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Abstract 

Grapheme-colour synaesthesia is a subjective phenomenon related to perception and 

imagination, in which some people involuntarily but systematically associate specific, 

idiosyncratic colours to achromatic letters or digits. Its investigation is relevant to unravel the 

neural correlates of colour perception in isolation from low-level neural processing of spectral 

components, as well as the neural correlates of imagination by being able to reliably trigger 

imaginary colour experiences. However, functional MRI studies using univariate analyses 

failed to provide univocal evidence of the activation of the ‘colour network’ by synaesthesia. 

Applying Multivariate (multivoxel) Pattern Analysis (MVPA) on 20 synaesthetes and 20 

control participants, we tested whether the neural processing of real colours (concentric rings) 

and synaesthetic colours (black graphemes) shared patterns of activations. Region of interest 

analyses in retinotopically and anatomically defined visual areas revealed neither evidence of 

shared circuits for real and synaesthetic colour processing, nor processing difference between 

synaesthetes and controls. We also found no correlation with individual experiences, 

characterised by measuring the strength of synaesthetic associations. The whole brain, 

searchlight, analysis led to similar results. We conclude that revealing the neural coding of the 

synaesthetic experience of colours is a hard task which requires the improvement of our 

current methodology: e.g. involving more individuals and achieving higher MR signal to 

noise ratio and spatial resolution. So far, we have not found any evidence of the involvement 

of the cortical colour network in the subjective experience of synaesthetic colours. 
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Introduction 

Synaesthesia is a subjective experience shared by only a fraction of the population (Simner et 

al., 2006; Chun & Hupé, 2013; Simner & Carmichael, 2015; Rouw & Scholte, 2016; Watson 

et al., 2017), offering, in principle, an opportunity to study the neural bases of subjective 

experience, drawing on individual differences just like in neuropsychology, but involving 

healthy people. Moreover, colour, the typical prototype of a qualia (what it feels like to 

perceive something) is the most often cited (or at least studied: Ward, 2013) content of the 

synaesthetic experience. However, the very subjective nature of the synaesthetic experience 

represents a major obstacle when trying to set an objective and operational definition, as 

required in an experimental protocol. Not only subjective descriptions may vary a lot between 

subjects (Flournoy, 1893), but also within subjects when asked to complete the same 

questionnaire again (Edquist, Rich, Brinkman, & Mattingley, 2006) or when describing their 

subjective experience of colour for different letters (Hupé, Bordier, & Dojat, 2012b). Using 

psychophysical tests, the synaesthetic experience of colour appears more similar to imagined 

or remembered than perceived colours (Witthoft & Winawer, 2013; Chiou & Rich, 2014; 

Hupé & Dojat, 2015; Janik McErlean & Banissy, 2017; Chiou et al., 2018). The experience of 

synaesthetic colours can be indeed formally described as a form of mental imagery, since it 

occurs without any corresponding spectral stimulation. The obligatory experience of colour 

when exposed to letters or digits may therefore justify the label of ‘intrusive visual imagery’ 

(Reeder, 2016). Unfortunately, this simplification does not help much with defining the 

phenomenological content of synaesthesia, since self-reports of mental imagery show at least 

as much diversity as those of synaesthesia (Galton, 1880), with mixed evidence about whether 

the presence of synaesthesia may relate to individual differences in mental imagery (Chun & 

Hupé, 2016). One may, however, study how much synaesthesia requires the neural resources 

involved in visual perception. This bottom-up approach, which does not address the 
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phenomenological issue, can at least be operationalized. Moreover, grapheme-colour 

synaesthesia offers a unique opportunity regarding the neural correlates of imagination as it 

restrains both individual variability and the content specificity of visual imagery. Last but not 

least, synaesthetic colours are systematically triggered by letters and digits, unlike “regular” 

mental imagery that depends on both the good will and the (uneven) ability of subjects. 

