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Abstract – The tonehole lattice cutoff frequency is a well-known feature of woodwind instruments. However,
most analytic studies of the cutoff have focused on cylindrical instruments due to their relative geometric
simplicity. Here, the tonehole lattice cutoff frequency of conical instruments such as the saxophone is studied
analytically, using a generalization of the framework developed for cylindrical resonators. First, a definition of
local cutoff of a conical tonehole lattice is derived and used to design “acoustically regular” resonators with
determinate cutoff frequencies. The study is then expanded to an acoustically irregular lattice: a saxophone
resonator, of known input impedance and geometry. Because the lattices of real instruments are acoustically
irregular, different methods of analysis are developed. These methods, derived from either acoustic (input
impedance) or geometric (tonehole geometry) measurements, are used to determine the tonehole lattice cutoff
frequency of conical resonators. Each method provides a slightly different estimation of the tonehole lattice
cutoff for each fingering, and the range of cutoffs across the first register is interpreted as the acoustic irregu-
larity of the lattice. It is shown that, in contrast with many other woodwind instruments, the cutoff frequency of
a saxophone decreases significantly from the high to low notes of the first register.
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1 Introduction

Woodwind instruments such as the clarinet and
saxophone have resonators that are composed of an acous-
tical duct for which the downstream section has a lattice of
toneholes that can be opened and closed to change the
playing frequency of the instrument. At low frequencies,
the effective acoustical length of the resonator is defined
by the distance between the mouthpiece and the first open
tonehole because an acoustical wave, upon arrival at the
tonehole, either radiates into the surrounding environment
or reflects back into the main bore of the instrument. At
higher frequencies, the wave is no longer evanescent and
propagates into the remaining lattice of toneholes. For a
real instrument of finite length, the (approximate) tonehole
lattice cutoff frequency separates these two bands, although
no definition is universally agreed upon and a precise defini-
tion does not exist because the toneholes do not constitute a
perfectly periodic lattice.

The tonehole lattice cutoff frequency has been studied
for various instruments, particularly the clarinet, but rela-
tively little application to the saxophone exists in the liter-
ature [1, 2]. In fact, in his book, Benade provides the input
impedance and discusses (approximate) cutoff frequencies

for many instruments, including the clarinet, oboe, bassoon
and tárogató, but not the saxophone [3]. The cutoff has also
been studied for the flute [4]. It is generally assumed that
the cutoff frequency has an impact on the timbre or per-
ceived “character” of a given instrument due to its influence
on both sound production and radiation, and is therefore of
interest to both instrument makers and musicians [3, 5].

A precise definition of the tonehole lattice cutoff
frequency does not exist due to the finite and lossy nature
of real instruments [6]. Therefore, only approximate defini-
tions exist, which may be either empirical or analytic. A
summary of the notation used in the current article is pro-
vided in Table 1. One way to define the cutoff frequency is
to identify a disturbance in the measured or simulated input
impedance or reflection coefficient, and set an arbitrary
threshold to distinguish between the pass and stop bands.
Often the disturbance is identified visually from the input
impedance, which introduces questions about reproducibil-
ity, and the uncertainty can be on the order of the distance
between impedance peaks. Regardless, this is the most
common method for identifying the cutoff of woodwind
instruments. A second empirical method to identify the
cutoff frequency uses measurements external to the instru-
ment during playing conditions across a large range of the
instrument. From this, Benade defines a “break frequency,”
and related it to the cutoff frequency, which is at the*Corresponding author: erikalanpetersen@gmail.com
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intersection of the low frequency rise and high frequency
roll-off of the spectrum envelope [7]. Both of these methods
are prone to ambiguous results for certain fingerings and
instruments. While empirically estimated cutoff frequencies
are often assumed to be due to the tonehole lattice, it is not
always a robust method because other components, such as
the bell, can cause similar disturbances in the input
impedance.

Analytically, the global cutoff frequency f G
c can be devel-

oped following the theory of wave propagation in periodic
media [6], in which a cutoff frequency can be precisely
defined for an infinite, lossless lattice. Here, local quantities
corresponding to the unit cells of the lattice define the
global cutoff frequency. In the case where the medium is
a column of air punctuated by toneholes, the lattice is
divided into discrete elements in the form of T-cells, a hole
with flanking lengths of duct on either side, or as P-cells
with two neighboring (partial) holes and the length of duct
between them. For either shape, an eigenfrequency can be
calculated for each cell in the lattice, referred to as the local
cutoff frequency f T

c and characteristic frequency fP
c , respec-

tively. If each cell in the lattice has the same eigenfrequency,
then the lattice is considered an acoustically regular (peri-
odic) medium, and the lattice formally has a global cutoff
frequency that is equal to the common eigenfrequency of
each constituent cell. Periodic cylindrical lattices are easily
designed by concatenating identical unit cells to form
geometrically regular lattices. For conical resonators, which
cannot be geometrically regular due to the taper of the main
bore’s internal radius, a lattice can be periodic following the
interpretation of acoustical periodicity. While these deriva-
tions are only strictly valid for an infinite, lossless lattice,
the theory works well for lattices with as few as three
toneholes.

