any assumptions on the emptiness of the Aubry set. It is based on the character-
ization of the maximal subsolution by means of the Fenchel–Rockafellar duality. This approach
enables us to use augmented Lagrangian methods as alternatives to the commonly used meth-
ods for numerical approximation of the solution, based on finite difference approximation or on
optimal control interpretation of the solution.

1. Introduction

1.1. Motivation and related works. Our main interest lies in the study from theoretical and
numerical point of view the Hamilton–Jacobi (HJ) equation

H(x,∇u) = 0

in an open bounded domain Ω ⊆ RN coupled, for instance, with a Dirichlet boundary condition
on ∂Ω. Here, H is continuous in both arguments, coercive and convex in the second, but not
enjoying any property of existence of a smooth strict subsolution. Our study here takes place
in the framework of viscosity solution theory, so that the term (sub, super) solution must be
understood in this sense.

Recall that the nonexistence of smooth strict subsolution is connected to the fact that the so-
called Aubry set, noted by A, is not empty. It is known that in this case the problem has many
solutions. Nevertheless, one needs to select the pertinent one from the physical point of view as
well as the optimal control one, such as, the maximal subsolution. Such kind of equations are
relevant, for instance, in the study of Shape from Shading [18, 33, 39, 40, 45], granular material
[28] and many other problems ranging from mechanics, geometry, seismic analysis, optics to
image processing, etc.

Typical situation appears in the study of the so-called Eikonal equation subject to Dirichlet
boundary condition, that is {

|∇u| = f in Ω
u = 0 on ∂Ω,

(1.1)
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where f ≥ 0 is a continuous function. In this case the Aubry set corresponds to the zero set
[f = 0]. In the case where this set is empty, i.e. f > 0 in Ω, the equation (1.1) falls into the
scope of Eikonal equation of the type k |∇u| = 1, where k is a continuous positive function on Ω.
Among famous numerical methods (especially for Eikonal equations), remain the Fast Sweeping
Method (FSM) and the Fast Marching Method (FMM). The FSM (see e.g. [34, 16, 49]) is
based on an upwind difference discretization solved via Gauss-Seidel iterations with alternating
sweeping ordering. As to the FMM (see e.g. [43, 47]), the Eikonal equation is again written
via an upwind finite difference approximation. The grid points are divided into three categories:
accepted nodes which are points where the values of the solution are already known, narrow band
nodes where the computations take place and finally far nodes which will be computed in the
next iterations. For other methods and commented references, the interested reader can check
[21, 42] for a general overview of numerical methods for Hamilton-Jacobi equations and their
applications.

The case where A is nonempty (degenerate HJ equation) is different. Recall that the main role
of this set concerns the uniqueness of the solution. Roughly speaking a solution is characterized
in a unique way by its values on the set of degeneracy, i.e. on A. So, some additional condition
is imposed to single out numerically the reasonable solution among infinitely many ones: for
example, it is assumed that the solution is given on the Aubry set, which becomes then a part
of the boundary of the domain where the problem is discretized (see e.g. [40]). Nevertheless,
in practice we do not, in general, have this knowledge. To overcome this obstruction, some
methods suggest to regularize the problem by cutting from below f at some level ε > 0, and then
let ε→ 0. This approach was exploited in [7] using deeply control theoretic interpretation for the
approximation of the maximal subsolution. Their scheme was based on a two-step discretization
of the control problem associated with the regularized problem: first in the time variable, and
then in the space variable. Under some appropriate condition, the approximated solution is shown
to be convergent to the maximal solution using stability results. For comprehensive exposition
of Hamilton–Jacobi equations and optimal control one can see, for example, [9, 10, 32].

1.2. Main contributions. In this paper, we suggest a new approach to tackle general Hamilton-
Jacobi problem without requiring any additional assumptions on the Aubry set. The way is to use
variational formulation for the characterization of the maximal subsolution. Then using duality
method, we give a direct PDE-constrained optimization algorithm to approximate the solution.
In particular, this approach empowers the use of fast numerical optimization methods, employed
in the recent development of mathematical programming, as alternatives to the commonly used
methods we presented previously. We can not cover all the possibilities with this approach in this
paper, but we propose to try out its prospects to tackle some examples of degenerate Hamilton-
Jacobi equations. We show how one can use methods like augmented Lagrangian one to solve
Hamilton-Jacobi equations and present some numerical results. Coming back to the Eikonal
equation, let us outline an overview on our approach and main contributions. As a starting
point, we observe that problem (1.1) aims to characterize the maximal subsolution; i.e. the
maximal continuous functions subject to a Dirichlet condition and the constraint on the gradient

|∇u| ≤ f,



AUGMENTED LAGRANGIAN METHODS FOR DEGENERATE HJ EQUATIONS 3

which can be rewritten as ∇u ∈ B|.|(0, f) where |.| stands for the Euclidean norm. This enables
to rewrite the problem into the following sub-gradient constrained optimization

max

{∫
Ω
udx : ∇u ∈ B|.|(0, f) and u = 0 on ∂Ω

}
. (1.2)

For the non-degenerate case, i.e., f(x) > 0 on Ω, the Fenchel-Rockafellar strong duality result
(cf. [20, Chap. III]) implies that the optimal value of (1.2) coincides with

min
φ∈Mb(Ω)N

{∫
Ω
f d|φ| : −div(φ) = ρ in D′(Ω)

}
,

whereMb(Ω)N denotes the set of vector valued measures concentrated in Ω. This duality plays an
important role in our approach since wherefore the solution of (1.1) is given by the saddle-points
of a problem of the type

min
u,q

max
φ

L(u, q;φ)

that will be precise later. In the degenerate case; i.e. f ≥ 0, the previous duality falls out of the
scope of standard Fenchel-Rockafellar duality result since the so called qualification conditions
are not fulfilled. Using perturbation techniques, we prove that the duality and the saddle-points
characterization still hold true in the degenerate case. As far as the degeneracy of the Hamiltonian
is involved the boundary condition takes part definitely in the proofs of duality. Indeed, working
with non homogeneous boundary condition like

u = g on ∂Ω,

requires to handle rigorously the trace of vector fields Φ involved both into the dual problem
and the saddle point formulation. To overcome these difficulties, we make use of a trace-like
operator for the so called divergence-measure field (cf. [11, 12, 13]). For numerical computation,
we operate thus the saddle-point structure in the augmented Lagrangian (cf. [25])

Lr(u, q;φ) = L(u, q;φ) +
r

2
|Λu− q|2, for any (u, q, φ)

for a given arbitrary r > 0. Notice here that the addition of the quadratic term
r

2
|Λu− q|2 has

the advantage of improving the convergence speed. Then, for numerical experiments we use the
so called ALG2 algorithm1 (also known as ADMM: alternating direction method of multipliers
[4]) to construct a sequence {ui}i, {qi}i, {φi}i by optimizing alternatively in u and q, for i ≥ 1
to lay out numerical approximations of the solutions of (1.1) in miscellaneous context that are
meaningful from modeling viewpoint (degenerate, non-degenerate and/or anisotropic Eikonal
equation, Riemannian case as well as polyhedral one). For further details about the ALG2
algorithm, we refer the reader to [19, 23, 25].

To unroll the foregoing machinery we describe above from the Eikonal equation to general
Hamilton–Jacobi equations H(x,∇u) = 0, we exploit the metric character of these equations
and address similar problems. More precisely, we establish the equivalence between being a
viscosity subsolution of HJ equations, i.e. H(x,∇u) ≤ 0, and ∇u ∈ Bσ∗ where σ∗ is the dual of

1ALG2 is an abbreviation of algorithm 2 in [23] to calculate efficiently saddle points of functionals of the form
Lr. It is essentially based on relaxation of Uzawa’s algorithm.
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the support function σ of the sublevel sets of H, which will be given later. So, in order to solve
the HJ equations we will focus on the problem of the form

max

{∫
Ω
udx : ∇u ∈ Bσ∗ and u = g on ∂Ω

}
(1.3)

to end up in some sense with the study of problem of maximizing
∫

Ω
udρ for a given measure

ρ (ρ ≡ 1 in (1.3)), among 1-Lipschitz functions with respect to dσ. We show thereby that the
aforementioned strategy for Eikonal equation works and offers further issue for very general (even
degenerate) quasiconvex Hamiltonians. Up to our knowledge, most of the existing methods to
approximate solutions of HJ equations of the form H(x, p) = F (p)− f(x) assuming that f > 0.