Several brain imaging studies, listed and summarized by Hupé and Dojat (2015), have 

compared activations in the visual cortex for real and synaesthetic colours. The majority of 

these studies did not reveal any overlap of activation. Moreover, there were questions whether 

activations triggered by synaesthetic stimuli, when observed, were in fact related to the 

synaesthetic experience at all (Hupé & Dojat, 2015). This surprising ‘Null’ result may be due 

to methodological limitations since only massive univariate analysis of brain imaging data 

were used so far, which may reveal only processes well and identically localized in the brains 

of many subjects (Hupé et al., 2012b). Moreover, “activations” are defined by a subtraction 

method involving the problematic definition of a baseline or control stimulus and of the 

statistical procedure used (Hupé, 2015; Shifferman, 2015). Multivariate (multivoxel) Pattern 

Analysis (MVPA) does not require any subtraction and may identify neural networks 

distributed within a brain region, possibly differently across subjects (no need for anatomical 

normalization and averaging). MVPA provides therefore a powerful way to reveal whether 

specific information is encoded in different brain regions (Cox & Savoy, 2003; Norman, 

Polyn, Detre, & Haxby, 2006; Formisano & Kriegeskorte, 2012; Hebart & Baker, 2017). It 

has been applied successfully to the decoding of aspects of mental images (Thirion et al., 

2006; Stokes et al., 2009; Reddy, Tsuchiya, & Serre, 2010). Using fMRI, here we simply 

asked whether classifiers trained on patterns of blood oxygenation dependent signals (BOLD 

responses) elicited by different coloured stimuli could predict which synaesthetic colours 

were experienced by synaesthetes when seeing achromatic letters and digits. We studied in 
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particular the early stages of visual processing by identifying cortical areas V1 to V4 in each 

subject, using retinotopic mapping, thus avoiding the problems related to structural 

normalization (Poldrack, 2007; Hupé, 2015). We also explored the whole visual cortex 

(including parts of the parietal cortex) using regions of interest based on a probabilistic atlas 

(Eickhoff et al., 2007), and performed whole brain searchlight analyses (Kriegeskorte, 

Goebel, & Bandettini, 2006). We compared all the measures obtained in synaesthetes with 

those obtained in a group of non-synaesthetes to take into account any potential non-specific 

effect related to the choice of stimuli. We also took into account the individual variability of 

the synaesthetic experience: without any possibility to characterize objectively the different 

phenomenological accounts, we measured the strength of the synaesthetic associations (Ruiz 

& Hupé, 2015).  

 

Materials and Methods 

Participants 

We tested 20 synaesthetes and 20 non-synaesthetes. Since this study was the first of the kind 

and therefore exploratory, group size was decided arbitrarily when submitting the protocol to 

the ethics committee, based on the published study using the most similar protocol (Bannert & 

Bartels, 2013, who tested 18 subjects: see Discussion) and feasibility considerations. 

Synaesthetes (17 women) were between 21 and 42 years old (M = 27.9, SD = 5.5). 

Recruitment was diverse and opportunistic, based on self-referral following publicity on 

internet: lab webpage, Facebook event, announcements on university networks in Grenoble 

and Paris. Potential participants, after a first phone interview, were asked by email to fill-up a 

questionnaire to describe their synaesthetic associations and for grapheme colour associations 

to send us a list of those. Synaesthetes were included if they had a sufficient and diverse 
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number of letter-colour and digit-colour associations as required by the design of our 

experiments (see below). When they came to the laboratory to perform the experiments, they 

had a semi-directed interview to evaluate the phenomenology of their synaesthetic 

associations. They also ran a modified version of the “Synaesthesia Battery Test” (Eagleman, 

Kagan, Nelson, Sagaram, & Sarma, 2007) to choose precisely the colour of each letter and 

digit: each letter or digit was presented in a random order and with a random colour on a 

computer screen over a grey background. Synaesthetes had to adjust the hue, saturation and 

luminance of the grapheme by using a colour palette presented on the side of the grapheme 

(see an example of a screen capture page 141, Figure 6.1.1 of Ruiz’s thesis, 2014; see page 

158, Figure 6.4.6, for the version adapted to the scanner environment). Subjects could indicate 

if the grapheme had no synaesthetic colour; they could choose to see the grapheme printed in 

lower or upper case; they could display a square patch instead of the grapheme; they could 

also momentarily hide the colour palette. All these options were designed to take into account 

the diversity of phenomenological experience of synaesthetic colours. Synaesthetes took as 

long as they wished. 

