
HAL Id: hal-03020312
https://hal.science/hal-03020312

Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some paradoxes of the ”cylindrical saxophone”
Jean Kergomard, Philippe Guillemain, Fabrice Silva, Christophe Vergez

To cite this version:
Jean Kergomard, Philippe Guillemain, Fabrice Silva, Christophe Vergez. Some paradoxes of the
”cylindrical saxophone”. 9th Iberian Acoustics Congress and 47th Spanish Congress on Acoustics,
EuroRegio’2016, Jun 2016, Porto, Portugal. �hal-03020312�

https://hal.science/hal-03020312
https://hal.archives-ouvertes.fr


   

 

 SOME PARADOXES OF THE "CYLINDRICAL SAXOPHONE" 

 

J. Kergomard, P. Guillemain, F. Silva, C. Vergez
 

 

LMA, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, 4 impasse Nikola Tesla 

CS 40006, 13453 Marseille Cedex 13, France   kergomard@lma.cnrs-mrs.fr 
 

 

Abstract 

The story of the "cylindrical saxophone"  started with Benade (1988). The basic idea is that when the 

length of the missing part of a truncated cone is smaller than the wavelength,  and therefore smaller 

than the length of the truncated cone, the behavior of a conical reed instrument has similarities with 

that of a cylindrical pipe excited by a reed on its side, at an intermediate location. The shorter part of 

the cylinder has to be equal to that of the missing part of the cone. This similarity allowed to get 

caricatures of the pressure waveform inside the mouthpiece, in the form of a Helmholtz (2-state 

motion), which is well known for bowed string instruments. However some paradoxes remain with 

this analogy. If the waveform is a Helmholtz motion, the negative pressure episode has a duration 

corresponding to the resonance frequency of the short length, i.e., a frequency which does not fulfill 

the condition of the analogy. Furthermore using the simplest approximation deduced from the analogy, 

the waveform of the radiated sound by the conical instrument should be a Dirac comb. This means that 

all the Fourier coefficients have the same magnitude, without missing harmonics. After a short review 

of the literature, these paradoxes will be discussed. 
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1 Introduction 

The idea of the analogy of a saxophone with a cylindrical tube excited at a certain distance of one 

extremity appeared for the first time in a paper by Benade [2], with the name “cylindrical saxophone”. 

Irons [1] previously found that an excellent approximation for the eigenfrequencies of a reed conical 

instrument is given by the eigenfrequencies of an “open-open” cylinder of the same length L, and this 

was used in particular by Benade [3] or Nederveen  [4]. The condition of this analogy is the following: 

the length of the missing cone, x1  (see Figure 1) needs to be much smaller than the wavelength, i.e., 
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kx1 <<1, or  x1 <<L/π , where k is the wavenumber and L=x1 + ℓ is the total length of the cone. 

However it can be remarked that the condition can be extended if the mouthpiece has a volume equal 

to that of the missing cone [5], because this reduces the inharmonicity between the two first 

eigenfrequencies. Obviously for a cylinder x1  is intinife and the analogy fails.  
A consequence of this analogy is the analogy of the mouthpiece pressure signal with a rectangular 

signal (see Figure 2), which was first explained by Gokhstein [6], and developed by Dalmont et al 

[7,8], together with the analogy with a stepped cone. This rectangular signal is named Helmholtz 

motion in the literature on bowed strings. Gokhstein showed both experimentally and theoretically that 

the duration of closure of the reed is independent of the played note, i.e., of the equivalent length of 

the resonator. This duration is related to the round trip of a wave over a length equal to that of the 

missing part of the cone. 

In this presentation, we discuss several paradoxes of this analogy. For the sake of simplicity, we call a 

truncated cone with reed and mouthpiece “saxophone”.  

 

  
 

                    
Figure 1. A truncated cone (on the left) and the equivalent “cylindrical saxophone'” (on the right). For 

the latter, the mouthpiece is placed on the side of the cylinder. 
 