At last, let us notice that though the approach proposed in [7] is more concerned with the
discretization of the intrinsic metric dσ, the FMM and FSM repose on a direct discretization
of the equation, our strategy is more in the sprite of "optimize then discretize". Besides the
degenerate case (see Tests 5.3–5.4–5.5), our approach presents a general method to solve numer-
ically Hamilton-Jacobi equations by performing simple operations like projections into Finsler
balls. Actually, it works even for general quasicovex Hamiltonians, the challenge is to be able
to project efficiently onto the 0-sublevels of the Hamiltonians. These can be seen in the non-
trivial Examples 5.6–5.7–5.8. In addition, let us point out that the other examples, especially the
Riemannian, anispotropic and crystalline cases (see tests Examples 5.6–5.7–5.8) are not widely
present in the literature. Some papers are exclusively devoted to each case (e.g. [34, 35, 36, 37]
for the anisotropic and non-holonomic Eikonal equations).

Thanks to the structure of the novel variational formulation developed in this paper for (even
degenerate) quasiconvex HJ equations, it is clear that other numerical optimization methods may
also have potential benefits than the proposed one in this paper. One can proceed for instance
also with the Chambolle-Pock method (see for instance [26]). Preconditioning techniques should
furthermore improve the numerical experiments as well.

Let us mention also that our approach is close to the one in [6] as they consider a maximization
problem. However, they deal with nonconvex constraint contrary to the convex problem we are
considering.

1.3. Plan of the paper. This paper is organized as follows. In Section 2, we recall the metric
character of HJ equations. More precisely, we present a distance dσ of Finsler type, constructed
from the sublevel sets of the Hamiltonian, which is essential to characterize the subsolutions
of HJ equations. We also show that the unique maximal subsolution is characterized by the
maximization problem of the form

max

{∫
Ω
udx : ∇u ∈ Bσ∗ and u = g on D ⊂ Ω

}
. (1.4)

Dealing with the problem (1.4), it is natural to derive its dual problem. This will be the main
goal of Section 3 where we discuss the duality issue for a general Hamiltonian. This will be done
via perturbation techniques. Finally we present the augmented Lagrangian, and we see that
thanks to the duality result, solving (1.4) amounts to finding saddle points of a Lagrangian L.
We give several numerical tests to illustrate our results.
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2. Metric character of Hamilton–Jacobi equations

2.1. Preliminaries. In this paper Ω ⊂ RN is a regular connected bounded open domain. We
consider the following HJ equation

H(x,∇u) = 0, x ∈ Ω, (2.5)

where H : Ω × RN → R is a continuous Hamiltonian satisfying, for each x ∈ Ω, Z(x) := {p ∈
RN , H(x, p) ≤ 0},
(H1) coercivity: Z(x) is compact;
(H2) convexity: Z(x) is convex for any x ∈ Ω;
(H3) H(x, 0) ≤ 0, i.e. 0 ∈ Z(x) for any x ∈ Ω.

A typical example is the Eikonal equation with H(x, p) = |p|−f(x) for a nonnegative continuous
function f .

The properties and notions introduced in this subsection are more or less known. Proofs
and more details can be found in [14, 32, 44, 15]. We recall briefly some definitions related to
viscosity theory. Given two continuous functions φ and ψ, one says that ψ is a strict supertangent
(respectively subtangent) to φ at some point x ∈ Ω if x is a strict local maximizer (respectively
minimizer) of φ− ψ.

Definition 2.1. A continuous function u : Ω → R is said to be a viscosity subsolution of (2.5)
if H(x,∇φ(x)) ≤ 0 for any x ∈ Ω and any C1 supertangent function φ to u at x. It is said to
be a viscosity supersolution of (2.5) if H(x,∇ψ(x)) ≥ 0 for any x ∈ Ω and any C1 subtangent
function to u at x. Finally, u is a viscosity solution of (2.5) if it is both a subsolution and a
supersolution.

We denote by S−H(Ω) the family of subsolutions of (2.5). One pertinent property of this family
is its stability with respect to uniform convergence, which is not the case for a.e. solutions as we
can see by considering a sawtooth function. Moreover, whenever we consider a family C ⊂ S−H(Ω)
of locally equibounded functions, then inf

u∈C
u(x) and sup

u∈C
u(x) are still subsolutions to (2.5). We

similarly denote by S+
H(Ω) (resp. SH(Ω)) the family of supersolutions (resp. solutions) of (2.5).

For x ∈ Ω, we define the support function of the 0-sublevel set Z(x) by

σ(x, q) := sup q · Z(x) = sup{〈q, p〉 : p ∈ Z(x)} for q ∈ RN .

The assumptions (H1)− (H2) ensure that σ is a continuous nonnegative function in Ω×RN ,
convex and positively homogeneous with respect to q. Due to the assumption (H3), σ(x, q) is
possible to equal to 0 for q 6= 0, which leads to the degeneracy and its dual σ∗, as given below,
may take the value +∞. Here, the dual σ∗ (also called polar) is defined by

σ∗(x, p) := sup
q∈RN

{〈p, q〉 : σ(x, q) ≤ 1}.

For example, in the case of Eikonal equation |∇u(x)| = f(x), one has σ(x, q) = f(x)|q| and
σ∗(x, p) =

1

f(x)
|p|. We see that σ∗(x, p) take the value +∞ for p 6= 0 on the zero set of f .

We denote by Γ(x, y) the set of Lipschitz curves defined on [0, 1] joining x, y in Ω. We then
define the intrinsic distance by
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dσ(x, y) := inf
ζ∈Γ(x,y)

∫ 1

0
σ(ζ(t), ζ̇(t))dt,

which is a quasi-distance, i.e. satisfying dσ(x, x) = 0 and the triangular inequality, but not
necessarily symmetric. We summarize the basic properties of dσ in the following.

Proposition 2.2. ([22])
1) dσ is a quasi-metric, in the sense that for any x, y ∈ Ω dσ(x, y) ≥ 0 and dσ(x, x) = 0.

Moreover, for all x, y, z ∈ Ω one has dσ(x, y) ≤ dσ(x, z) + dσ(z, y).
2) For any x ∈ Ω dσ(x, .) ∈ S−H(Ω) ∪ S+

H(Ω \ {x}).
3) Compatibility condition: v ∈ S−H(Ω) if and only if v(x)−v(y) ≤ dσ(y, x) for any x, y ∈ Ω.

The so called Aubry set is defined as the set where the quasi-metric dσ degenerates. Prescribing
a boundary value on ∂Ω does not guarantee the uniqueness of viscosity solutions to (2.5) unless
A = ∅, which is not the case in our situation due to the assumption (H3). The Aubry set A
appears then to be a uniqueness set for (2.5).

Definition 2.3. We define the Aubry set A as the set of points x ∈ Ω such that there exists
(ζn)n ∈ Γ(x, x) with l(ζn) ≥ δ > 0 and

inf
n

{∫ 1

0
σ(ζn(t), ζ̇n(t))dt

}
= 0,

where l(ζn) is the Euclidean length of the curve ζn.

Proposition 2.4. ([22],[8])
1) The Aubry set A is a closed subset of Ω.
2) If x ∈ A then dσ(x, .) ∈ SH(Ω). Moreover, x /∈ A if and only if (2.5) admits a strict

subsolution around x.
3) If g : A ∪ ∂Ω→ R is a continuous function satisfying the compatibility condition g(x)−

g(y) ≤ dσ(y, x) on A ∪ ∂Ω, then

u(x) = min
y∈A∪∂Ω

{dσ(y, x) + g(y)}

is the unique viscosity solution of the equation (2.5) such that u = g on A ∪ ∂Ω.

2.2. Equivalence between HJ and maximization problem. Given a closed subset D ⊂ Ω
(typically D = ∂Ω or D = {x} for some x ∈ Ω), we consider the following HJ equation{

H(x,∇u) = 0 Ω \D
u = g D

(2.6)

where g : D → R is continuous function satisfying the compatibility condition. Then the unique
maximal viscosity subsolution of the equation (2.6) such that u(x) = g(x) for any x ∈ D, is given
by

u(x) = min
y∈D

dσ(y, x) + g(y) (2.7)

with dσ(., .) being the intrinsic metric associated to the Hamiltonian H.
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The considerations given in the introduction lead us to look for the maximal subsolutions of
the HJ equation, i.e., H(x,∇u) ≤ 0 or equivalently u(x) − u(y) ≤ dσ(y, x). We will show that
such functions are precisely the ones with gradient in the unit ball of σ∗. More precisely, we
prove the following

Proposition 2.5. S−H(Ω) = {u ∈W 1,∞(Ω) and σ∗(x,∇u(x)) ≤ 1 for a.e x ∈ Ω} := Bσ∗.

Then, we transform the problem into a question of maximization of the volume
∫

Ω
udx among

the subsolutions u. This leads to the following theorem which is an important step to treat the
equation (2.6) via augmented Lagrangian methods.

Theorem 2.6. The maximal viscosity subsolution of (2.6), given by (2.7), is the unique solution
of the problem

max
{∫

Ω
z(x)dx, σ∗(x,∇z(x)) ≤ 1 and z = g on D

}
. (2.8)

For the proof of Proposition 2.5, we recall that the result is more or less known in the case
where H(x, 0) < 0 which corresponds to A = ∅ (see [30, 29] for example). Here, under the
general condition (H3), we need the following Cauchy–Schwartz-like lemma.

