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XPDNet for MRI Reconstruction: an Application to the fastMRI 2020 Brain Challenge

We present a modular cross-domain neural network the XPDNet and its application to the MRI reconstruction task. This approach consists in unrolling the PDHG algorithm as well as learning the acceleration scheme between steps. We also adopt state-of-the-art techniques specific to Deep Learning for MRI reconstruction. At the time of writing, this approach is the best performer in PSNR on the fastMRI leaderboards for both knee and brain at acceleration factor 4.

MRI reconstruction context

Magnetic Resonance Imaging (MRI) is a modality used to probe soft tissues. The acceleration of the examination time can be done using Compressed Sensing (CS) [START_REF] Lustig | Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging Michael[END_REF] and Parallel Imaging (PI). However, to have access the underlying anatomical object x, one must solve the following idealized inverse problem:

M Ω SF x = y (1)
where M Ω is a mask indicating which points in the Fourier space (also called k-space) are sampled, S are the sensitivity maps for each coil, F is the 2D Fourier transform, and y are the coil measurements in the k-space.

This problem is typically solved with optimization algorithms that introduce a regularisation term to solve its indeterminacy.

One point to note, is that S is not generally given (although it can be sometimes roughly pre-acquired).

In this particular instance, it is to be estimated from the data. A classical technique is for example EsPIRIT [START_REF] Uecker | ESPIRiT-An Eigenvalue Approach to Autocalibrating Parallel MRI: Where SENSE meets GRAPPA HHS Public Access[END_REF].

2 Cross-domain networks

General

The general intuition behind cross-domain network is that we are going to alternate the correction between the image space and the measurements space. The key tool for that is the unrolling of optimisation algorithms introduced in [START_REF] Gregor | Learning Fast Approximations of Sparse Coding[END_REF]].

An illustration of what cross-domain networks generally look like is provided in Figure 1.
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Figure 1: General cross-domain networks architecture. Skip and residual connection are omitted for the sake of clarity. y are the under-sampled measurements, in our case the k-space measurements, Ω is the under-sampling scheme, F is the measurement operator, in our case the Fourier Transform, and x is the recovered solution.

Implementation

General backbone The XPDNet is a particular instance of cross-domain networks. It is inspired by the PDNet introduced in [START_REF] Adler | Learned Primal-Dual Reconstruction[END_REF]] by unrolling the PDHG algorithm [START_REF] Chambolle | A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging[END_REF] and applied to MRI in [START_REF] Ramzi | Benchmarking MRI reconstruction neural networks on large public datasets[END_REF]. In particular, a main feature of the PDNet is its ability to learn the acceleration pattern through the unrolled optimisation steps with a buffer, here of size 5.

Image correction network

The plain Convolutional Neural Network (CNN) is replaced by an Multi-scale Wavelet CNN (MWCNN) [START_REF] Liu | Multi-level Wavelet-CNN for Image Restoration[END_REF], but the code1 allows for it to be any denoiser, hence the X. This network was chosen after benchmarking different networks introduced as denoisers and listed in [START_REF] Tian | Deep Learning on Image Denoising: An Overview[END_REF], embedded in the XPDNet but for single-coil reconstruction. Following the insights of [START_REF] Ramzi | Benchmarking MRI reconstruction neural networks on large public datasets[END_REF] we chose to use a smaller image correction network than that presented in the original paper [START_REF] Liu | Multi-level Wavelet-CNN for Image Restoration[END_REF], in order to afford more unrolled iterations in memory.

Additionally, because we use a small batch size, we removed batch normalization layers from the network.

k-space In this challenge, since the data is multicoil, we do not use a k-space correction network which would be very heavy in memory use. However, following the idea of [START_REF] Sriram | End-to-End Variational Networks for Accelerated MRI Reconstruction[END_REF],

we introduce a refinement network for S, initially estimated from the lower frequencies of the retrospectively under-sampled coil measurements. This sensitivity maps refiner is chosen to be a simple U-net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] like in [START_REF] Sriram | End-to-End Variational Networks for Accelerated MRI Reconstruction[END_REF].

We therefore have 25 unrolled iterations, an MWCNN that has twice as less filters in each scale, a sensitivity maps refiner smaller than that of [START_REF] Sriram | End-to-End Variational Networks for Accelerated MRI Reconstruction[END_REF] and no k-space correction network.

Training details

The loss used for the network training was a compound loss introduced by [START_REF] Pezzotti | An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction: Application to the 2019 fastMRI Challenge[END_REF], weighted sum of an L1 loss and the Multi-scale SSIM (MSSIM) [START_REF] Wang | Image Quality Assessment: From Error Visibility to Structural Similarity[END_REF].

The optimizer was the Rectified ADAM (RAdam) [START_REF] Liu | On the Variance of the Adaptive Learning Rate and Beyond[END_REF] with default parameters2 .

The training was carried for 100 epochs, each epoch consisting of a pass through all the volumes, with one slice selected at random at each epoch and scaled by a factor of 10 6 as in [START_REF] Ramzi | Benchmarking MRI reconstruction neural networks on large public datasets[END_REF]. The batch size is 1. Masks offset for the equidistant masks3 are sampled on-the-fly. Training is carried out separately for acceleration factors 4 and 8. The networks are then fine-tuned for each contrast for 10 epochs.

With one V100 GPU, the training lasted 1 week for each acceleration contrast.

Conclusion and Discussion

We managed to gather insights from many different works on computer vision and MRI reconstruction to build a module approach. Currently this approach outperforms all others in PSNR and NMSE for both the multicoil knee and brain tracks at the acceleration factor of 4. Furthermore, the modularity of the current architecture allows to use the newest denoising architectures when they become available.

However, the fact that this approach fails to outperform the others on the SSIM metric is to be investigated in further work.

https://github.com/zaccharieramzi/fastmri-reproducible-benchmark

https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers/RectifiedAdam

To see more about the exact nature of the masks: https://github.com/facebookresearch/fastMRI/ issues/54
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