This procedure was also used as a retest to confirm the validity of the first-person reports 

(Ruiz & Hupé, 2015): in all subjects, all chosen colours matched those indicated by print or 

by name in the questionnaire. In addition, objective measurements of synaesthetic 

associations were obtained by Stroop-like tests (see below in the ‘Protocol’ section).  Seven of 

the included synaesthetes had already participated in psychophysics experiments between 

2007 and 2010 (Ruiz & Hupé, 2015). 

Control participants were recruited after synaesthetes to match their demographic statistics 

(16 women, age range between 23 and 38 years old, M = 28.5, SD = 4.3), following similar 

advertisement strategies as well as soliciting colleagues at the Grenoble Institute of 

Neuroscience. Interviews were conducted to verify the absence of any type of synaesthesia, 



7 
 

not only the absence of grapheme-colour associations. We chose not to run any consistency 

score with the control subjects in order not to prime them to do any voluntary association 

between graphemes and colours before the tests in the scanner. It could be argued that some 

of the controls may have had implicit synaesthetic associations they were not aware of, as it 

sometimes happens. In any case, this unlikely possibility could not bias our results because 

most of our analyses did not require any direct comparison of the performances by 

synaesthetes and controls.  

The study was performed in accordance with the World Medical Association Declaration of 

Helsinki, it received approval by the Institutional Review Board of Grenoble (CPP 12-CHUG-

17, approval date 04/04/2012) and written, informed consent was obtained from all subjects. 

A medical doctor verified that all subjects were without past or current brain disease and had 

no detected cognitive deficit. All subjects had normal colour perception on the Lanthony D-15 

desaturated colour test (Richmond products), and normal or corrected to normal eyesight 

(then using MRI-compatible glasses). 

Materials 

Stimuli: for each synaesthete, we tried to identify four pairs of graphemes made of one letter 

and one digit that had similar colour associations. We never chose graphemes for which a 

synaesthete indicated several colours. We tried to find pairs of red, green, blue and yellow (R, 

G, B, Y) graphemes, but we were only partially successful and in some cases we selected a 

pair from the most saturated colours available. Figure 1 shows the actual letters and digits 

with colours used in the experiments. Only 13 subjects named the pairs red, green, blue and 

yellow; other colours were named orange, violet, fuchsia and brown, as well as light and dark 

blue or green. Syn08 and syn48 had a pair made of two letters. Since each synaesthete was 

tested with a different set of stimuli, each control subject was tested with the stimuli of a 

specific synaesthete (with the exception of syn10 who had no matched control, by mistake; 
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two controls were tested instead with the stimuli of syn11. Paired comparisons were therefore 

based on 38 subjects). 

 

Figure 1. Letters and digits used for each synaesthete, with their corresponding synaesthetic RGB 

colours (the rendering of the colours using the projector in the scanner was different). 

 

In the MR scanner, we presented these letters and digits in black at the centre of the screen 

(upper case, Helvetica font, extent up to 2 degrees eccentricity) over a grey uniform 

background (CIE xyY [0.29 0.3 77.4], half of the maximal luminance of the screen). Stimuli 

were projected on a translucent screen at the back of the scanner by a video projector Epson 

EMP 8200. We used a spectrophotometer (PhotoResearch PR 650) for colour and luminance 

measurements used to compute calibrated images. We also presented dynamic concentric 

rings (square luminance profile, similar to the stimuli used by Brouwer & Heeger, 2009, 

except for the absence of anti-aliasing so as to use only the colours selected by each 

synaesthete), with the exact same (real) colours as those chosen by each synaesthete for each 

grapheme. The choice of colours matching the individual grapheme ‘R, G, B, Y’ colour 

associations was done again by each synaesthete in the scanner over the same grey 

background, using a house-modified MRI compatible, comfortable, 10-button console 

controller, and the colour-picker of the “Synaesthesia Battery Test” as was done previously 

outside of the scanner. The same coloured rings were used for each matched control. The 

rings extent was also up to 2 degree eccentricity and the spatial frequency was 3 cycles/degree 

(six circles). The phase of the rings changed randomly at 6 Hz to almost nullify visual effects 

induced by the absence of anti-aliasing. 
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These stimuli were chosen with the purpose of training and testing classifiers (see below, 

“Data analysis: classifications”). Briefly, we wanted to use the BOLD responses to the 

coloured rings to train classifiers on colours (four categories), and the BOLD responses to 

graphemes to train classifiers on synaesthetic colours (same four categories). This required 

choosing pairs of dissimilar graphemes, i.e. a letter and a digit, to try to avoid that the 

classifier trained on some shared form features, but rather on their common associated colour. 