Lemma 2.7. For any q ∈ RN , and for any x ∈ Ω we have

σ∗(x, q) ≤ 1⇔ 〈p, q〉 ≤ σ(x, p) for any p ∈ RN .

Proof. Assume first that σ∗(x, q) ≤ 1. If 〈p, q〉 = 0, it is obvious. For the case 〈p, q〉 > 0, if
σ(x, p) = 0 then by homogeneity of σ, σ(x, λp) = 0 for every λ ≥ 0. Consequently, σ∗(x, q) ≥
λ〈p, q〉 → ∞ as λ → ∞, this contradicts σ∗(x, q) ≤ 1. This implies that σ(x, p) > 0 and〈 p

σ(x, p)
, q
〉
≤ σ∗(x, q) ≤ 1, as desired. Conversely, if 〈p, q〉 ≤ σ(x, p), by definition of σ∗,

we take the sup over all p such that σ(x, p) ≤ 1 in the previous inequality to obtain that
σ∗(x, q) ≤ 1. �

Proof of Proposition 2.5. We divide the proof into two parts. Firstly, S−H(Ω) ⊂ Bσ∗ . Take a point
x ∈ Ω such that u is differentiable at x. For every vector v ∈ SN−1 on the unit sphere, we take
ζh(t) = tx + (1 − t)(x − hv) for every h > 0 and t ∈ [0, 1] and we notice that ζh ∈ Γ(x − hv, x)
and for h small enough, ζh is close to x. We then have

〈∇u(x), v〉 ≤ lim
h→0+

h−1(u(x)− u(x− hv))

≤ lim inf
h→0+

h−1dσ(x− hv, x)

≤ lim inf
h→0+

h−1

∫ 1

0
σ(ζh, ζ̇h)dt = lim inf

h→0+

∫ 1

0
σ(ζh, v)dt ≤ σ(x, v),

where we have used the continuity of x 7→ σ(., v) and Lebesgue theorem. Using the definition of
σ∗, we deduce that σ∗(x,∇u(x)) ≤ 1 as desired.
Secondly, Bσ∗ ⊂ S−H(Ω). Assume now that σ∗(x,∇u(x)) ≤ 1 at any differentiable point x of u,
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i.e., 〈∇u(x), p〉 ≤ σ(x, p) for all p ∈ RN (Lemma 2.7). For smooth function u, the argument is
simply given by

u(y)− u(x) =

1∫
0

∇u(ξ(s)) · ξ̇(s)ds

≤
∫ 1

0
σ(ξ(s), ξ̇(s))ds,

for Lipschitz curves ξ joining x to y in Ω. This implies that u(y)− u(x) ≤ dσ(x, y). For general
Lipschitz function u, one can make use of smooth approximation (see [38, Lemma 3.1]). �

Proof of Theorem 2.6. Let us see that for any subsolution v (2.6), we have v ≤ u. Pick any
subsolution v of (2.6) satisfying the condition v = g on D. Let x ∈ Ω, we have for any y ∈ D

v(x) = v(x)− v(y) + g(y)

≤ dσ(y, x) + g(y).

This gives that v ≤ u in Ω and then
∫

Ω
v(x)dx ≤

∫
Ω
u(x)dx. Clearly u is 1−Lipschitz with

respect to dσ, hence by Proposition 2.5 we have σ∗(x,∇u) ≤ 1. Consequently u solves (2.8). If w

is another solution, then
∫

Ω
u(x)dx =

∫
Ω
w(x)dx and w ≤ u in Ω by the first step. Consequently

u = w, as desired. �

3. HJ and duality results

3.1. Generalities. As we said in the introduction among our main interests in this paper is to
use augmented Lagrangian methods to give a direct algorithm to approximate the solution of
the Hamilton–Jacobi equations.

Actually, the problem (2.8) falls into the scope of the following class of optimization problem

(P) inf
u∈X

F(u) + G(Λu)

where X and Y are two Banach spaces with the topological dual spaces X ∗ and Y ∗, F : X →
(−∞,+∞], G : Y → (−∞,+∞] are proper, l.s.c., convex functions and Λ : X → Y is a linear
operator. The main future for this kind of formulation is to look at its dual problem, which is
given by

(D) sup
v∈Y ∗

(
−F∗(−Λ∗v)− G∗(v)

)
.

Here Λ∗ is the adjoint operator of Λ, while F∗,G∗ are the Legendre–Fenchel transformations of
F and G given by

F∗(f) = sup
u∈X

(〈f, u〉 − F(u)) for any f ∈X ∗

G∗(g) = sup
q∈Y

(〈g, q〉 − G(q)) for any g ∈ Y ∗.

Using the definitions of F∗, G∗ and Λ∗, it is not difficult to get the following inequality

sup
v∈Y ∗

(
−F∗(−Λ∗v)− G∗(v)

)
≤ inf

u∈X
F(u) + G(Λu),
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usually called weak duality. The reverse inequality, the so-called strong duality, plays an impor-
tant role since the point is that the solutions of (P) and (D) are given by the saddle-points of
the problem

min
u,q

max
φ

L(u, q;φ)

where L(u, q;φ) = F(u)+G(q)+ 〈φ,Λu− q〉. Yet, the strong duality is not true in general. Some
qualification conditions are needed. For instance, one has

Theorem 3.8. (Strong duality [20, Chap. III]) Assume moreover that there exists u0 ∈X such
that F(u0) < +∞, G(Λu0) < +∞ and G is continuous at Λu0. Then the dual problem admits at
least a solution v ∈ Y ∗ and the strong duality holds, i.e.

max
v∈Y ∗

(
−F∗(−Λ∗v)− G∗(v)

)
= inf

u∈X
F(u) + G(Λu).

Moreover, u solves (P) if and only if

−Λ∗u ∈ ∂F(u) and v ∈ ∂G(Λu).

As we pointed out in the introduction, because of the degeneracy of the Hamiltonian, we can
not directly use Theorem 3.8 to show duality between the maximization problem and its dual
problem. To see this, let us restrict ourselves to the following particular case: the Hamilton-
Jacobi equation of Eikonal type, coupled with a zero Dirichlet boundary condition,{

|∇u(x)| = f(x) in Ω

u = 0 on ∂Ω,

where f is a continuous, nonnegative function on Ω. In this particular case, the problem (MD)
can be rewritten as

sup

{∫
Ω
udx : |∇u| ≤ f and u = 0 ∂Ω

}
,

or equivalently
(P) : inf

u∈V
{F(u) + G(Λu)}

where V = C1(Ω) ∩H1
0 (Ω),

F(u) = −
∫

Ω
udx, Λu = ∇u and G(q) =

{
0 if |q| ≤ f
+∞ otherwise.

For the case of non-degeneracy, i.e., f(x) > 0 on Ω, we have for u0 = 0 that G(.) is continuous
at Λu0 = 0 in C(Ω)N equipped with the uniform convergence. It follows directly from Theorem
3.8 that

sup

{∫
Ω
udx : |∇u| ≤ f and u = 0 on ∂Ω

}
= min

φ∈Mb(Ω)N

{∫
Ω
f d|φ| : −div(φ) = ρ in D′(Ω)

}
.

However, if f ≥ 0, it is not true that the functional G is continuous at Λu0. Therefore the
sufficient conditions of Thereom 3.8 are not satisfied.

The main goal of this section is to show rigorously that the duality still holds true for such a
degenerate Hamiltionian.
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3.2. Duality for HJ equation. To the duality, we consider a more general problem by consid-
ering, for a nonnegative Radon measure ρ ∈M+

b (Ω) and a closed subset D ⊂ Ω, the problem

max

{∫
Ω
udρ : σ∗(x,∇u(x)) ≤ 1 and u = g on D

}
.

Since the values of u are prescribed on D and the solution of (2.6) is given by the distance to D,
we can consider the following problem

(MD) : max

{∫
ΩD

udρ : σ∗(x,∇u(x)) ≤ 1 and u = g on ΓD

}
,

where ΩD := Ω \D, ΓD := ∂ΩD ∩∂D and Γ̃ = ∂ΩD \ΓD. In particular, if D = ∂Ω then ΩD = Ω

and ΓD = ∂Ω, Γ̃ = ∅.
As we will see, our dual formulation challenges some kind of trace-like operator for the so

called divergence-measure field. To begin with let us sort out formally and briefly our approach,
at least in the case where D = ∂Ω. Taking X to be the Banach space W 1,∞(Ω) and Y to be
the space L∞(Ω)N , we consider simply

F(u) =


−
∫

Ω
u dρ if u ∈W 1,∞(Ω) and u = g on ∂Ω

+∞ otherwise,

, Λu = ∇u,

and

G(η) =

 0 if σ∗(x, η) ≤ 1

+∞ otherwise,
so that the problem (MD) reads as (P). For a formal computation of the dual problem, let us
notice that G∗ : Y ∗ → (−∞,+∞],

G∗(Φ) =

∫
Ω
σ(x,Φ) for any Φ ∈ Y ∗.