The purpose of the current article is to generalize the
theory of wave propagation in periodic media from cylindri-
cal to conical resonators. In a recent article, the current
authors present an algorithm for designing cylindrical
resonators with independently variable first impedance

peak and global cutoff frequencies [5]. Analogous equations
are derived for conical resonators in Section 2. Section 3
applies the analysis of a conical tonehole lattice to the
geometry of a Buffet Crampon alto saxophone. This section
also includes a comparison of the various cutoff frequency
definitions and approximations as they apply to simplified
resonators and the Buffet Crampon alto saxophone.
Conclusions and perspectives are provided in Section 4.

2 Acoustically regular conical tonehole lattice

In this section a conical resonator is designed such that
the frequency f1 of the first impedance peak and the global
tonehole lattice cutoff frequency f G

c can be independently
varied. Inspired by the geometry of a saxophone resonator
without a mouthpiece, this is achieved by using a length
of cone that ends with a series of acoustically regular lattice
cells. The input impedance peaks below the global cutoff
frequency have relatively large magnitudes that are approx-
imately harmonically related to the first peak. Above the
global cutoff frequency the peaks and troughs are less
pronounced and may not have the same organized spacing
in frequency. This is also seen in the reflection coefficient,
which has a value close to unity below the global cutoff
frequency, and drops significantly at the cutoff. An example
of a synthesized input impedance and reflection coefficient
is shown in Figure 1 and discussed in greater detail in
Section 2.4.

In the following sections we derive the equations that
describe the conditions for acoustic regularity of a conical
waveguide. The derivation uses T-cells as the basic element
of the lattice, although it is also possible to start with
P-cells.

2.1 Transfer matrix equations of a conical lattice

2.1.1 Basic equations

In the following derivation, a conical lattice is designed
by concatenating n cells that have a tonehole at the center

Table 1. Summary of the different types of cutoff frequencies used in the current article.

Equations Name and description

f T
c (12) The local cutoff frequency is the natural frequency of a T-cell with one hole flanked by two lengths of bore that are

closed at their extremities. The cell can be either symmetric (Eq. (12)) or asymmetric (Eq. (27)). Because this is a
local quantity, it has a corresponding cell index n that is omitted to lighten the notation.

fP
c (26) The characteristic frequency is the natural frequency of a P-cell consisting of two toneholes separated by a length

of bore. Because this is a local quantity, it has a corresponding cell index n that is omitted to lighten the notation.
fG
c — The global cutoff frequency is a global property of a lattice for which each element has exactly the same natural

frequency, in which case fG
c ¼ f T

c ¼ fP
c . It is only strictly valid for an infinite, lossless lattice, but it is a good

approximation for a tonehole network with at least three open toneholes and is used for finite lattices in this article.
f R
t (19) The transition band is an approximation of the global cutoff derived from the reflection coefficient. It defines a

frequency band over which the lattice appears to transition from below to above the cutoff frequency.

A lattice is geometrically regular if every cell is geometrically identical. In this case every cell has the same f T
c (and fP

c ) and the lattice
has a global cutoff fG

c . This is not possible for a conical lattice because no two cells can be identical due to the taper of the bore.

A lattice is acoustically regular if every cell has the same local cutoff f T
c (and fP

c ), resulting in a global cutoff fG
c . Conical bores can be

acoustically regular because the cross-section and chimney height of a tonehole can be modified to account for the changing cross-
section of the main bore.
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and truncated cones of length ‘Ln and ‘Rn to the left and
right, as shown in Figure 2. The frequency domain
Helmholtz equation for the acoustic pressure P(r, k) is,

o2

or2
rP r; kð Þ½ � þ k2rP ðr; kÞ ¼ 0; ð1Þ

where k = x/c is the wavenumber with x the angular
frequency and c the speed of sound in air. Thermoviscous
and radiation losses are ignored. The acoustic velocity V
(r, k) is derived from the Euler equation, orP(r, k) =
�jqckV(r, k), where q is the density of air and j the imag-
inary unit.

A small angle approximation of the apex angle h is
applied for the following derivation. The approximation
assumes that the difference between the spherical cap of a
propagating wave and a flat surface cross-section of themain
bore can be ignored. Similarly, the difference between a
length along the axis r and its projection on the edge of
the cone is ignored. For a typical apex angle h = 0.028 rad
these approximations introduce less than 0.1% error for
the surface and less than 0.5% error for the lengths. The

advantage of this approximation is that it assumes planar
waves, such that the pressure is constant across a flat surface
cross-section of the main bore, allowing the use of a simple
tonehole model.

2.1.2 Transfer matrix across a single cell

The relation between pressure and velocity across a sec-
tion of the waveguide is written as a transfer matrix
equation,

r1Pðr1; kÞ
r1V ðr1; kÞ � P ðr1;kÞ

jckq

 !
¼ M1;2 kð Þ

r2P r2; kð Þ
r2V r2; kð Þ � P r2;kð Þ

jckq

 !
; ð2Þ

where the matrix M1,2(k) (written generically here, and
with superscript labels and subscript indices when refer-
ring to specific sections) has elements A(k), B(k), C(k),
and D(k) that correspond to the geometry of the waveg-
uide sections. The transfer matrix relating pressure and
velocity across the nth cell (see Fig. 2, right panel)
centered at rn is the product of the transfer matrices across

Figure 1. Input impedance (modulus and argument) and reflection coefficient (modulus and argument) of an acoustically regular
conical resonator (solid black lines) with a first impedance peak at 177 Hz and a theoretical global tonehole lattice cutoff frequency at
750 Hz. A conical resonator (dotted lines) with the same first impedance peak frequency but no tonehole lattice is shown for
comparison. The first three impedance modulus peaks are marked by a solid black line (resonator with a lattice) and dotted lines
(simple cone). The cutoff transition band f Rt (defined in Sect. 2.4, Eq. (19)) is shown in shaded grey.