This also implied that decoding should not be feasible that way based on the responses of 

control subjects. The use of pairs of graphemes also allowed the training on letters and testing 

on digits (or the reverse), with success in principle possible only for synaesthetes, based on 

their synaesthetic colour associations. The careful matching procedure of synaesthetic colours 

allowed the training of classifiers on real colours and testing on graphemes to identify which 

brain regions, if any, coded both real and synaesthetic colours. Again, any decoding success 

would in principle be possible only in synaesthetes. 

Classifiers would be trained and tested on four categories, ‘R, G, B, and Y’, referring either to 

the real or the synaesthetic prototypical colours that we tried to select. To maximize 

classification performances, categories should be perceptually disjoint. Figure 2 represents the 

actual colours used in the scanner for each synaesthete within the CIE L*a*b* colour space, 

which is more perceptually uniform than the CIE xyY space. As was already obvious in 

Figure 1, differences of luminance, in addition to differences in hue, were important to 

distinguish stimuli. Figure 2 illustrates that the hue and luminance distances were not similar 

across subjects between categories and within pairs, leading to unequal clusterisation. We 

could even expect some confusions by the classifiers for some subjects (e.g. “green/yellow” 

for syn11, “red/blue” for syn13 or “blue/yellow” for syn41). While the maximal theoretical 

performance achievable by classifiers was therefore below 100%, classifiers could however 

obtain more than the 25% chance performance in every subject. 
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To fit with the synaesthetic individual experience, stimuli were not isoluminant. This 

constitute a major difference with other MVPA studies of the neural correlates of colour 

processing, which used isoluminant stimuli (Brouwer & Heeger, 2009; Parkes, Marsman, 

Oxley, Goulermas, & Wuerger, 2009). At the cortical level, the visual circuits rely on both 

(but with different degrees) the parvo- and the magno-cellular pathways (Tootell & Nasr, 

2017). One could therefore question whether colour classification would be really based on 

colours and not just luminance. In fact, classifiers could not rely on luminance only, because 

many pairs of different colours had a similar luminance (same size of the crosses on Figure 2). 

Figure 2 reveals that at least 22 distinctions of pairs of stimuli could not be achieved by 

classifiers using only luminance cues (classification followed a one-versus-one heuristic, see 

below): for example “blue/yellow” and “red/blue” for syn01. Seven distinctions only would 

be difficult for classifier using only hue differences (for example “green/yellow” for syn02, 

where the distance between one green and the yellow crosses is smaller than the distance 

between the two yellow crosses). In order to quantify systematically the relative weight of 

luminance and hue information in our set of stimuli, we computed a measure of colour 

clusterisation: the average geometric distance in the L*a*b space between the average of 

colour pairs divided by the average geometric distance within colour pairs (the resulting 

“Distance ratio’ measure is indicated for each subject in Table 1). Then we computed again 

this measure using either only the ‘L’ luminance component or the ‘a’ and ‘b’ hue 

components. The L*a*b Distance ratio was highly correlated to the ‘a*b’ Distance ratio (non-

parametric Spearman R = 0.98), not to the ‘L’ Distance ratio (R = 0.4, P = 0.078). 

We obtained a further, indirect but suggestive, indication that the luminance component was 

not the main feature used for stimulus classification, by taking advantage of the different 

values of the Distance ratio across subjects. We speculated that the colour classification (‘Col’ 

classification, based on coloured rings stimuli – see below) could be easier when this ratio 
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was higher. We performed a searchlight correlation analysis across participants between the 

Distance ratio and the performance of the ‘Col’ classifier. When testing the group of 

synaesthetes (no cluster reached significance in the group of controls), we found one 

significant cluster (P < 0.001 uncorrected voxel level, PFWE < 0.001 cluster level, 106 voxels, 

2862 mm3), precisely in the left fusiform gyrus, peaking at MNI XYZ = [-27 -73 -4], 

extending from about V4 to FG4, in line with the involvement of this region in colour 

processing. Importantly, the correlation analysis based on hue only (a*b Distance ratio) 

revealed the same cluster, but not the correlation analysis based on luminance only (L 

Distance ratio). For all the other analyses with the other classifiers (described below), we did 

not find any correlation between the performance of classifiers across subjects and the index 

of colour Distance ratio. 