The operator Λ∗ : Y ∗ →X ∗ is given by

〈Λ∗Φ, ξ〉 = 〈Φ,∇ξ〉 for any ξ ∈X .

Also,

F∗(−Λ∗Φ) = sup
u∈X ,u=g on ∂Ω

∫
Ω
−Φ · ∇u dx−F(u)

= sup
u∈X ,u=g on ∂Ω

∫
Ω
−Φ · ∇u dx+

∫
Ω
u dρ

= sup
u∈X ,u=g on ∂Ω

∫
Ω
udiv(Φ)−

∫
∂Ω

Φ · ν u+

∫
Ω
u dρ

=

−
∫
∂Ω

Φ · ν g if − div(Φ) = ρ

+∞ otherwise.
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In other words, the dual problem reads

inf

{∫
Ω
σ(x,Φ)−

∫
∂Ω

Φ · ν g : Φ ∈ Y ∗, −div(Φ) = ρ in D′(Ω)

}
. (3.9)

Note that the above computation is very formal by the appearance of the trace-like term Φ · ν
which is not well defined for all Φ.

To handle rigorously the normal trace of the vector-valued dual variable Φ in the dual problem
of the type (3.9), we recall the trace-like operator for the so called divergence-measure field (cf.
[11, 12, 13]). To this aim, we assume in this section that

ΩD = Ω \D is a regular domain with a deformable Lipschitz boundary ∂ΩD.

This is achieved for instance in the case where Ω is a regular domain and D = ∂Ω or D = ω
with a regular domain ω ⊂⊂ Ω.

For any 1 ≤ p ≤ ∞, we define the set

DMp(ΩD) :=
{
F ∈ Lp(ΩD)N : div F =: µ ∈Mb(ΩD)

}
,

where µ = div F is taken in D′(ΩD). See here, that for any F ∈ DMp(ΩD), the total variation
of div F is given by

|div F |(ΩD) := sup

{∫
ϕ dµ : ϕ ∈ C0(ΩD), |ϕ(x)| ≤ 1 for any x ∈ ΩD

}

= sup

{∫
ϕ dµ : ϕ ∈ C1

0(ΩD), |ϕ(x)| ≤ 1 for any x ∈ ΩD

}

= sup

{∫
F · ∇ϕ : ϕ ∈ C1

0(ΩD), |ϕ(x)| ≤ 1 for any x ∈ ΩD

}
.

In particular, the space DMp(ΩD) endowed with the norm

‖F‖DMp(ΩD) := ‖F‖Lp(ΩD) + |div F |(ΩD)

is a Banach space.
Thanks to [11, 12, 13], for any 1 < p ≤ ∞, it is possible to define a trace-like operator on the

set DMp(ΩD). Actually, for any F ∈ DMp(ΩD), we define F · ν the normal trace of F on ∂ΩD,
given by F · ν : Lip(∂ΩD)→ R the continuous linear functional such that

〈F · ν, ξ/∂ΩD〉 =

∫
ΩD

ξ divF +

∫
ΩD

∇ξ · F, for any ξ ∈ C1(ΩD).

Moreover, since ΓD is a deformable Lipschitz boundary, then the restriction of F · ν to ΓD is
well defined, this will be denoted by F · νD (cf. [11, 12, 13], see also Remark 3.9).

Remark 3.9. (1) Thanks to [11, 12, 13], for any F ∈ DMp(ΩD), with 1 < p ≤ ∞, it is
possible to define the normal trace F · ν locally by using Lipschitz deformation of the
boundary. This formulation is very useful in the case where the boundary is partitioned
into disjoint deformable Lipschitz patches.
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(2) In the case where p = 1 as well as the case where Lp(ΩD)N is replaced by the space
Mb(ΩD)N , the trace may be defined as well, but only as continuous linear form on a
subset of Lip(∂ΩD) (cf. [11, 12, 13]).

Now, combining this consideration with the formal computation for (3.9), we introduce the
following optimization problem

(OFD) : inf
φ∈DMp(ΩD)

{∫
ΩD

σ(x, φ(x))dx− 〈φ · νD, g〉 : −div (φ) = ρ in D′(ΩD \ ΓD)

}
,

where the divergence constraint is understood as follows:∫
ΩD

∇ξ · φ dx− 〈φ · νD, ξ〉 =

∫
ΩD\ΓD

ξdρ, for any ξ ∈ Lip(ΩD),

with φ·νD being trace-like term on ΓD as defined above. In other words, we impose that φ·νΓ̃ = 0

on Γ̃.

Our main result in this section is the following duality result.

Theorem 3.10. Let ρ ∈M+
b (Ω). Then we have the following strong duality

(MD) := max

{∫
ΩD

udρ : σ∗(x,∇u(x)) ≤ 1 and u = g on ΓD

}
=

inf
φ∈DMp(ΩD)

{∫
ΩD

σ(x, φ(x))dx− 〈φ · νD, g〉 : −div (φ) = ρ in D′(ΩD \ ΓD)

}
:= (OFD).

Proof. Consider onMb(ΩD) the following functional F : Mb(ΩD) 7→]−∞,∞] defined by

F (h) = inf
φ∈DMp(ΩD)

{∫
ΩD

σ(x, φ(x))dx+

∫
ΓD

gdh−〈φ·νD, g〉 : −div(φ) = ρ+h in D′(ΩD \ ΓD)
}
,

for any h ∈ Mb(ΩD). Then F is convex and l.s.c. Indeed, take h1, h2 ∈ Mb(ΩD) and set
h := th1 + (1 − t)h2 for t ∈ [0, 1]. Let φ1,n, φ2,n ∈ DMp(ΩD) be two minimizing sequences of
fluxes corresponding to h1 and h2 respectively, i.e. −div(φi,n) = ρ+ hi, in D′(ΩD \ ΓD) and

F (hi) = lim
n

∫
ΩD

σ(x, φi,n(x))dx+

∫
ΓD

g dhi − 〈φi,n · νD, g〉 for i = 1, 2.

Set φn = tφ1,n + (1− t)φ2,n. We clearly see that φn are admissible for h and

F (h) ≤ lim
n

∫
ΩD

σ(x, φn(x))dx+

∫
ΓD

g dh− 〈φn · νD, g〉

= lim
n

∫
ΩD

σ(x, tφ1,n + (1− t)φ2,n)dx+

∫
ΓD

g dh− 〈(tφ1,n + (1− t)φ2,n) · νD, g〉

≤ lim
n
t
(∫

ΩD

σ(x, φ1,n)dx+

∫
ΓD

g dh− 〈φ1,n · νD, g〉
)
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+ (1− t)
(∫

ΩD

σ(x, φ2,n)dx+

∫
ΓD

g dh− 〈φ2,n · νD, g〉
)

≤ tF (h1) + (1− t)F (h2)

and this proves convexity. For the lower semicontinuity, take a sequence hn ⇀ h in Mb(ΩD).
For every n ∈ N, we consider a sequence (φkn)k∈N of DMp(ΩD) such that

F (hn) = lim
k→∞

∫
ΩD

σ(x, φkn(x))dx+

∫
ΓD

g dhn − 〈φkn · νD, g〉.

We may find some ψn ∈ L1(ΩD,RN ) such that −div(ψn) = h− hn in D′(ΩD \ ΓD), ‖ψn‖L1 → 0

and 〈ψn · νD, g〉 → 0. In fact, we have h − hn ∈ Mb(ΩD) ↪→ W−1,p′(ΩD) for p > N and
p
′

:=
p

p− 1
. We consider the following p-Laplace equation

−∆pun = h− hn in ΩD

un = 0 on ΓD

|∇un|p−2∇un · νΓ̃ = 0 on Γ̃.

(3.10)

The system (3.10) admits a unique solution un ∈ W 1,p(ΩD) such that un = 0 on ΓD. Hence, if
we set ψn = |∇un|p−2∇un, we see that ψn ∈ Lp

′
(ΩD), and then in L1(ΩD). Moreover, we have

−div(ψn) = h−hn in D′(ΩD). Since h−hn is bounded in W−1,p′(ΩD), it is not difficult to prove
that un is bounded in W 1,p(ΩD). So, by taking a subsequence if necessary, we have un ⇀ u in
W 1,p(ΩD), and uniformly in ΩD. On the other hand, we have∫

ΩD

|ψn|p
′
dx =

∫
ΩD

|∇un|pdx = 〈h− hn, un〉W−1,p′ (ΩD),W 1,p(ΩD) −→
n→∞

0.