Figure 2. Schematic of a conical resonator with apex angle h and a lattice of toneholes. There is a length of duct L before the first
symmetric T-cell centered at r1 (left panel). The missing length of the cone is x1. The nth T-cell, centered at rn, is flanked by cones of
length ‘Ln and ‘Rn on either side (right panel). The tonehole has cross-section sn = pb2n and chimney height hn. The cross-section of the
main bore under the tonehole is Sn.
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the tonehole M h
nðkÞ and the left and right flanking conical

sections ML
nðkÞ and MR

n ðkÞ,
MnðkÞ ¼ ML

n ðkÞMh
nðkÞMR

n ðkÞ: ð3Þ
It is convenient, although not necessary, to consider “sym-
metric” cells (truly symmetric cells cannot exist due to the
taper of the main bore) for which ‘Ln ¼ ‘Rn ¼ ‘n,

MnðkÞ ¼ M ‘
nðkÞMh

nðkÞM ‘
nðkÞ: ð4Þ

The remainder of this derivation assumes symmetric cells,
and asymmetric cells are treated in Section 3.

The transfer across a truncated cone of length ‘n is,

M ‘
n kð Þ ¼ cosðk‘nÞ jqc sinðk‘nÞ

j
qc sinðk‘nÞ cosðk‘nÞ

 !
: ð5Þ

A tonehole is treated as a shunt acoustic mass:mn = qhn/sn,
where sn = pb2n is the cross-sectional area of the tonehole
and the chimney height hn includes the internal and radia-
tion length corrections. The transfer matrix across the nth
tonehole is,

Mh
n kð Þ ¼ 1 0

Y n kð Þ 1

� �
; ð6Þ

where Yn(k) = 1/(jckmnSn) is the specific admittance of
the tonehole.

The transfer matrix equation relating P(r, k) and V(r, k)
from rn � ‘n to rn þ ‘n across the entire nth symmetric cell
centered at rn is,

ðrn � ‘nÞP ðrn � ‘n; kÞ
ðrn � ‘nÞV ðrn � ‘n; kÞ � Pðrn�‘n;kÞ

jckq

 !
¼

Mn kð Þ rn þ ‘nð ÞP rn þ ‘n; kð Þ
rn þ ‘nð ÞV rn þ ‘n; kð Þ � P rnþ‘n;kð Þ

jckq

� �
; ð7Þ

where Mn(k) is determined by equation (4) using equa-
tions (5) and (6), has elements classically denoted An(k),
Bn(k), Cn(k), Dn(k) and its determinant is unity due to
reciprocity.

2.1.3 From one cell to full lattice

The transfer matrix M for a lattice with N cells is the
matrix product of the transfer matrix of each cell,

MðkÞ ¼
YN
n¼1

MnðkÞ ¼ M1ðkÞM2ðkÞ � � �MN ðkÞ: ð8Þ

The resulting matrix,

M kð Þ ¼ A kð Þ B kð Þ
C kð Þ D kð Þ

� �
; ð9Þ

has coefficients An(k), Bn(k), Cn(k), Dn(k) that can be
used to calculate global features of the lattice such as
the input impedance.

So far, the lattice modeled by M(k) is not necessarily
acoustically regular and may not have a global cutoff
frequency. To create a lattice that is acoustically regular
and exhibits a global cutoff it is necessary to impose condi-
tions on the local elements accounted for by each cellMn(k).

2.2 The cutoff frequency of an acoustically regular
lattice

For the pressure P(r, k) defined at the input r ¼ rn � ‘n
of the nth cell, an acoustic periodicity implies,

2AnðkÞðrn � ‘nÞP ðrn � ‘n; kÞ ¼ ðrn�1 � ‘n�1ÞP ðrn�1 � ‘n�1; kÞ
þ ðrnþ1 � ‘nþ1ÞP ðrnþ1 � ‘nþ1; kÞ; ð10Þ

which is derived from equation (7). An explicit expression
for An(k) can be determined from the geometry of each
cell, and the frequency f = ck/(2p) that satisfies
An(k) = Dn(k) = ±1 for a given cell is the local cutoff
frequency f Tc . When An(k) = ±1 occurs at the same
frequency for every cell, the lattice is acoustically regular
and has a global cutoff frequency f Gc , below which waves
entering the lattice are evanescent [8].