 

Figure 2. Colour coordinates in the CIE L*a*b* space of the stimuli used for each synaesthete, 

corresponding to the idiosyncratic synaesthetic colours of letters (+) and digits (x). The colours of the 

crosses are arbitrary and correspond to the four categories the classifiers had to distinguish. The size of 

the crosses is proportional to luminance (marker size = 0.4*L, where max(L) = 100; axes limits are +/- 

130, possible range being −128 to +127). 

 

Protocol 

Each subject ran three fMRI sessions of about 1 hour. In addition, synaesthetes ran a 1 hour 

psychophysics experiment (before or interleaved with fMRI experiments, depending on 

schedule availability) to measure the strength of their synaesthetic associations using variants 

of Stroop tasks.  
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All the details of the psychophysics experiment as well as the psychophysics results of 11 

synaesthetes are published (Ruiz & Hupé, 2015). Briefly, eight graphemes (repeated 36 times 

each) were presented randomly either with the colour chosen by each synaesthete (congruent 

condition) or with the synaesthetic colours of the other presented graphemes (incongruent 

conditions). Synaesthete had to name as fast as possible the real colour of the grapheme 

(‘colour’ task). Response times were measured a posteriori based on the audio recording. The 

procedure was then repeated, but synaesthetes had this time to name as fast of possible the 

name of the synaesthetic colour (called a photism) they associated to each grapheme, which 

was also either congruent or incongruent with the real colour of the stimulus (‘photism’ task). 

The index of the strength of synaesthetic associations (‘Photism strength’) combined two 

measures: the response time difference for congruent and incongruent stimuli in the colour 

task, which reflects the difficulty to inhibit synaesthetic associations; the response time 

difference to name the real and the synaesthetic colours (in the congruent condition), which 

reflects how easily synaesthetes retrieve the synaesthetic colour. 

The data of one synaesthete (syn40) could not be analysed because the chosen orange and 

yellow/green colours revealed too similar (see Figure 2) and were not named consistently over 

the course of the experiment. Table 1 provides a summary of the data. It shows that even 

synaesthetes who obtained a relatively low score of Photism strength (e.g., syn01) were very 

fast at naming the synaesthetic colour of letters and numbers, even though the real colour of 

the stimulus was systematically varied. Moreover, they very rarely made any mistake (Ruiz & 

Hupé, 2015). Such a task would be extremely difficult to perform by any non-synaesthete 

trying to memorize (without training) random colour associations. These data therefore 

provide a further objective validation of the genuineness of the synaesthetic experience of 

these participants as well as an estimate of the strength of the associations. 
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Table 1. Demographics and characteristics of the tested synaesthetes.  

     
Colour 

  
Photism 

  

     
Congruent 

(ms) 

Incongruent 

(ms) 

Congruency 

effect (ms) 

Congruent 

(ms) 

Incongruent 

(ms) 

Photism 

delay (ms) 

Synaesthete Age Sex Distance 

ratio 

Photism 

strength 

(ms) 

CC CI CI-CC PC PI PC-CC 

syn01 21 F 13 -107 443 454 12 561 685 119 

syn02 21 F 13 52 466 543 77 491 543 25 

syn05 30 F 38 20 452 501 49 480 568 29 

syn08 35 M 6 69 484 585 101 516 619 32 

syn10 31 F 9 40 556 633 77 593 689 37 

syn11 28 F 21 146 643 782 138 636 681 -7 

syn12 33 F 9 136 597 683 86 548 646 -50 

syn13 29 F 4 30 668 744 76 714 795 46 

syn20 23 F 4 19 506 556 50 537 637 31 

syn26 27 M 4 -19 497 528 31 547 690 50 

syn27 24 F 10 -4 547 582 36 586 676 39 

syn30 27 F 14 416 466 844 378 427 449 -39 

syn31 24 F 6 20 525 573 47 553 639 27 

syn32 33 F 12 -57 456 477 21 534 620 78 

syn33 30 F 11 -30 447 457 10 487 525 40 

syn39 26 F 13 48 440 523 83 475 582 35 

syn40 42 F 5 NaN 

      