In particular, this implies that |ψn| −→
n→∞

0 in L1(ΩD). Moreover, taking g̃ ∈ Lip(ΩD) be such
that g̃ = g on ΓD, we have

〈ψn · νD, g〉 =

∫
ΩD

ψn · ∇g̃ dx−
∫

ΩD

g̃ d(h− hn) −→
n→∞

0.

This being said, we clearly have −div(φkn + ψn) = ρ + h, i.e. φkn + ψn are admissible fluxes for
h. By semicontinuity of the integral, we have

F (h) ≤
∫

ΩD

σ(x, (φkn + ψn)(x))dx+

∫
ΓD

g dh− 〈(φkn + ψn) · νD, g〉

≤
∫

ΩD

σ(x, φkn(x))dx+

∫
ΓD

g dhn − 〈φkn · νD, g〉

+

∫
ΩD

σ(x, ψn(x))dx+

∫
ΓD

g d(h− hn)− 〈ψn · νD, g〉.
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Letting k →∞ we get

F (h) ≤ F (hn) +

∫
ΩD

σ(x, ψn(x))dx+

∫
ΓD

g d(h− hn)− 〈ψn · νD, g〉.

Now, letting n → ∞, and using the fact that ψn → 0 in L1(ΩD)N , and hn ⇀ h inMb(ΩD), as
n→∞, we obtain the lower semicontinuity, i.e.

F (h) ≤ lim inf
n

F (hn).

Next let us compute F ∗. For any u ∈ C(ΩD), we have

F ∗(u) = sup
h∈Mb(ΩD)

∫
ΩD

udh− F (h)

= sup
h∈Mb(ΩD)
φ∈DMp(ΩD)

{∫
ΩD

udh−
∫

ΩD

σ(x, φ(x))dx−
∫

ΓD

g dh+ 〈φ · νD, g〉 :

−div(φ) = ρ+ h in D′(ΩD \ ΓD)
}

= I1(u) + I2(u),

where I1(u) := −
∫

ΩD

udρ and

I2(u) := sup
h∈Mb(ΩD)
φ∈DMp(ΩD)

{∫
ΩD\ΓD

ud(ρ+ h)−
∫

ΩD

σ(x, φ(x))dx+

∫
ΓD

(u− g) dh+ 〈φ · νD, g〉

: −div(φ) = ρ+ h in D′(ΩD \ ΓD)
}
.

Using Lemma 3.11 below, we deduce that, for any u ∈ Lip(ΩD), we have

F ∗(u) =


−
∫

ΩD

udρ if

{
σ∗(x,∇u) ≤ 1

and u = g on ΓD

∞ otherwise.

Finally, using the fact

inf(OFD) = F (0) = F ∗∗(0) = sup
u∈Lip(ΩD)

−F ∗(u) = max(MD),

we deduce the result. �

Lemma 3.11. Let u ∈ Lip(ΩD), we have

sup
h∈Mb(ΩD)
φ∈DMp(ΩD)

{∫
ΩD\ΓD

ud(ρ+ h)−
∫

ΩD

σ(x, φ(x))dx+

∫
ΓD

(u− g) dh+ 〈φ · νD, g〉

: −div(φ) = ρ+ h in D′(ΩD \ ΓD)
}
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=


0 if

{
σ∗(x,∇u) ≤ 1

and u = g on ΓD

∞ otherwise.

Proof. Take u as a test function in the divergence constraint −div(φ) = ρ + h in D′(ΩD \ ΓD),
we get

I(h, φ) :=

∫
ΩD\ΓD

ud(ρ+ h)−
∫

ΩD

σ(x, φ(x))dx+

∫
ΓD

(u− g) dh+ 〈φ · νD, g〉

=

∫
ΩD

∇u · φdx−
∫

ΩD

σ(x, φ(x))dx+

∫
ΓD

(u− g) dh+ 〈φ · νD, g − u〉.

If σ∗(x,∇u) ≤ 1 and u = g on ΓD, then following Lemma 2.7, we obtain sup I(h, φ) ≤ 0.
Actually, sup I(h, φ) = 0 in this case by taking h ≡ −ρ and φ ≡ 0. If u(x0) 6= g(x0) for some
x0 ∈ ΓD, then we consider Dirac mass at x0, h = n sign(u(x0) − g(x0))δx0 for n ∈ N, and fix
Φ0 ∈ DMp(ΩD) such that −div Φ0 = ρ in D′(ΩD \ ΓD), we have

sup I(h, φ) ≥
∫

ΩD

Φ0 · ∇u−
∫

ΩD

σ(x,Φ0(x))dx+ n|u(x0)− g(x0)|+ 〈Φ0 · νD, g − u〉.

Letting n→∞, we get the result. For the remaining case, i.e. u = g on ΓD and σ∗(x,∇u) > 1
on a non negligible set, we see first that, for any u ∈ Lip(ΩD), there exists a measurable function
that we denote by qu : ΩD → RN , such that

qu(x) · ∇u(x) = σ∗(x,∇u(x)), a.e. in ΩD.

Indeed, recall that σ∗(x,∇u(x)) = max
p
{〈p,∇u(x)〉 : σ(x, p) = 1} and the function x →

〈p,∇u(x)〉+ II[σ(x,.)=1] is measurable. Then, qu is given by the measurable representation in the
set

arg max
p

{〈p,∇u〉 : σ(x, p) = 1} .

Now, if u = g on ΓD and σ∗(x,∇u) > 1 in a subset A ⊂ ΩD such that |A| 6= 0, we consider
Φnε = n

qu
|qu|

χA ∗ηε, where ηε is a sequence of mollifiers. It is clear that there exists h ∈Mb(ΩD),

such that −div Φnε = ρ+ h. For any n, we have

sup I(h, φ) ≥
∫

ΩD

Φnε · ∇u−
∫

ΩD

σ(x,Φnε(x))dx.

Letting ε→ 0, we get

sup I(h, φ) ≥ n
∫
A

1

|qu|
(qu · ∇u− σ(x, qu)) dx ≥ n

∫
A

1

|qu|
(σ∗(x,∇u(x))− 1) dx.

Then, letting n→∞, we get the result. �

Remark 3.12. Going over the duality inferred by Theorem 3.10, we have

inf

{∫
ΩD

σ(x, φ(x))dx− 〈φ · νD, g〉 : φ ∈ DMp(ΩD), −div (φ) = ρ in D′(ΩD \ ΓD)

}
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= max
{∫

ΩD

u(x)dρ, σ∗(x,∇u(x)) ≤ 1 a.e. x in ΩD and u = g on ΓD

}
.

It is not clear if the inf is a min . This is closely connected to the regularity of the trace of
divergence-measure field. However, one sees that if this is true, i.e. the inf is a min, then the
respective extremums u and φ satisfy the following PDE:

−div(φ) = ρ in D′(ΩD \ ΓD)

φ(x) · ∇u(x) = σ(x, φ(x)) in ΩD

u = g on ΓD

σ∗(x,∇u(x)) ≤ 1 in ΩD

φ · νΓ̃ = 0 on Γ̃.

4. The augmented Lagrangian technique

4.1. Formulation of the problem. We set again X = W 1,∞(ΩD) and Y = L∞(ΩD)N . For
any u ∈X and η ∈ Y , we define

F(u) =


−
∫

ΩD

u dρ if u = g on ΓD

+∞ otherwise

, G(η) =

 0 if σ∗(x, η) ≤ 1

+∞ otherwise
, and Λu = ∇u.

Thus, the problem (MD) can be rewritten in the form

− min
u∈X

F(u) + G(Λu).

Introducing a new primal variable q ∈ Y we can write (MD) in the following alternative form

− min
(u,q)∈X ×Y

Λu=q

F(u) + G(q)

so that (MD) and (OFD) can be recast in a saddle point form

min
(u,q)∈X ×Y

sup
φ∈DMp(ΩD)

L(u, q;φ)

where

L(u, q;φ) = F(u) + G(q) +

∫
ΩD

φ · (Λu− q) dx, for any (u, q, φ) ∈X × Y ×DMp(ΩD).

More precisely, we have

Proposition 4.13. u is a solution of (MD) if and only if the couple (u, q) ∈ X × Y with
q := Λu is a solution of

sup
φ∈DMp(ΩD)

min
(u,q)∈X ×Y

L(u, q;φ)
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which is equal to
min

(u,q)∈X ×Y
sup

φ∈DMp(ΩD)
L(u, q;φ).

Proof. The duality of the previous section takes part of this result. For completeness let us give
here the main arguments. It is not difficult to see that

min
{
F(u) + G(Λu) : u ∈X

}
= min

(u,q)∈X ×Y :Λu=q

{
F(u) + G(q)

}
= min

(u,q)∈X ×Y
sup

φ∈DMp(ΩD)

{
F(u) + G(q) +

∫
ΩD

φ (Λu− q)
}

= min
(u,q)∈X ×Y

sup
φ∈DMp(ΩD)

L(u, q;φ).

