
HAL Id: hal-03020214
https://hal.science/hal-03020214v1

Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wavelets in the Deep Learning ERA
Zaccharie Ramzi, Jean-Luc Starck, Thomas Moreau, Philippe Ciuciu

To cite this version:
Zaccharie Ramzi, Jean-Luc Starck, Thomas Moreau, Philippe Ciuciu. Wavelets in the Deep Learning
ERA. EUSIPCO 2020 - 28th European Signal Processing Conference, Jan 2021, Amsterdam, Nether-
lands. �hal-03020214�

https://hal.science/hal-03020214v1
https://hal.archives-ouvertes.fr


WAVELETS IN THE DEEP LEARNING ERA
Zaccharie Ramzi∗†‡, Jean-Luc Starck∗, Thomas Moreau†, Philippe Ciuciu†‡
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Abstract—Sparsity based methods, such as wavelets, have been
state-of-the-art for more than 20 years for inverse problems
before being overtaken by neural networks. In particular, U-nets
have proven to be extremely effective. Their main ingredients are
a highly non-linear processing, a massive learning made possible
by the flourishing of optimization algorithms with the power of
computers (GPU) and the use of large available data sets for
training. While the many stages of non-linearity are intrinsic to
deep learning, the usage of learning with training data could also
be exploited by sparsity based approaches. The aim of our study
is to push the limits of sparsity with learning, and comparing
the results with U-nets. We present a new network architecture,
which conserves the properties of sparsity based methods such
as exact reconstruction and good generalization properties, while
fostering the power of neural networks for learning and fast
calculation. We evaluate the model on image denoising tasks and
show it is competitive with learning-based models.

Index Terms—Machine Learning, Deep Learning, Neural Net-
works, Wavelets, Denoising, Image restoration

I. INTRODUCTION

The U-net was introduced by [1] to perform biomedical
image segmentation. It has since then been used in a wide
variety of image-to-image problems, not just segmentation,
either as a strong baseline or as the building block for a more
complex model. In particular, the U-nets have had success
in image-to-image translation [2], image reconstruction (in
CT [3] or MRI [4, 5, 6]) and denoising [6].

However, like many other deep learning approaches, the
reason for its success is not well understood. The ideas of the
U-net come from [7] in part. In this work, the base choices
that make a U-net are grounded with intuitive explanations. To
be able to distinguish between critical and legacy parts in the
U-net design, it is important to understand its mechanisms.

On the other hand, wavelets-based approaches are not state-
of-the-art anymore for denoising but are theoretically grounded
(see for example [8]). For applications where guarantees are
needed – such as medical applications – this makes them ideal
candidates.

Similarly to wavelets, U-nets present a multi-scale approach,
which analyse the signal at different resolutions. Their main
difference is the application of non-linearity. Indeed, where
wavelets apply only one non-linearity when applied to de-
noising – a method called wavelet shrinkage – the U-net
architecture relies on several ReLUs and max-poolings. These
chained non-linearities make the analysis of the denoising in
U-nets very complicated. In particular it is difficult to see how

a network trained on one type of noise can be applied to other
types of noises. Some works [9] even show that classical neural
networks can fail to recover elements that classical methods
do, suggesting a trade-off between quality and stability.

The idea of this work was therefore to build a network
which made use of one of the strongest advantages of neu-
ral networks, learning via gradient descent to enhance the
expressive power of wavelets, while keeping some of the
understanding we have of wavelets, in particular the denoising
process. We term this network ‘Learnlets’. We chose to test
this network on a denoising problem, a task where wavelets
have historically well-performed but are now overtaken by
deep learning approaches.

The full implementation of our method is open source in
Python1.

II. RELATED WORK

Different studies have attempted to work at the intersection
of wavelets and neural networks. In [10], the authors cast
the wavelet transform as an auto-encoder where the latent
representation has to be sparse and learn the filters in this
architecture and only a simply high-pass and low-pass filter
pair is learned. Observing U-nets two parts are very similar to
synthesis and analysis concepts in wavelet decompositions, [6]
proposed to use the wavelet transform to perform a better pool-
ing/unpooling than simply max-pooling/bilinear upsampling.
[11] inspired themselves from the cascading wavelet shrinkage
systems to enhance denoising autoencoders. In brief, they
proved that using a soft thresholding non-linearity provided
more power to the denoising autoencoders than other non-
linearities.

In these related papers, non-linearities (namely ReLU) are
in majority applied to the low frequencies rather than the
high frequencies, contrarily to what is common in the wavelet
framework. In this work, we don’t try to modify U-nets by
importing wavelet ingredients, but rather try to push the limits
of sparsity based approach by using learning while keeping
sparsity concept unchanged. This allows us to recover the
classical properties of wavelets i.e. decomposition with exact
reconstruction, thresholding and reconstruction, while using a
learning based approach.