The transfer matrix elements An(k) and Dn(k) that
define the local cutoff of a cell can be calculated directly
from the geometry of the nth cell. Therefore, it is possible
to choose the cell geometry to achieve a desired local cutoff
frequency. For a symmetric cell defined by equations (4)–(6)
and setting An(k) = 1, a transcendental equation defines the
local cutoff in terms of cell geometry,

cotðkTc ‘nÞ ¼ 2kTc hnSn=sn; ð11Þ
where kTc ¼ 2pf Tc =c. The local cutoff frequency is approx-
imated using a Taylor expansion of the cotangent in kTc ‘n,

f T
c ¼ c

2p‘n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhn=‘nÞðSn=snÞ þ 1=3

p þOððkTc ‘nÞ3Þ
" #

; ð12Þ

f T
c ¼ c

2p‘n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhn=‘nÞðSn=snÞ

p þOðkTc ‘nÞ
" #

; ð13Þ

where the approximations correspond to expansions
retaining two and one terms, respectively. Both of these
expansions of the cotangent function are valid assuming
(kTc ‘n)

2 � 1, for which the half-spacing between holes is
much smaller than the wavelength at the local cutoff,
and the cell can be treated as a lumped element system.
For a local cutoff at 900 Hz and a common interhole spac-
ing 2‘n � 0:04 m, ðkTc ‘nÞ

2 � 0:1 and the condition is satis-
fied. As for the case of a cylindrical cell [1], the local cutoff
frequency can be interpreted as the eigenfrequency of a
single cell with Neumann boundary conditions satisfied
at the left and right extremities of the main bore.

One way to quantify the tonehole lattice global cutoff
frequency of an acoustically regular lattice is to examine
the acoustic flow U(x) through each radiating aperture,
relative to the first tonehole. Figure 3 shows the transfer
function HU

n (x) = 20 log10 (Un(x)/U1(x)) for the
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acoustically regular lattice with geometry provided in the
Appendix, alsodepicted inFigure 1.These simulations follow
the method outlined in Section 2.4. Below global cutoff, the
flow is predominantly through the first tonehole, with an
exponential decay of approximately 4.8 dB (at 50 Hz) for
each subsequent tonehole. Above the global cutoff, the flow
is predominantly through the termination of the lattice, with
considerable contributions from multiple toneholes. This
figure is the conical lattice counterpart to the results for mea-
sured [9, 10] and analytically studied cylindrical lattices [11].

2.3 From lattice to a saxophone-type resonator

To better mimic the acoustical behavior of a real alto
saxophone, the resonator is designed as a conical bore
approximately 60 cm long that terminates in an acousti-
cally regular lattice designed following the method proposed
in Section 2.2 using equation (12). Dimensions of two pos-
sible examples are provided in the Appendix. The upstream
(closest to the mouthpiece) section of the cone determines
the low frequency resonances of the resonator, and the
lattice of open toneholes modifies the high frequency (above
the global cutoff) resonances by changing the effective
acoustical length. It is possible to design a resonator such
that the frequency of the first impedance peak and the
global cutoff frequency of the lossless tonehole lattice can
be varied independently [5].

The length of a lattice-less frustum (cone truncated
on both ends) with a desired first impedance resonance
frequency f1 is,

Leffðk1; x1Þ ¼ k1
1
2
� 1
2p

arctan
2px1
k1

� �� �
; ð14Þ

where k1 = c/f1 is the wavelength corresponding to the
first impedance peak frequency and x1 the missing length
between the apex and small end of the frustum. At low
frequencies, a lattice of toneholes changes the terminal
impedance of the cone by adding a mass-like term that
can be expressed as a length correction �‘1 [8]. This
length correction is a function of the first cell length ‘L1
and the wavelength kc at the local cutoff,

�‘1ðkc; ‘L1 Þ ¼ ‘L1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kc

2p‘L1

 !2
vuut : ð15Þ

The end correction term implies that a conical resonator
without a lattice (but same f1) should be slightly longer
than the length between the input and first hole of a
resonator with a lattice. Therefore, the segment of the
resonator before the lattice should have a length,

L ¼ Leff � ‘L1 ��‘1; ð16Þ
depicted in the left panel of Figure 2.

These equations provide the basic algorithm for design-
ing a resonator such that the first resonance frequency and
the global tonehole lattice cutoff can be independently var-
ied. It is possible to conceive different geometries that result
in an acoustically regular tonehole lattice with the same glo-
bal cutoff. In the current work, the geometries are inspired
by, but not identical to, a Buffet Crampon alto saxophone.

2.4 Simulated impedance of acoustically regular
lattice and equivalent truncated cone

The input impedance is simulated to demonstrate the
validity of an acoustically regular conical lattice design.
The simulations are based on the Transfer Matrix Method
with external Interactions (TMMI), which is similar to the
well-known Transfer Matrix Method, but includes the
mutual impedance of toneholes that radiate into the same
space [12]. In contrast with the previous theoretical devel-
opment, the TMMI simulations include thermoviscous
and radiation losses. The resonator has a first impedance
peak at 177 Hz and a global cutoff at 750 Hz. The geometry
of this academic resonator and another with a global cutoff
at 1000 Hz is provided in the Appendix.