In a similar way, using the definition of F∗, G∗ and Λ∗, one sees that

sup
{
−F∗(−Λ∗φ)− G∗(φ) : φ ∈ DMp(ΩD)

}
= sup

φ∈DMp(ΩD)
min

(u,q)∈X ×Y
L(u, q;φ).

On the other hand, thanks to the strong duality given in Theorem 3.10 and direct computation
for the last line below, we get

−min
{
F(u) + G(Λu) : u ∈X

}
= max(MD)

= inf

{∫
ΩD

σ(x, φ(x))dx− 〈φ · νD, g〉 : φ ∈ DMp(ΩD), −div (φ) = ρ in D′(ΩD \ ΓD)

}
= − sup

{
−F∗(−Λ∗φ)− G∗(φ) : φ ∈ DMp(ΩD)

}
.

Thus,
sup

φ∈DMp(ΩD)
min

(u,q)∈X ×Y
L(u, q;φ) = min

(u,q)∈X ×Y
sup

φ∈DMp(ΩD)
L(u, q;φ).

�

For a given r > 0, we recall that the augmented Lagrangian (cf. [25]) is given by

Lr(u, q;φ) = F(u)+G(q)+〈φ,Λu−q〉+ r

2
|Λu−q|2, for any (u, q, φ) ∈X ×Y ×DMp(ΩD).

In the same way, it can easily be proved that

Proposition 4.14. Let r > 0. Then, u is a solution of (MD) if and only if the couple (u, q) ∈
X × Y with q := Λu is a solution of

sup
φ∈DMp(ΩD)

min
(u,q)∈X ×Y

Lr(u, q;φ)

which is equal to
(Sr) : min

(u,q)∈X ×Y
sup

φ∈DMp(ΩD)
Lr(u, q;φ).
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Now for the numerical computation concerning the problem (MD), we will focus on the saddle
point problem (Sr). Recall that the addition of the quadratic term

r

2
|Λu−q|2 has the advantage

of improving the convergence of the dual approach (one can see [20, 24]).

4.2. Application of ALG2. We approximate the domain ΩD via a triangulation Th. For k ≥ 1,
we denote by Pk the space of polynomials with real coefficients and of degree at most k. We define
Xh ⊂ W 1,∞(ΩD) as the space of continuous functions on ΩD belonging to Pk on each triangle.
Similarly, Yh is the space of vector valued functions belonging to (Pk−1)d on each triangle. Then
the problem (MD) is discretized by the following finite-dimensional optimization problem:

inf
u∈Xh

F(u) + G(Λu).

Then, for a given q0 ∈ Yh, φ0 ∈ Y ∗h , using ALG2 algorithm (also called ADMM [4]) we con-
struct a sequence {ui}i, {qi}i, {φi}i by optimizing alternatively in u and q, for i ≥ 1. Convergence
of the algorithm in the finite-dimensional setting is well known (cf. [19]). The convergence can
be also established in the case of infinite-dimensional Hilbert spaces. For further details in this
direction and about the ALG2, we refer the reader to [25, 23, 19].

Algorithm 1 ALG2 iterations

1st step: ui+1 ∈ arg min
u∈Xh

{
F(u) + 〈φi,Λ(u)〉+

r

2
|Λ(u)− qi|2

}
.

2nd step: qi+1 ∈ arg min
q∈Yh

{
G(q)− 〈φi, q〉+

r

2
|Λ(ui+1)− q|2

}
.

3rd step: We update the multiplier φ by

φi+1 = φi + r(∇ui+1 − qi+1).

Remark 4.15. • The first step amounts to solve a Laplace equation with mixed boundary
conditions. Indeed, we have for every z ∈Xh with z = 0 on ΓD

r〈∇ui+1,∇z〉 = 〈ρ, z〉+ 〈(rqi − φi),∇z〉

which is equivalent to solve

−r∆u = ρ+ div(φ− rq) in ΩD,

together with the following mixed boundary conditions:
Dirichlet boundary condition u = g on ΓD

Homogeneous Neumann boundary condition (r∇u+ φ− rq) · νΓ̃ = 0 on Γ̃.

• The second step is a pointwise projection. Indeed, we use P1 finite element for q and φ,
we have at each vertex xk

0 ∈ ∂IIB∗(xk,.)(qi+1(xk))− φi(xk)− r(∇ui+1(xk)− qi+1(xk)),
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which is equivalent to perform pointwise projections:

qi+1(xk) = ProjB∗(xk,.)

(φi(xk)
r

+∇ui+1(xk)
)

where B∗(x, .) = {p ∈ RN : σ∗(x, p) ≤ 1}.

4.3. Error criterion. Basing on the primal-dual optimality conditions, we use the following
stopping criterion

1. MaxLip := sup
x
σ∗(x,∇u(x)),

2. Div := ‖ − div(φ)− ρ‖L2 ,
3. Dual := ‖σ(x, φ(x))− φ(x) · ∇u‖L2 ,

4. NBDφ :=
(∫

Γ̃
(φ · ν)2

)1/2
.

We expect MaxLip ≤ 1 and Div,Dual,NBDφ to be small. In addition, we compute ‖u− uexact‖
for different norms where u is the computed solution and uexact is the exact solution, whenever
the latter is easily found. Let us mention that NBDφ will concern only the Test 2 where we
prescribe data on a closed set D, so that Γ̃ 6= ∅.

To implement the algorithm we use FreeFem++ [27], which is particularly adapted to solve
the Laplace equation in the first step of ALG2. We use P2 finite element for u and P1 finite
element for φ and q (see e.g. [2]). All the tests are executed on a macOs Mojave 10.14.4.

5. Numerical experiments

5.1. Test 1: We first examine the case |∇u| = f(x, y) ≡ 1 in Ω = (0, 1)2 and u = 0 on ∂Ω.

(a)

IsoValue
0.0122589
0.0367766
0.0612943
0.085812
0.11033
0.134847
0.159365
0.183883
0.208401
0.232918
0.257436
0.281954
0.306472
0.330989
0.355507
0.380025
0.404542
0.42906
0.453578
0.478096

(b)

Vec Value
0
0.0274978
0.0549956
0.0824933
0.109991
0.137489
0.164987
0.192484
0.219982
0.24748
0.274978
0.302476
0.329973
0.357471
0.384969
0.412467
0.439964
0.467462
0.49496
0.522458

(c)

Figure 1. Left to right: 3D plot of the solution u, contour plot of u, the flux φ
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Figure 2. Error criterion for 1000 iterations with Nh = 120

The exact solution is uexact(x, y) = d((x, y), ∂Ω) = min(x, 1 − x, y, 1 − y). We measure
‖u− uexact‖ in different norms, with different mesh sizes Nh and for 1000 iterations.

Nh Time execution ‖u− uexact‖L2 ‖u− uexact‖L1 ‖u− uexact‖L∞
30 55.3254s 1.19311e-3 1.2476e-3 9.71803e-4
60 212.838s 3.68023e-4 3.82991e-4 3.48313e-4
120 855.136s 1.64122e-4 1.7198e-4 1.66483e-4

This test shows us that ALG2 iteration converges to the accurate solution u as the mesh is
refined.

5.2. Test 2: We consider the same equation |∇u| = 1 on Ω = (−1, 1)2 \ D where D is the
euclidean ball centered at (0.05, 0.09) and of radius 0.25, and we set u to be equal to 0 on D.

(a)

IsoValue
0.0283175
0.0900488
0.15178
0.213511
0.275243
0.336974
0.398705
0.460437
0.522168
0.583899
0.64563
0.707362
0.769093
0.830824
0.892556
0.954287
1.01602
1.07775
1.13948
1.20121

(b)

Vec Value
0
0.205054
0.410107
0.615161
0.820215
1.02527
1.23032
1.43538
1.64043
1.84548
2.05054
2.25559
2.46064
2.6657
2.87075
3.07581
3.28086
3.48591
3.69097
3.89602

(c)

Figure 3. Left to right: 3D plot of the solution u, contour plot of u, the flux φ
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Figure 4. Error criterion for 500 iterations with Nh = 50

5.3. Test 3: In this test, we solve |∇u| = f(x, y) =
√

sin(π.y)2 + π2.x2. cos(π.y)2 in Ω =
(−1, 1)2 with u = 0 on ∂Ω.

(a)

IsoValue
0.0231442
0.0721748
0.121205
0.170236
0.219267
0.268297
0.317328
0.366358
0.415389
0.46442
0.51345
0.562481
0.611511
0.660542
0.709572
0.758603
0.807634
0.856664
0.905695
0.954725

(b)

Vec Value
0
0.813229
1.62646
2.43969
3.25292
4.06614
4.87937
5.6926
6.50583
7.31906
8.13229
8.94552
9.75875
10.572
11.3852
12.1984
13.0117
13.8249
14.6381
15.4513

(c)

Figure 5. Left to right: 3D plot of the solution u, contour plot of u, the flux φ
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Figure 6. Error criterion for 500 iterations with Nh = 64.