1https://github.com/zaccharieramzi/understanding-unets



III. LEARNLETS, THE MODEL

Let x ∈ Rn×n be an image. Let x̃ = x + ε be the version
of this image corrupted by an additive white Gaussian noise
ε ∼ N (0, σ2) whose variance σ2 is assumed known. Let Σ
be a compact set of possible values for σ, we chose to have
σ ∼ U(Σ). For a given number of scales m and a given set
of parameters θ = (θS , θt, θA) ∈ Θm, we defined the learnlets
as function fθ from (Rn×n × Σ) to Rn×n:

fθ(x̃, σ) = SθS (TθT (AθA (x̃) , σ)) (1)

where we have:
1) AθA , the analysis function defined in III-A.
2) TθT , the thresholding function defined in III-B.
3) SθS , the synthesis function defined in III-C.
An illustration of the learnlets is given in Figure 1.
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Figure 1. Schematic representation of the learnlets model, with m = 2
scales. The red nodes are inputs/outputs. The lightly green nodes correspond
to functions whose parameters can be learned. Note that the standard deviation
of the noise before thresholding is not learned but rather estimated, and is
omitted in this diagram for clarity.

A. Analysis

Intuitively, one can see the analysis linear function as the
equivalent of the wavelet transform with some learned filters.
It is important to note that the analysis function is linear. The
analysis function is defined as:

AθA(x̃) =
((

F
θ
(i)
A

∗ g
(
h̃i−1(x̃)

))m
i=1

, h̃m(x̃)
)

(2)

where we have:
• F

θ
(i)
A

, the filter bank at scale i. The convolutions are done

without bias. θ(i)
A are the Ji convolution kernels all of the

same square size (kA, kA) (for now Ji = Jm).
• h̃ = ū ◦ h, the low-pass filtering (h) followed by a

decimation (ū). The decimation is performed by taking
one line out of 2 and one row out of 2, in line with the
way it’s done in wavelet transforms.

• g the high-pass filtering defined as: g(y) = y − u(h̃(y)),
with u the upsampling operation performed with a bicubic
interpolator.

For ease of manipulation we rewrite AθA(x̃) = ((di)
m
i=1, c),

with di ∈ R
n

2i−1× n

2i−1×Ji the detail coefficients and c the
coarse coefficients.

B. Thresholding

The non-linearity function used for wavelet shrinkage is typ-
ically either a hard-thresholding or a soft-thresholding [8]. The
soft-thresholding offers more stability and therefore we made
this choice for our architecture. The thresholding function, in
the case of a white Gaussian noise of variance σ2, is defined
as:

TθT (((di)
m
i=1, c) , σ) =

((
(tij(dij , σ))

Ji
i=1

)m
i=1

, c
)

(3)

where tij(d, σ) = σ̂ijST
(

1
σ̂ij
dij , θ

(ij)
T σ

)
, with:

• dij ∈ R
n

2i−1× n

2i−1 the output of the j-th filter of i-th
scale.

• σ̂ij the estimated standard deviation of dij when the input
of the transform is set to be a white Gaussian noise of
variance 1. This ensures the noise coming just before
the thresholding is of variance approximately σ. The
threshold is therefore truly θ(ij)

T σ.
• θ

(ij)
T is the thresholding level applied at scale i on the
j-th analysis filter.

• ST (d, s) is the soft-thresholding function applied
point-wise on d with threshold s: ST (d, s) =
sign(d) max(|d| − s, 0).

C. Synthesis

Intuitively, one can see the synthesis function as the equiva-
lent of the wavelet reconstruction operator, with learned filters.
It is important to note that the synthesis function is linear. The
synthesis function is defined recurrently as:

SθS ((di)
m
i=1, c) = S

θ
(m−1)
S

(
(di)

m−1
i=1 , u(c) + F

θ
(m)
S

∗ dm
)

(4)

where S∅(∅, c) = c and:

• F
θ
(i)
S

, the filter bank at scale i, used for regrouping. The
convolutions are done without bias and added all together.
θ

(i)
S are the Ji convolution kernels all of the same square

size (kS , kS).
• u, the upsampling operation performed with a bicubic

interpolator.

D. Constraints

Some constraints are used on the parameters of the learnlets
to make them as close as possible to the wavelets and therefore
make them understandable:

• The analysis filters are forced to have a unit norm.
• The thresholding levels are in [0, 5].



E. Learning

The optimization problem is given as:

argmin
θ∈Θ

Ex,σ [Lf (θ)] (5)

where Lf (θ) = ‖x − fθ(x̃, σ)‖22 and the expected value is
computed empirically, via the empirical mean over a batch.