Figure 1 shows the simulated input impedance,

ZðxÞ ¼ P ðxÞ=UðxÞ; ð17Þ
normalized by zc = qc/(pa2

in) where ain = x1tan(h) is the
radius of the entrance to the bore, and the corresponding
reflection coefficient,

RðxÞ ¼ ZðxÞ=zc � 1
ZðxÞ=zc þ 1

: ð18Þ

The effect of the global cutoff frequency can be identified
visually in the magnitude and argument of both the input
impedance and reflection coefficient. The large and regularly
spaced impedance peaks whose frequencies are determined
by the upstream portion of the resonator are obliterated
above the global cutoff because the wave propagates into
the lattice and reflections back into the bore are weak. Fur-
thermore, above the global cutoff the wave radiates from
subsequent toneholes and experiences greater thermoviscous
losses due to the increased propagation distance within the
bore. These combined effects result in the disturbance seen
in the input impedance and reflection coefficient.

Because the lattice is designed to have acoustically reg-
ular cells, the local (and therefore global) cutoff frequencies

Figure 3. The transfer function between flow through the first
tonehole and flow through the nth (for n = 2–10) tonehole and
open termination of a conical lattice with f Gc = 750 Hz. The
lattice geometry is Resonator 1 in the Appendix, and is the same
lattice used for Figure 1.

E. Petersen et al.: Acta Acustica 2020, 4, 13 5



are, in principle, exactly 750 Hz. As noted before, it is not
always sensible to define a precise, unambiguous definition
of the cutoff from the input impedance and reflection coef-
ficient. Therefore, a transition band f R

t shown in light grey
is defined by,

fmin � f R
t � fmax; ð19Þ

where the lower and upper bounds fmin and fmax corre-
spond to the �3 and �6 dB roll off of the reflection
coefficient. This is determined by the lowest frequencies
that satisfy,

R 2pfminð Þj j ¼
ffiffiffi
2

p

2
; ð20Þ

jRð2pfmaxÞj ¼ 1
2
: ð21Þ

Although the thresholds are arbitrary, this transition band
serves as an objective empirical estimation of the global cut-
off frequency for the remainder of this article. Note that it is
distinct from a theoretically defined (global, local, or char-
acteristic) cutoff, summarized in Table 1.

The dashed curve in Figure 1 shows the input impe-
dance of a cone which terminates in a radiation load but
no lattice. Its length is chosen so that the first impedance
peak frequency is the same as that of the acoustically regu-
lar resonator that terminates with a lattice. This serves as a
comparison to show which features of the input impedance
are due to the tonehole lattice, and which arise solely from
the conical geometry. As for the resonator with a tonehole
lattice, the reflection coefficient of the simple cone also has
regularly spaced dips. This behavior is due to the conical
geometry of the waveguide, and is therefore seen in the sim-
ulations of both resonators, even below the gobal cutoff fre-
quency of the resonator with a tonehole lattice.

For the readability of Figure 1, the cutoff transition
band f R

t is not shown for the lattice-less cone. However, if
the definition was applied, the threshold conditions are
met for a range approximately 1250–2300 Hz. For this rea-
son, the tonehole lattice cutoff frequency of a conical res-
onator is difficult to identify empirically in part because
there are multiple phenomena that lead to similar measured
behavior: the tonehole lattice, the conicity of the main bore,
and the bell (not treated in the current article), can all
cause perturbations of the input impedance and dips in
the reflection coefficient. This may explain why there are
comparatively few articles about the cutoff frequency of
conical instruments such as the saxophone, and demon-
strates the utility of using simplified resonators to study
the phenomenon. In particular, the features that are evi-
dent in Figure 1 are helpful to guide the discussion for res-
onators that are not strictly acoustically regular.

3 Application to the saxophone: acoustically
irregular lattices

Real saxophones do not have strictly acoustically regular
tonehole lattices. However, cutoff frequency type behaviors

are observed in the input impedance measurements for
many fingerings of the saxophone, for which two example
fingerings are provided in Figures 4 and 5. In addition, the
toneholes tend to increase in radius and interhole spac-
ing progressively along the resonator, which suggests an
approximate acoustic regularity of the type defined by
equation (12). Therefore, it is still interesting to apply the
theory of a tonehole lattice cutoff frequency to the
saxophone.

A practical complication in assessing the acoustic regu-
larity of a real instrument is precising the geometry of the
tonehole cells because the lattice cannot, in general, be
divided into symmetric T-cells. Can the geometry of a real
saxophone be divided into cells such that local cutoff fre-
quencies can be determined? This question is explored using
P-cells and asymmetric T-cells, and the methods are applied
to the geometry of a Buffet Crampon alto saxophone [1].

3.1 Tonehole cell pairs

The first method to characterize the acoustic regularity
of a lattice considers not the local eigenfrequencies of
constituent T-cells, but rather defines the characteristic
frequency fP

c (Eq. (25) and Table 1) of adjacent toneholes
and the length of cone separating the pair, often referred
to as aP-cell. This way, the characteristic frequency of each
tonehole pair in a lattice can be unambiguously calculated
directly from the measured geometry of an instrument. As
for a lattice of T-cells, if eachP-cell in a lattice has the same
characteristic frequency then the lattice as a global cutoff
f G
c ¼ fP