5.4. Test 4: In this test, we solve |∇u| = f(x, y) = |y − x2| in Ω = (0, 1)2 with u = 0 on ∂Ω.

(a)

IsoValue
0.00441212
0.0136376
0.0228631
0.0320886
0.041314
0.0505395
0.059765
0.0689905
0.078216
0.0874414
0.0966669
0.105892
0.115118
0.124343
0.133569
0.142794
0.15202
0.161245
0.170471
0.179696

(b)

Vec Value
0
0.54462
1.08924
1.63386
2.17848
2.7231
3.26772
3.81234
4.35696
4.90158
5.4462
5.99082
6.53544
7.08006
7.62467
8.16929
8.71391
9.25853
9.80315
10.3478

(c)

Figure 7. Left to right: 3D plot of the solution u, contour plot of u, the flux φ
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Figure 8. Error criterion for 500 iterations with Nh = 64.

5.5. Test 5: Always with the Eikonal case, take f(x, y) =
√

(1− |x|)2 + (1− |y|)2. The exact
solution in Ω = (−1, 1)2 is uexact(x, y) = (1− |x|).(1− |y|).

(a)

IsoValue
0.024445
0.0733351
0.122225
0.171115
0.220005
0.268895
0.317786
0.366676
0.415566
0.464456
0.513346
0.562236
0.611126
0.660016
0.708906
0.757796
0.806686
0.855577
0.904467
0.953357

(b)

Vec Value
0
0.0360819
0.0721639
0.108246
0.144328
0.18041
0.216492
0.252574
0.288655
0.324737
0.360819
0.396901
0.432983
0.469065
0.505147
0.541229
0.577311
0.613393
0.649475
0.685557

(c)

Figure 9. Left to right: 3D plot of the solution u, contour plot of u, the flux φ
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Figure 10. Error criterion for 600 iterations with Nh = 120

Nh Time execution ‖u− uexact‖L2 ‖u− uexact‖L1 ‖u− uexact‖L∞
30 39.1138s 2.27077e-3 2.54665e-3 2.47988e-3
60 158.138s 6.49636e-4 7.41279e-4 1.57558e-3
120 647.024s 2.99273e-4 3.22747e-4 6.54593e-4
240 2610.03s 6.97158e-05 7.83619e-05 2.807e-4

5.6. Anisotropic Eikonal equation: One interesting case is the so called anisotropic Eikonal
equation. Consider a symmetric positive definite matrix M modelling the anisotropy, and define
the following equation

H(x,∇u) =
√
∇u†M∇u− 1 in Ω and u = 0 on ∂Ω.

In this case B∗ is an ellipse and the projection can be computed as in the Riemannian case [31]:

ProjB∗(q) =

{
q if q ∈ B∗

(ζM + In)−1q otherwise,

where ζ is the unique positive root of the function

F (ζ) = q̄†ζMq̄ζ − 1 with q̄ζ = (ζM + In)−1q,

which can be found with a dichotomy method. We perform a test as in [34, Example 2] by taking

M =

(
l1(x, y) −l3(x, y)
−l3(x, y) l2(x, y)

)
with

l1(x, y) =
1

e
−2

(√
2.(x−0.5)2+2.(x−0.5).(y−0.5)+(y−0.5)2

)
l2(x, y) = 2l1(x, y)

l3(x, y) = l1(x, y).
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(a)

IsoValue
0.00732994
0.0219898
0.0366497
0.0513095
0.0659694
0.0806293
0.0952892
0.109949
0.124609
0.139269
0.153929
0.168589
0.183248
0.197908
0.212568
0.227228
0.241888
0.256548
0.271208
0.285867

(b)

Vec Value
0
0.0293957
0.0587915
0.0881872
0.117583
0.146979
0.176374
0.20577
0.235166
0.264562
0.293957
0.323353
0.352749
0.382145
0.41154
0.440936
0.470332
0.499728
0.529123
0.558519

(c)

Figure 11. Left to right: 3D plot of the solution u, contour plot of u, the flux φ
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Figure 12. Error criterion for 300 iterations with Nh = 80.

Given a compact convex set K of RN such that 0 ∈ int(K), then its gauge function reads

gK(p) = inf{λ ≥ 0; λp ∈ K}.

We consider the following HJ equation

H(x,∇u) = gK∗(∇u)− 1, in Ω and u = 0 on ∂Ω,

where K∗ is the polar set of K defined through

K∗ = {p ∈ RN : 〈p, q〉 ≤ 1, ∀q ∈ K}.

It is well known (see e.g. [46, 48]) that gK∗ = σK . In the last two examples we take some explicit
forms of the support function σ.
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5.7. Riemannian case. We take σ((x, y), v) =
√
β1v2

1 + β2v2
2, with β1, β2 > 0. It is not difficult

to see that σ∗(q) =

√
q2

1

β1
+
q2

2

β2
. As in [3], the projection onto the unit ball of σ∗, B∗ = {q, σ∗(q) ≤

1} is given by

ProjB∗(q) =

q if q ∈ B∗( β1q1

β1 + ζ
,
β2q2

β2 + ζ

)
otherwise,

where ζ is the zero of the function

F (ζ) = 1−
( β1q1

(β1 + ζ)2
+

β2q1

(β2 + ζ)2

)
,

which can be computed with a dichotomy algorithm.
For this test, we take

β1 =
1

e
−2

(√
2(x−0.5)2+2(x−0.5)(y−0.5)+(y−0.5)2)

) and β2 =
2

e
−2

(√
2(x−0.5)2+2(x−0.5)(y−0.5)+(y−0.5)2)

) .

(a)

IsoValue
0.0179358
0.0538075
0.0896791
0.125551
0.161422
0.197294
0.233166
0.269037
0.304909
0.340781
0.376652
0.412524
0.448396
0.484267
0.520139
0.556011
0.591882
0.627754
0.663626
0.699497

(b)

Vec Value
0
0.0311718
0.0623435
0.0935153
0.124687
0.155859
0.187031
0.218202
0.249374
0.280546
0.311718
0.342889
0.374061
0.405233
0.436405
0.467577
0.498748
0.52992
0.561092
0.592264

(c)

Figure 13. Left to right: 3D plot of the solution u, contour plot of u, the flux φ
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Figure 14. Error criterion for 400 iterations with Nh = 64

5.8. Polyhedral case. Consider k vectors p1, · · · , pk and define for any v ∈ RN the following
Finsler metric

σ(v) = max
1≤i≤k

〈v, pi〉

usually called a crystalline norm. We can easily check that the unit ball B∗ of σ∗ is nothing but
the convex hull of the vectors p1, · · · , pk:

B∗ = conv(p1, · · · , pk).
The projection onto B∗ can be performed easily (see [3, 29]). We start by determining the
vertices s1, · · · , sk of B∗ and the corresponding outward normal vectors νi to the edges of B∗.
Afterwards, if v 6∈ B∗, we distinguish to cases: either v ∈ [si, si+1] + R+νi, and in this case we
project v onto the segment [si, si+1], or it belongs to a sector si + R+νi + R+νi+1 and in this
case its projection is si.

We perform a test with p1 = (1,−1), p2 = (1,−0.8), p3 = (−0.8, 1), p4 = (−1, 1), p5 =
(−1,−1). We take Nh = 64 and 600 iterations.

(a)

IsoValue
0.00408771
0.0122631
0.0204385
0.028614
0.0367894
0.0449648
0.0531402
0.0613156
0.069491
0.0776665
0.0858419
0.0940173
0.102193
0.110368
0.118544
0.126719
0.134894
0.14307
0.151245
0.159421

(b)

Vec Value
0
0.0662808
0.132562
0.198842
0.265123
0.331404
0.397685
0.463966
0.530247
0.596527
0.662808
0.729089
0.79537
0.861651
0.927931
0.994212
1.06049
1.12677
1.19305
1.25934

(c)

Figure 15. Left to right: 3D plot of the solution u, contour plot of u, the flux φ
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Figure 16. Error criterion for 600 iterations with Nh = 64.

Acknowledgements. The authors are grateful to the anonymous referees for carefully read-
ing this paper and for the interesting remarks and suggestions. Research of the last author is
funded by Vietnam National Foundation for Science and Technology Development (NAFOS-
TED) under grant number 101.01-2018.309. His research has been partially carried out during
a visit at VIASM, he would like to thank the institution for supporting the visit and hospitality.

References

[1] Martin Beckmann. A continuous model of transportation. Econometrica: Journal of the Econometric Society,
pages 643–660, 1952.