syn41 23 F 6 -15 484 514 30 529 678 45 

syn45 27 F 10 10 539 564 25 554 691 16 

syn48 22 M 9 -73 487 529 42 602 770 115 

The variable ‘Distance ratio’ is a measure of clusterisation of the pairs of colour (average between-

cluster distance divided by average within-cluster distance, measured in the L*a*b* space). The higher 

the value, the better the clusterisation (see Figure 2). The variable ‘Photism strength’ is the measure of 

the strength of synaesthetic associations as developed by Ruiz et al. (2015), based on the results of 

Stroop like tests. The next columns indicate the median time measured in ms for each subject to name 

either the real (‘Colour’) or the synaesthetic colour (‘Photism’) of the letters and numbers shown in 

Figure 1, when the real colour was either congruent or incongruent with the synaesthetic colour 

indicated by each synaesthete. The ‘Congruency effect’ was measured as the difference of response 

time in the ‘Colour’ condition. ‘Photism delay’ is the difference between naming the real and the 

synaesthetic colours, and ‘Photism strength’ is the difference of these two values. The interpretation of 

this index is only relative (the zero value does not have any special meaning). The data of syn40 were 

not consistent (see text). 



14 
 

 

fMRI experiments 

The MR experiments were performed at the IRMaGe MRI facility (Grenoble, France) with a 

3T Philips Intera Achieva, using a 32 channels coil. The experiments can be decomposed 

successively in three “sessions” (about 1 hour each), “runs” (a few minutes), “blocks” (1 

minute) and “events” (1 second). One session was dedicated to retinotopic mapping and 

functional localizer runs using pictures of objects, words and coloured stimuli (Mondrian). 

These latter runs were included to test whether voxels involved in the decoding of 

synaesthetic colours were located in regions well-defined functionally, respectively the 

Lateral Occipital Complex (LOC: Grill-Spector, Kourtzi, & Kanwisher, 2001), the Visual 

Word Form Area (VWFA: Dehaene & Cohen, 2011) and “colour centres” (Hupé et al., 

2012b). We did not have the opportunity to use those localizers (see Results). Retinotopic 

mapping was performed strictly as described in a previous study (Bordier, Hupé, & Dojat, 

2015), using the Brain Voyager analysis pipeline to define in each subject the ventral and 

dorsal as well as the left and right parts of areas V1, V2, V3 and V4 (ventral only). The 

parameters of the EPI functional images were TR/TE: 2000/30 ms, excitation pulse angle: 

80°, acquisition matrix: 80x80, bandwidth: 54.3 Hz/pixel, isotropic nominal resolution: 3 mm, 

30*2.75 mm thick slices with 0.25 mm interspace covering the whole visual cortex, with four 

additional dummy scans. To allow the precise alignment of functional scans across sessions, a 

high‐resolution structural image of the brain was also acquired using a T1‐weighted MP-

RAGE sequence. The sequence parameters were TR/TE: 25/2.3 ms, excitation pulse angle: 

9°, 180 sagittal slices of 256*240 (read x phase), bandwidth: 542.5 Hz/pixel isotropic nominal 

resolution: 1 mm, for a total measurement time of 4 min 31 s. 
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Another session was dedicated to the “synaesthesia” protocol (a structural image was also 

acquired with the same parameters as in the first session, in the middle of the functional runs). 

Twelve functional runs were acquired. The parameters of the EPI functional images were 

identical to those used for the retinotopic mapping experiment but TR: 2500 ms for an 

acquisition volume of 45 slices covering the entire brain with a total measurement time of 3 

min 47.5 s (87 images including the four dummy scans as well as 3 additional images at the 

end of the run to account for the random intervals between stimuli). In each functional run, 

stimuli of one type only were presented: letters, digits, concentric rings with the synaesthetic 

colours of letters, or concentric rings with the synaesthetic colours of digits. The session 

contained three successive sequences of four runs, each run with a different stimulus type 