c .
If the eigenfrequencies of adjacent symmetric T-cells are

equal,

f T
c ¼ c

2p‘n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhn=‘nÞðSn=snÞ

p þOðkTc ‘nÞ
" #

ð22Þ

¼ c
2p‘nþ1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 hnþ1

‘nþ1

� �
Snþ1
snþ1

� �r þOðkTc ‘nþ1Þ
2
4

3
5; ð23Þ

then their geometries are related such that,

‘nhn
Sn

sn
¼ ‘nþ1hnþ1

Snþ1

snþ1
¼ c2

2ð2pf T
c Þ2

: ð24Þ

As shown in Figure 6, the spacing between the two holes
is denoted dn = ‘Rn þ ‘Lnþ1, where the assumption of symmet-
ric T-cells is no longer necessary. Retaining one term of the
Taylor expansion of equation (11) yields the characteristic
frequency of a tonehole pair,

fP
c ¼ c

2pdn

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Kn þ K

0
nþ1

� �q þOðkTc ‘nÞ
2
4

3
5; ð25Þ

where the dimensionless Kn ¼ hn
dn

Sn
sn

and K
0
nþ1 ¼ hnþ1

dn
Snþ1
snþ1

are introduced for brevity. The subscript of dn does not
increment to dn+1 for K

0
nþ1 because it is the distance
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between the nth and (n + 1)th holes, which is a shared
quantity. Retaining two terms of the Taylor expansion
yields the characteristic frequency,

fP
c ¼ c

2p
2

dn

ffiffiffi
3

p 1
3
þ Kn þ K

0
nþ1

� �	
1
3

� �2

þ 2
3
ðKn þ K

0
nþ1Þ

 ""

þ2KnK
0
nþ1

!2

� 4K2
nK

02
nþ1

#1=2
þO ðkTc ‘nÞ3

� �#
: ð26Þ

If the lattice is acoustically regular then the characteristic
frequency fP

c will be the same for each pair of adjacent
toneholes. If the lattice is not acoustically regular, as is
the case for a saxophone, then the variation of fP

c across
the lattice can be treated as a measure of the degree of
acoustical irregularity of a tonehole lattice. This is different
from Keefe’s interpretation, in which the local cutoff fre-
quency is defined by the characteristic frequency fP

c of
the first tonehole pair [9]. Here, all cells are considered

and their variation throughout the lattice is interpreted
as a deviation from perfect acoustic regularity.

Figure 7 shows the results of this theory applied to the
geometry of an alto saxophone following a decreasing chro-
matic scale along the horizontal axis. For each fingering, the
characteristic frequency fP

c of the first three pairs of open
toneholes (when three are available, the lowest notes of
scale have only one or two tonehole pairs available) are
marked with circles and labeled in order with Roman
numerals. The cutoff transition band f R

t is marked in light
grey and asymmetric division (see Sect. 3.2) in dark grey.

There is considerable variation of fP
c from cell to cell,

ranging from 500 Hz for cells near the end of the lattice
up to 1500 Hz for the highest cells. This indicates that
the resonator cannot be considered acoustically regular.
The variation is much greater than for the clarinet, which
has cutoffs that typically range from 1150 Hz to 1450 Hz
[8]. A visual inspection of the input impedance of all the
fingerings (not shown) confirms that the cutoff increases
substantially with increasing notes on the scale.

Figure 4. The input impedance (modulus and argument) and reflection coefficient (modulus and argument), measured for the high C
fingering (written pitch, 311 Hz) of an alto saxophone. The cutoff transition band f Rt in grey.

Figure 5. The input impedance (modulus and argument) and reflection coefficient (modulus and argument), measured for the G]
fingering (written pitch, 246 Hz) of an alto saxophone. The cutoff transition band f Rt in grey.
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The characteristic frequencies for the first three open
tonehole pairs follow the same downward trend as the mea-
sured global cutoff transition band for each fingering. This
implies that an empirically observed cutoff on the input
impedance or reflection coefficient is largely determined
by the upstream (closest to the mouthpiece) open toneholes
of the lattice for a given fingering. It is worth remarking
that the (approximate) cutoff frequencies of the lowest
notes in the scale are due to some combination of the conic-
ity and flare of the bell, and can not be interpreted as the
result of a tonehole lattice because there are not enough
open toneholes to apply the theory of wave propagation
in periodic media. This ambiguity is mentioned in
Section 2.4, and demonstrates again why the tonehole
lattice cutoff frequency is difficult to interpret for conical
resonators.

3.2 Iterative cell division

The second method iteratively divides a tonehole lattice
into acoustically regular asymmetric T-cells, as was done for
the clarinet [1]. In contrast to Section 2, the tonehole is not
necessarily located at the middle of the cell. This is permis-
sible because the important acoustic components are the
acoustic mass of the tonehole and acoustic compliance of
the main bore, neither of which, at low frequencies, is
impacted by the location of the tonehole. The derivation
follows the same steps as that of equation (12), except that
in the asymmetric case the transfer matrix coefficient condi-
tion for the local cutoff frequency is |An(k) + Dn(k)| = 2
with An(k) 6¼ Dn(k) [6].

The nth asymmetric cell with lengths ‘Ln and ‘Rn to the
left and right of the tonehole has a local cutoff,

f T
c ¼ c

2pð‘Ln þ ‘Rn Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhn=ð‘Ln þ ‘Rn ÞÞðSn=snÞ
q þOðk‘Þ

2
64

3
75:
ð27Þ

As in equation (12), this is an approximate definition due to
the number of terms retained in the Taylor expansion in k‘
of the cotangent function.