F. Learnlets with exact reconstruction

Exact reconstruction guarantees that if no noise is present,
the signal will be reconstructed as is. This can be achieved
using the analysis filter previously fixed as identity. In par-
ticular, let’s consider a single scale i, after the application of
the g filter. The operation carried out by the network, without
thresholding can be written as:

x
(i)
out =

N∑
j=1

F
θ
(i,j)
S

∗ F
θ
(i,j)
A

∗ xin (6)

where N is the number of filters at that scale. Since we have
F
θ
(i,1)
A

= Id, we can also fix the corresponding synthesis

filter F
θ
(i,1)
S

= Id − ∑N
j=2 Fθ(i,j)S

∗ F
θ
(i,j)
A

. This trivially
gives without thresholding, xout = xin. We implemented
this constraint in the network, allowing to learn a different
thresholding level for this filter. We compare in the next section
the performance against a network which didn’t feature this
forced exact reconstruction.

IV. DATA AND EXPERIMENTS

The implementation was done in Python 3.6, using the
TensorFlow 2.1 framework [12] for model design. The training
was done on a computer equipped with a single GPU Quadro
P5000 with 16GB of RAM.

A. Data

The data used was the BSD500 dataset [13]. This data
consists of natural images of sizes 481× 321 and 321× 481.
The train and tests subsets of BSD500 were used as the
training dataset. The validation subset of BSD500, containing
the BSD68 [14] images was left out. We used BSD68 as
the test dataset. This choice is motivated by the fact that
many other denoising studies [15], [16] use this dataset for
comparison.

B. Pre-processing

For training, patches of size 256 × 256 were randomly
extracted on-the-fly. The images were then linearly mapped
from [0, 255] to the [−0.5, 0.5] interval and converted from
RGB to grayscale using the function provided by TensorFlow2.
oise was then added by first drawing uniformly at random in
the specified interval Σ a noise level σ, then generating a
256 × 256 white Gaussian noise patch ε with this standard
deviation. It is to note that during training, a single batch can
feature different noise standard deviations.

2https://www.tensorflow.org/api docs/python/tf/image/rgb to grayscale;
TensorFlow Documentation for RGB to grayscale

At test time, the images were mirror-padded to a 352 ×
512 size (or 512 × 352), in order to avoid shape mis-
matches when downsampling and upsampling, and the image
quality metric was computed only on the original image
shape. The test images were also corrupted by an addi-
tive white Gaussian noise for various standard deviations σ:
{0.0001, 5, 15, 20, 25, 30, 50, 55, 60, 75}. This allowed us to
test the performance of our method in different noise level
settings.

C. Model and training

1) Models design: We compare the learnets with the U-
net for the task of denoising. For the U-net, we used the
architecture described in [6, Fig.10.(a)] which contains 31
million parameters.

Unless specified otherwise, the learnlets parameters were
chosen as:
• m = 5 scales.
• 256 learnable analysis filters + 1 fixed analysis filters

being just the identity, F
θ
(i)
A

, of size 11× 11.
• 257 learnable synthesis filters, F

θ
(i)
S

, of size 13× 13.

• the thresholding levels only depend on the scale, θ(ij)
T =

θ
(i)
T .

This amounts to 372k trainable parameters, only one hun-
dredth of the size of the U-net.

2) Training parameters: The networks were both trained on
the mean squared error in line with (5). Each epoch consisted
of 200 batches of 8 extracted patches, and their respective
noise level in the case of the learnlets. The training noise
standard deviation range was chosen as Σ = [0; 55]. The
networks were trained with an Adam optimizer [17]. The
learning rate was set at 10−3, then decreased by half every
25 epochs, until it reached a minimum of 10−5. The trainings
took about 1 day for 500 epochs each.

D. Evaluation

1) Evaluation metric: For the evaluation of the perfor-
mance of the different models we used the Peak Signal to
Noise Ratio (PSNR). It is defined image-wise as the following
(with images taken in the [−0.5; 0.5] range):

PSNR(x, x̂) = −10 log10 ‖x− x̂‖22 (7)

For each test noise standard deviation σ, we compute the mean
of the PSNR of the denoised images, for all BSD68 images.

2) Testing: In addition, the networks were compared to
wavelets denoising [18] and BM3D [19]. We used the code
of PySAP [20] to implement the wavelets denoising. The
wavelets family was the Biorthogonal 7.9, 5 scales were used,
a hard thresholding was used with a thresholding level of 3
(except for the first scale where it was 4). The results for
BM3D were taken from various sources [15, 21, 16] while
the qualitative results were generated using the code provided
by the authors of [19]3.

3http://www.cs.tut.fi/∼foi/GCF-BM3D/

https://www.tensorflow.org/api_docs/python/tf/image/rgb_to_grayscale
http://www.cs.tut.fi/~foi/GCF-BM3D/


V. RESULTS

A. Quantitative results

Figure 2. Ratio of the denoised image PSNR compared to the original noisy
image PSNR for different standard deviations of the noise added to the test
images for all considered models. The train noise standard deviation range
was [0; 55].