(with a different random order of stimulus type in each sequence). Each run contained 3*60 s 

blocks of a rapid-event paradigm, followed by 10 s fixations. Stimuli of different “colours” 

were presented pseudo-randomly in each block to optimize the estimation of the main effects 

(the sequence of the events was designed so as to optimize the efficiency of the estimation 

both of the main and of the differential effects: Friston, Zarahn, Josephs, Henson, & Dale, 

1999. Random sequences were generated and the sequence producing the better estimation 

was selected). For example, in a letter block for syn01 and her matched control, the letters E, 

N, V and A  were presented six times each for 1 s, with 1 s +/- 333 ms fixation only between 

each letter (each block lasted therefore only approximately 60s). This protocol allowed an 

estimation of the BOLD response to each letter in each block (beta weights, using a General 

Linear Model, see below) based on six presentations. We obtained three estimations (betas) in 

each run for each “colour”, for a total of thirty-six estimates (9 * 4 “colours”) for each type of 

stimulus to be used by classifiers. The power of classification algorithms depends on both the 

number and quality (signal to noise ratio) of estimates (called exemplars). The present 

compromise between quantity and quality was based on (Mumford, Turner, Ashby, & 
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Poldrack, 2012) and on preliminary experiments (Ruiz, Hupé, & Dojat, 2012). Subjects had to 

fixate the centre of the screen (the fixation point, present between stimuli and at the centre of 

the coloured rings, or the centre of the grapheme) and pay attention to the stimuli for the 

whole duration of each run. To help subjects maintain attention, they performed a one-back 

task (pressing a button each time the same stimulus was repeated twice in a row). 

In the remaining session, a high‐resolution, high-contrast structural image of the brain was 

acquired using a T1‐weighted MP-RAGE sequence. The sequence parameters were 

TR/TE/TI: 25/3.7/800 ms, excitation pulse angle: 15°, acquisition matrix: 180 sagittal slices 

of 256*240 (read x phase), bandwidth: 191 Hz/pixel, readout in anterio-posterior direction, 

number of averages: 1, sense factor anterio-posterior: 2.2, right-left: 2, isotropic nominal 

resolution: 1 mm, with a total measurement time of 9 min 41 s. This image was the structural 

reference image of each subject. We also acquired diffusion-weighted images, analysed in 

another study (Dojat, Pizzagalli, & Hupé, 2018) and a sequence of functional resting state (not 

analysed yet). 

We recorded oculomotor signals during the scans with an ASL EyeTracker 6000. At the 

beginning of each session, subjects had to fixate each point of a calibration matrix, and were 

therefore aware that the quality of their fixation was monitored. However, signal quality in 

some subjects was not good enough or not constant, or even too poor to be of any use for 

subjects who had to wear non-magnetic glasses in the scanner, so we did not even attempt to 

analyse these data. We can only speculate that subjects had a better fixation than if they did 

not know that their gaze was recorded. Whole brain univariate analyses did not reveal any 

activation along the anterior calcarine and the parieto-occipital sulcus, where activations 

correspond to the signature of blinks (Hupé, Bordier, & Dojat, 2012a), providing indirect 

evidence that the distributions of blinks were not correlated with our stimuli presented 

randomly. 
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Data Analysis 

The standard pre-processing procedure of functional images was applied using SPM8: slice-

timing correction, then motion correction with realignment, together with correction of spatial 

distortions of the static magnetic field (Vasseur et al., 2010). The within session structural 

image was realigned to the mean EPI image, as well as the high resolution high contrast 

structural image, but no further transformation of the EPI images was performed. No spatial 

smoothing was applied for MVPA, as maximally differential activation of voxels was shown 

to maximize the power of classifiers (Ruiz et al., 2012). This was confirmed on these data 

when testing spatial filters with FWHM = 3, 6 and 9 mm. Transformation matrices were 

computed between the structural image and the MNI template to allow the transformation and 

projection of atlas-based masks of specific anatomical structures (Anatomy Toolbox for 

SPM8 Version 2.2b, 2016) into the subject’s space.  