     
Figure 2. Periodic signal of the mouthpiece pressure of a barytone saxophone, and the approximation 

by a rectangle signal (pure Helmholtz motion). The duration of the of negative pressure state, which 

corresponds to the reed beating, is common to the different notes with different values of the 

equivalent length ℓ of the truncated cone. 
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2 Three paradoxes 

i) The inharmonicity of a truncated cone is positive, because at the limit of a cylinder, the natural 

frequency series is transformed from 1,2,3... into 1,3,5... The mouthpiece of the saxophone 

reduces the inharmonicity of the truncated cone. For a cylindrical saxophone, the mouthpiece 

adds an important inharmonicity, which can prevent the sound production. In this case  

inharmonicity is negative: at the resonance frequencies the mouthpiece is equivalent to a closed 

tonehole, which dicreases the resonance frequencies, and the shift increases with frequency.  The 

patent by Yamaha [9] seems to propose several solutions to the problem, but no results are 

published. Recently a solution based on a coaxial resonator was presented [10].  

ii) For a cylindrical saxophone, the reed closure episode (negative mouthpiece pressure) has the same 

duration whatever the note, i.e., whatever the length of the cone. Therefore inside the mouthpiece, 

there are anti-ormants (missing harmonics when the ratio x1/L is rational), corresponding to the 

natural frequencies of the length x1. Measurements in a saxophone mouthpiece confirms the 

existence of anti-formants at frequencies close to the natural frequencies of the length x1. This is 

parodoxical because the length x1 has by definition the same order of magnitude as the 

corresponding natural frequencies, at which the analogy cannot be valid. This is explained by the 

consideration of the values of the impedance of the saxophone at frequencies that are multiple of 

the fundamental one, because the sound is periodic [11, 12].  

iii)      A cylindrical saxophone radiates by two sources at its extremities. Both radiated pressures have a 

flat spectrum (a Dirac comb). However missing harmonics are expected, similarly to the even 

harmonics of a simplified clarinet: in [11] this was explained by considering  a difference in 

phase between the two sources (when their external distance is ignored). For a saxophone, the 

analogy considers one source only, i.e., the opening the longer extremity, thus missing harmonics 

do not exist. 

 

3      What are the most important parameters for a saxophone? 
 

  A consequence of the analogy with the cylindrical saxophone is somewhat paradoxical also for the 

saxophone. For the simplest model of a cylindrical saxophone, that leads to the Helmholtz motion, 

there are two caracteristic lengths only: the two lengths on the two sides of the mouthpiece. The radius 

does not intervene in the model, because no losses are considered. The analogy leads to the conclusion 

that the apex angle of a saxophone is of secondary importance on the waveform, i.e., on the low 

frequencies, when it is compared to the length of the missing cone, and this is not intuitive. Therefore 

the comparison between ancient and modern saxophones based on the apex angle [13] is disputable. 

The length x1 is more important and should be studied.  

 

Figure 3 shows an example of the mouthpiece pressure in two saxophones with the same length L=x1 

+ ℓ, i.e., with a very close playing frequency, and two different lengths x1 . The calculation is done 

with the simplest model, which was shown to give realistic signals in the mouthpiece [14-16]. The 

positive pressure episode is close to the value of the corrresponding mouth pressure pm  (the excitation 

pressure), which is the exact value for the Helmholtz motion. It is almost independent of the value of   

x1 . The negative episode of the Helmholtz motion is given by the following formula [17]: 

 

p= - pm  (1-β)/β    with β =  x1  /L       (1) 

 

For the values of the cases shown in Figure 3, x1 = 0.2m and 0.3m, respectively, the ratio of the two 

minima is found to be 1.65 for the saxophone model and 1.7 for the cylindrical saxophone model. This 

confroms the importance of the length x1 for reed conical instruments.  
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Figure 3: Two waveforms for the mouthpiece pressure calculated with the minimum model. The 

total length is the same for the two cases: L=1.3m. Solid line: x1 = 0.2m . Dotted line: x1 = 0.3m. 

The pressure p(t) is reduced by the static closure pressure. 

 

 

4 Conclusions 

When comparing instruments of the saxophone family, or when comparing a soprano saxophone 

and an oboe (which have the same lowest note), it is better to consider first the length of the 

missing cone. Obviously the values of the apex angle and of the radii are important for the higher 

frequencies, which are sensitive to frequency-dependent losses and to the reed dynamics. 

Furthermore the study of the nonlinear characteristic shows that there is a significant difference 

between the maximum values of the flow entering the instrument for an oboe and a saxophone 

[6,18].  
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