A lattice can then be divided using iteration (see Fig. 8)
by choosing the initial length ‘L1 for the first cell and

imposing a local cutoff frequency f T
c . Because the tonehole

dimensions are given, only ‘R1 can be varied to achieve the
local cutoff frequency. The length of the right portion of
the first cell ‘R1 , along with the distance to the next hole
d1, determines the left section of the next hole ‘L2 , and so
forth for the entire lattice, see Figure 6. A division of the lat-
tice is attempted for a wide range of initial lengths and
eigenfrequencies: ‘L1 2 [0, d1] m and f T

c 2 [0.1, 3] kHz.
Although it is mathematically possible for ‘Ln and ‘Rn to be
complex, a lattice is only considered successfully divided if
all ‘Ln and ‘Rn are real and positive, ensuring a physically
realizable lattice. A successful division means that each cell
of the lattice has the same local cutoff f T

c , so the lattice is
acoustically regular with a global cutoff f G

c at this fre-
quency. Because the constituent cells are allowed to be
asymmetric, a single lattice can have a continuum of suc-
cessful divisions, and the span of this continuum is inter-
preted as the breadth of admissible frequencies for which
the resonator can be considered acoustically regular.

The asymmetric division algorithm is applied to two
acoustically regular lattices designed following the criteria
in Section 2.4 with global cutoff frequencies at 0.75 and
1.0 kHz. The dark grey region in Figure 9 depicts the
continuum of successful asymmetric divisions of the two
lattices. Additionally, the tonehole pair characteristic fre-
quencies fP

c , marked as a dashed line, are all equal because
the lattices are acoustically regular so f T

c ¼ fP
c for all cells.

The cutoff transition band f R
t is shown in light grey.

These plots show the coherence between symmetric and
asymmetric cells, tonehole pair characteristic frequencies

Figure 6. Schematic of a tonehole P-cell. Interhole spacing
dn = ‘Rn þ ‘Lnþ1 is unambiguously defined.

Figure 7. Estimation of the cutoff frequency for each fingering
down to the low C (written, 156 Hz) of an alto saxophone. Data
markers correspond to: the first three fPc : ; average of
first three fPc : D; average of all fPc : h asymmetric T-cells (see
Sect. 3.2): ; transition band f Rt : .
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fP
c , and the reflection coefficient cutoff transition band f R

t
when the resonator is acoustically regular.

The asymmetric division algorithm is applied to the
geometry of a Buffet Crampon alto saxophone. Successful
division of the lattice is only possible for select fingerings,
all in the bottom range of the instrument. The reason for
this is that several of the lowest toneholes have highly
irregular spacing, and the asymmetric division fails to find
a division of these cells for the eigenfrequencies possible
for the upstream cells. This implies that the method of
asymmetric division may be better suited for resonators
that are highly acoustically regular, and application to
the saxophone must be treated carefully. However, if the
lowest three holes are excluded from the algorithm, division
is possible for most notes. Division across all fingerings is
possible when only the first 5 tonehole pairs (6 toneholes)
of each fingering is included in the algorithm. The division
for fingerings C and G] are shown in Figure 10, and their
measured input impedance and reflection functions are
provided in Figures 4 and 5, respectively. As before, the cut-
off transition band f R

t is shown in light grey. The character-
istic frequencies of the first three cells are marked by circles
(black, grey, white, respectively), the average of the three
by a triangle and the average of the whole lattice by a
square.

Figures 4 and 5, corresponding to the high C and G] fin-
gerings, appear to be quite different. However, the results of
the asymmetric division are quite similar: the C fingering
division ranges between 940 and 1120 Hz, and the G]
fingerings between 930 and 1140 Hz. The difference in the
range of initial lengths ‘L1 is not important because it is
simply an arbitrary length of the resonator upstream from

the first tonehole used to initiate the algorithm. As long
as the algorithm arrives at a successful solution, the initial-
ization does not matter because the degree of acoustic
regularity is related to the span of possible global cutoff
frequencies, and not the initial length ‘L1 . Therefore,
although the continuum of successful divisions appear quite
different for the two fingerings, the span of admissible
global cutoff frequencies are quite similar.

The cutoff transition band f R
t is very narrow for the

high C and relatively broad for the G]. This is also evident
in Figures 4, 5, and 7. Compared with other fingerings, the
severity of the drop in the reflection function for the C
fingering is unusually abrupt, and the width of the cutoff
transition band varies considerably between fingerings.

3.3 Observations

Each type of analysis (f R
t ; f

P
c , and asymmetric division

of f T
c ) applied to the saxophone has advantages and

disadvantages, and provides a different nuance to wave
propagation in conical lattices. All three methods demon-
strate an increasing cutoff for increasing notes in the first
register as seen in Figure 7, which is consistent with obser-
vations of the input impedance of each note. This implies
that all of these methods can be used to analyze the cutoff
frequency of an alto saxophone, and the choice depends on
the specific requirements of the study.