Model name BM3D Wavelets Learnlets U-net
Denoising runtime in ms (std) 10800 (223) 274 (21) 106 (12) 64 (1)

Table I
Runtimes of the different models for the denoising of one image. Parameters

used are the same as Figure 2.

1) Comparison with other methods: We compared the U-
net and the learnlets against algorithms not involving learning,
namely BM3D and wavelets shrinkage, and another neural
network that was for long state of the art in image denoising,
DnCNN [15]. Figure 2 shows that for a large part of the
band, [5; 55] where they have been trained, the learnlets are
competitive compared to BM3D PSNR-wise. Keeping the
same formula as the wavelets, we manage to reach the perfor-
mance of state-of-the-art classical methods that are relatively
complex. In this same band, the wavelets have performance
that are degraded compared to the learnlets. Using learning, the
learnlets enhance their decomposition power compare to the
original wavelet model with no learning. For small noise level,
both learning methods gets degraded performances compared
with wavelet and BM3D. In this setting, the denoiser must
act as the identity. For the learnlets this can be fixed by
forcing exact reconstruction as can be seen in the next section.
Finally, we can see that for unseen test noise levels (i.e.
70), the performances of DnCNN drop significantly while the
learnlets keep relatively good performances. This suggests that
the learnlets generalise much better on unseen noise levels than
U-nets.

In addition, we can see in Table V-A1 that the learnlets
benefit from their GPU implementation and run much faster
than the wavelets and BM3D.

2) Learnlet with exact reconstruction: We saw in Figure 2
that the learnlets without exact reconstruction compete with
classical methods on small noise standard deviations. Figure 3
shows that the performance of the network with forced exact
reconstruction is almost the same as the one without forced

Figure 3. Ratio of the denoised image PSNR compared to the original noisy
image PSNR for different standard deviations of the noise added to the test
images for learnlets with and without forcing exact reconstruction. The train
noise standard deviation range was [0; 55]. The number of filters used was
64.

exact reconstruction (we only lose 0.1dB at σ = 30 for
example) on the majority of the test noise standard deviations.
However, for low noise standard deviations, the network with
forced exact reconstruction completely overpowers the other
one. This is due to the fact that, at low noise standard
deviations, for the i-th scale, the term x

(i)
out is practically

the same as its thresholded version, because the thresholds
θ

(ij)
T σ are going to be low. Therefore, it is compensated in the

corresponding synthesis filter used for exact reconstruction at
that scale, F

θ
(i,1)
A

. This allows to guarantee, in this case, no
loss of information in the signal if it is clearly present.

B. Qualitative results

The Figure 4 shows that the learnlets suffer from some of the
drawbacks of the wavelets like the creation of artifacts in the
high frequency parts of the image. However the results are less
blurred in comparison. Compared to the U-net or BM3D, the
learnlets are clearly suffering visually from a loss of contrast.
This is a known effect of the soft thresholding which inherently
biases the results. This could be improved by the use of
reweighting to further approach the hard thresholding, which
doesn’t bias the results.

VI. CONCLUSIONS

Pushing the limits of sparsity using massive learning and
training data, we have proposed a novel neural network
architecture – named learnlet – with the following properties:

• Despite very simple used concepts (linear filters and soft
thresholding), it allows performances similar to relatively
complex sparsity based methods like BM3D.

• Although its performances are inferior to DnCNN, learn-
lets generalize better than DnCNN on noise levels that
were not present in the training data and in the exact
reconstruction domain.

• Learnlets benefit from a fast implementation lacking for
both wavelets and BM3D.
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Figure 4. Denoising results for a specific image in the BSD68 dataset. The
noise standard deviation used was of 30. Parameters used for the methods are
the same as for Figure 2.

• Learnlets can be forced to guarantee exact reconstruction
when no thresholding is applied. This allows an embed-
ding of the learnlets in applications where there is a need
for guarantees of retrieval like in medical imaging.

Learnlets therefore bridge the gap between parsimony and
neural networks, by combining massive learning and the
computing power of GPUs as in neural networks, but keeping
a perfect understanding of how results are obtained, with all
the theoretical guarantees existing in the area of parsimony.

The future directions of this work are to try to adapt what
has been successful in the wavelets domain to this network
For example, reweighting [22] could help us to get rid of
the loss of contrast. Curvelet filters [23] could also be used
as a good initialisation or as complementary filters for the
analysis. Finally, just like with the wavelets, many different
types of noise – such as Poisson or spatially non-uniform
white Gaussian noise – could be taken into account with a
single model when implemented in an undecimated way, by
adapting the thresholding function to the noise.
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