[2] Jean-David Benamou and Guillaume Carlier. Augmented Lagrangian methods for transport optimization,
mean field games and degenerate elliptic equations. J. Optim. Theory Appl., 167(1):1–26, 2015.

[3] Jean-David Benamou, Guillaume Carlier, and Roméo Hatchi. A numerical solution to Monge’s problem with
a Finsler distance as cost. ESAIM: Mathematical Modelling and Numerical Analysis 52(6):2133–2148, 2018.

[4] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine
Learning, 3(1):1–122, 2011.

[5] Lorenzo Brasco, Guillaume Carlier, and Filippo Santambrogio. Congested traffic dynamics, weak flows and
very degenerate elliptic equations. Journal de mathématiques pures et appliquées, 93(6):652–671, 2010.

[6] Alexandre Caboussat, Roland Glowinski, and Tsorng-Whay Pan. On the numerical solution of some Eikonal
equations: an elliptic solver approach. Chin. Ann. Math., Ser. B, 36(5):689–702, 2015.

[7] Fabio Camilli and Lars Grüne. Numerical approximation of the maximal solutions for a class of degenerate
Hamilton-Jacobi equations. SIAM J. Numer. Anal., 38(5):1540–1560, 2000.

[8] Fabio Camilli, Paola Loreti, and Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit
obstacles and the obstacle problem. Communications on Pure and Applied Analysis, 8(4):1291–1302, 2009.

[9] Piermarco Cannarsa and Carlo Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and optimal
control, volume 58. Springer Science & Business Media, 2004.

[10] Martino Bardi and Italo Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-
Bellman equations. Birkhäuser Boston, Inc., Boston, MA, 1997.

[11] Gui-Qiang Chen. Some recent methods for partial differential equations of divergence form. Bulletin of the
Brazilian Mathematical Society, 34(1):107–144, 2003.

[12] Gui-Qiang Chen and Hermano Frid. Divergence-measure fields and hyperbolic conservation laws. Archive for
rational mechanics and analysis, 147(2):89–118, 1999.



AUGMENTED LAGRANGIAN METHODS FOR DEGENERATE HJ EQUATIONS 29

[13] Gui-Qiang Chen and Hermano Frid. Extended divergence-measure fields and the euler equations for gas
dynamics. Communications in mathematical physics, 236(2):251–280, 2003.

[14] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity solutions of second order
partial differential equations. Bull. Am. Math. Soc., New Ser., 27(1):1–67, 1992.

[15] Michael G Crandall and Pierre-Louis Lions. Viscosity solutions of Hamilton-Jacobi equations. Transactions
of the American mathematical society, 277(1):1–42, 1983.

[16] Per-Erik Danielsson. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227-248,
1980.

[17] Luigi De Pascale and Chloé Jimenez. Duality theory and optimal transport for sand piles growing in a silos.
Adv. Differ. Equ., 20(9-10):859–886, 2015.

[18] Jean-Denis Durou, Maurizio Falcone, and Manuela Sagona. Numerical methods for shape-from-shading: A
new survey with benchmarks. Computer Vision and Image Understanding, 109(1):22–43, 2008.

[19] Jonathan Eckstein and Dimitri P Bertsekas. On the Douglas–Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55(1-3):293–318, 1992.

[20] Ivar Ekeland and Roger Temam. Convex analysis and variational problems, volume 28. SIAM, 1999.
[21] M Falcone and R Ferretti. Numerical methods for Hamilton–Jacobi type equations. In Handbook of Numerical

Analysis, volume 17, pages 603–626. Elsevier, 2016.
[22] Albert Fathi and Antonio Siconolfi. PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians.

Calc. Var. Partial Differ. Equ., 22(2):185–228, 2005.
[23] Michel Fortin and Roland Glowinski. Augmented Lagrangian methods: applications to the numerical solution

of boundary-value problems, volume 15. Elsevier, 2000.
[24] Roland Glowinski and J Tinsley Oden. Numerical methods for nonlinear variational problems. 1985.
[25] Ronald Glowinski and Patrick Le Tallec. Augmented Lagrangian and operator-splitting methods in nonlinear

mechanics, volume 9. SIAM, 1989.
[26] Hamza Ennaji, Noureddine Igbida and Van Thanh Nguyen. Continuous Lambertian Shape from Shading: A

Primal-Dual Algorithm. preprint, 2021.
[27] Frédéric Hecht. New development in Freefem++. Journal of numerical mathematics, 20(3-4):251–266, 2012.
[28] Noureddine Igbida. Metric character for the sub-Hamilton-Jacobi obstacle equation. SIAM J. Math. Anal.,

49(4):3143–3160, 2017.
[29] Noureddine Igbida and Van Thanh Nguyen. Augmented Lagrangian method for optimal partial transporta-

tion. IMA Journal of Numerical Analysis, 38(1):156–183, 2018.
[30] Noureddine Igbida and Thi Nguyet Nga Ta. Sub-gradient diffusion operator. Journal of Differential Equations,

262(7):3837–3863, 2017.
[31] Yu N Kiseliov. Algorithms of projection of a point onto an ellipsoid. Lithuanian Mathematical Journal,

34(2):141–159, 1994.
[32] Pierre-Louis Lions. Generalized solutions of Hamilton-Jacobi equations, volume 69. Pitman„ London, 1982.
[33] Pierre-Louis Lions, Elisabeth Rouy, and A Tourin. Shape-from-shading, viscosity solutions and edges. Nu-

merische Mathematik, 64(1):323–353, 1993.
[34] Songting Luo and Jianliang Qian. Fast sweeping methods for factored anisotropic Eikonal equations: multi-

plicative and additive factors. Journal of Scientific Computing, 52(2):360–382, 2012.
[35] Jean-Marie Mirebeau. Efficient fast marching with Finsler metrics. Numerische Mathematik, 126(3):515–557,

2014.
[36] Jean-Marie Mirebeau. Anisotropic fast-marching on Cartesian grids using lattice basis reduction. SIAM

Journal on Numerical Analysis, 52(4):1573–1599, 2014.
[37] Jean-Marie Mirebeau and Jorg Portegies. Hamiltonian Fast Marching: A Numerical Solver for Anisotropic

and Non-Holonomic Eikonal PDEs. Image Processing On Line, 9:47–93, 2019.
[38] Van Thanh Nguyen. Monge–Kantorovich equation for degenerate Finsler metrics. Nonlinear Analysis,

206:Art. 112247, 2021.
[39] Emmanuel Prados, Fabio Camilli, and Olivier Faugeras. A viscosity solution method for shape-from-shading

without image boundary data. ESAIM: Mathematical Modelling and Numerical Analysis, 40(2):393–412,
2006.



30 H. ENNAJI, N. IGBIDA, AND V. T. NGUYEN

[40] Elisabeth Rouy and Agnès Tourin. A viscosity solutions approach to shape-from-shading. SIAM Journal on
Numerical Analysis, 29(3):867–884, 1992.

[41] Filippo Santambrogio. Optimal transport for applied mathematicians. Calculus of variations, PDEs, and
modeling., volume 87. Cham: Birkhäuser/Springer, 2015.

[42] James Albert Sethian. Level set methods and fast marching methods: evolving interfaces in computational
geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge university press,
1999.

[43] James Albert Sethian. A fast marching level set method for monotonically advancing fronts., volume 3.
Proceedings of the National Academy of Sciences of the United States of America, 1996.

[44] Antonio Siconolfi. Hamilton-Jacobi equations and Weak KAM Theory, pages 4540–4561. Springer New York,
New York, NY, 2009.

[45] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape-from-shading: a survey. IEEE
transactions on pattern analysis and machine intelligence, 21(8):690–706, 1999.

[46] R. Tyrrell Rockafellar. Convex analysis. Princeton Landmarks in Mathematics, 1997.
[47] John N.Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control,

40(9):1528–1538, 1995.
[48] Jean-Baptiste Hiriart-Urrut and Claude Lemaréchal. Convex analysis and minimization algorithms. I.

Springer-Verlag, Berlin, 1993.
[49] Hongkai Zhao. A fast sweeping method for eikonal equations. Mathematics of Computation, 74(250):603–627,

2005.


	1. Introduction
	1.1. Motivation and related works
	1.2. Main contributions
	1.3. Plan of the paper

	2. Metric character of Hamilton–Jacobi equations
	2.1. Preliminaries
	2.2. Equivalence between HJ and maximization problem

	3. HJ and duality results
	3.1. Generalities
	3.2. Duality for HJ equation

	4. The augmented Lagrangian technique
	4.1. Formulation of the problem
	4.2. Application of ALG2
	4.3. Error criterion

	5. Numerical experiments
	5.1. Test 1:
	5.2. Test 2:
	5.3. Test 3:
	5.4. Test 4:
	5.5. Test 5:
	5.6. Anisotropic Eikonal equation:
	5.7. Riemannian case
	5.8. Polyhedral case

	References