The cutoff frequency transition band andP-cell calcula-
tions are likely the easiest methods to analyze a lattice,
requiring either an input impedance measurement or the
lattice geometry. These avoid complications that can arise
using asymmetric division, such as the choice of how many
cells to include when attempting to divide a highly irregular
lattice. The transition band is particularly appealing in the
case of real woodwind instruments because it directly mea-
sures a cutoff behavior of the resonator, with no assump-
tions about acoustic regularity. However, it is not clear
how well this method would work for other instruments,

Figure 9. Cutoff frequencies found using asymmetric division
(dark grey region) of acoustically regular conical lattices with
global cutoff frequencies at 750 Hz (bottom) and 1000 Hz (top)
for different initial cell length ‘L1 . The characteristic frequencies
fPc ¼ f Tc are marked by a dashed line, and the cutoff transition
band f Rt by light shaded grey.

Figure 8. A flowchart of the asymmetric division algorithm
described in Section 3.2 used to divide the acoustically regular
lattices shown in Figure 9 and alto saxophone in Figure 10.
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and it is possible that the thresholds would need to be
adjusted for different instrument families.

4 Conclusion

This article provides some insights into why the cutoff
frequency due to the toneholes of the saxophone is under-
studied compared with other instruments. The impossibil-
ity to define symmetric cells in a conical geometry is a
difficulty that hinders all attempts of analytical study. An
acoustic regularity can be defined to overcome the inherent
geometric irregularity of a conical tonehole lattice, which
can be used to design lattices to have a desired local cutoff.
Even then, intrinsic acoustical characteristics of cones lead
to more diffuse cutoff behavior than with cylinders. For real
instruments, the influence of the bell, particularly for the
lowest notes on the instrument, may contribute to the
diffuse cutoff. Further work on this topic could include an
investigation into the parameters that influence the
efficiency of the cutoff, particularly for non-cylindrical
resonators.

It is generally assumed that the cutoff remains fairly
constant for different fingerings of a given instrument.
Benade provides figures showing this phenomena for both
cylindrical and conical instruments, the oboe, bassoon,
and clarinet [3]. As seen here, the cutoff of the saxophone
varies considerably across the range of one octave. Many
notes, particularly in the higher range of the register start-
ing around F (written pitch, 208 Hz), have only two impe-
dance peaks to collaborate with the reed. Below F some
notes have three or four strong impedance peaks, while
the lowest notes with only one or two holes open have many
more undisturbed impedance peaks. It would be interesting
to study this in terms of perceived homogeneity of the tim-
bre in the radiated sound field for different notes on the
instrument. In link with sound production features, future
studies could evaluate the role of the instrument maker in
consciously setting the cutoff properties of the tonehole
lattice, notably in compromise with the other design
parameters.
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Appendix

Appendix provides the geometries for the two acousti-
cally regular lattices used in this article. Both are used to
test the asymmetric iterative division algorithm, Figure 9,
described in Section 3.2. The simulated input impedance
and reflection coefficient of the first resonator, shown in
Figure 1, demonstrates the methodology of designing a con-
ical resonator with an acoustically regular lattice presented
in Section 2. The equivalent figure for the second resonator
is not included to omit redundancy.

Both resonators have an apex angle h = 0.028 rad and
in input radius ain = 6.25 mm, corresponding to the geom-
etry of the alto saxophone analyzed in Section 3. The equa-
tions governing an acoustically regular lattice provide a
wide range of options for the geometry of the toneholes.
The geometries presented here attempt to follow general
trends of an alto saxophone, although they are necessarily
different because the saxophone is not acoustically regular.

Cite this article as: Petersen E, Colinot T, Kergomard J & Guillemain P. 2020. On the tonehole lattice cutoff frequency of conical
resonators: applications to the saxophone. Acta Acustica, 4, 13.

Table A1. Dimensions of two acoustically regular resonators
with different first impedance peak and theoretical global cutoff
frequencies. Both resonators have an apex angle h = 0.028 rad
and input radius ain = 6.25 mm. The distance from the input to
the nth hole is denoted wn = rn � x1, where x1 is determined from
the the apex angle and input radius.

Resonator 1: f1 = 177 Hz, fG
c = 750 Hz

Hole n wn (mm) an (mm) bn (mm) hn (mm)

1 712.9 26.2 10.5 13.2
2 744.5 27.1 12.3 15.4
3 779.4 28.1 14.4 17.0
4 818.0 29.2 16.5 17.9
5 860.6 30.4 18.9 18.0
6 907.7 31.7 21.5 17.4
7 959.7 33.1 24.3 15.8
8 1017.3 34.7 27.4 13.2
9 1080.9 36.5 30.8 9.6
10 1151.2 38.5 34.6 4.8
end 1188.0 395.2 – –

Resonator 2: f1 = 304 Hz, fG
c = 1000 Hz

1 355.7 15.6 6.2 14.9
2 376.7 16.2 7.2 16.3
3 400.0 16.8 8.2 17.2
4 425.7 17.5 9.3 17.8
5 454.1 18.3 10.6 17.8
6 485.5 19.1 11.9 17.4
7 520.3 20.1 13.4 16.4
8 558.6 21.1 15.0 14.8
9 601.0 22.2 16.8 12.7
10 647.9 23.5 18.8 9.9
end 672.5 24.2 – –
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