For MVPA (our main analysis), for each subject and each run we first ran a General Linear 

Model (GLM). The six parameters of motion correction were included as factors of non-

interest in the design matrix. Thirteen main predictors, four events (grapheme or colour) * 

three blocks plus one for when only the fixation point was shown, were obtained by 

convolving the canonical HRF with Dirac functions corresponding to the time of presentation 

of each stimulus (the fixation period was modelled as a null event whereas the GLM intercept 

models the session effect). The corresponding beta weights estimated by the GLM for each 

colour (real or synaesthetic) and stimulus type (ring or grapheme), divided by the square root 

of residuals (in order to scale the signals, as requested for pattern classification algorithms: 

Misaki, Kim, Bandettini, & Kriegeskorte, 2010; Mumford et al., 2012), were used as 

examples by a Support Vector Classification (SVC) algorithm (Scikit-learn version 0.15.2, 

implemented in Python version 2.7.9.0: Pedregosa et al., 2011). We used a linear kernel 

(default value of the C parameter = 1) and a one-versus-one classification heuristic to classify 
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each example in one of the four categories. For all five classifications described below, 

training and test runs were always fully independent: betas obtained from blocks from the 

same run were never split between training and test runs.  

Classifications. We trained and tested five families of classifiers (Figure 3). Six runs 

(eighteen blocks) were used for colour (‘Col’ family of classifiers) and synaesthesia (‘Syn’) 

decoding. The procedure was leave-one-run-out. Six classifiers were therefore trained to 

classify (5 runs * 3 blocks * 4 colours = 60) colour exemplars in four categories, and tested on 

(1 run * 3 blocks * 4 colours = 12) independent exemplars. Performance was therefore 

computed over seventy-two classifications (6 classifiers * 12 tested exemplars), with chance 

level = 25%. For performance at the chance level, 95% of the individual scores should be 

within 11 (15%) and 25 (35%) successful classifications over 72 (binomial distribution). For 

grapheme runs, training was performed on pairs made of one letter and one digit. If the 

decoder learnt only the letters, for example (by being able to filter out the responses to digits), 

then performance on decoding letters and digits could reach up to 50%, without knowing 

anything about synaesthetic colours. One could expect, however, that classification 

performance for synaesthetes would be higher than for controls because of the additional 

information provided by synaesthetic colours. A more stringent test of synaesthetic coding 

(‘g1g2’) was the training of one classifier on letters (3 runs * 12 exemplars) and testing on 

digits (and the reverse). Learning was achieved using thirty-six exemplars (letters or digits) to 

be classified in four categories, test was on thirty-six exemplars (digits or letters), for a total 

performance over seventy-two classifications by combining training on letters and training on 

digits. To evaluate if brain regions coded both real and synaesthetic colours (‘C2S’), training 

was performed by one classifier on six colour runs (seventy-two exemplars), test on six 

grapheme runs (seventy-two exemplars). We also performed the reverse classification 

(‘S2C’). 



19 
 

 

 

Figure 3. MVPA classifications. ‘Col’ classification: The procedure was leave-one-run-out. Six 

classifiers were trained to classify 60 colour exemplars from 5 runs in four categories, and tested on 12 

independent exemplars of the remaining run. Performance was therefore averaged over seventy-two 

classifications (6 classifiers * 12 tested exemplars). ‘Syn’ classification: The procedure was the same 

as for the ‘Col’ classification, based on pairs of graphemes and therefore also synaesthetic colours for 

synaesthetes. ‘C2S’ classification: Training was performed by one classifier on six colour runs 

(seventy-two exemplars), test on six grapheme runs (seventy-two classifications). ‘S2C’ classification: 

The procedure was the same as for the ‘C2S’ classification. ‘g1g2’ classification: Classifiers were 

trained on letters (3 runs * 12 exemplars) or digits (3 runs) and tested respectively on digits or letters. 

Overall performance was based on seventy-two classifications. 

 

We computed MVPA in regions of interest (ROIs) defined in each native (non-transformed) 

subject space. We used visual areas defined by individual retinotopic mapping as well as 

atlas-based ROIs (Figure 4). We expected synaesthetic colours to involve the ventral visual 
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pathway, anterior to V4, so we tested the four subdivisions of the fusiform gyrus (FG, Figure 

4a). Some studies have also suggested the role of parietal areas, even though no consensus 

emerged about exactly which part if any may be involved (Hupé & Dojat, 2015), so we 

defined ROIs in parietal regions (Figure 4b). 

 

Figure 4. a. Atlas-based regions of interest (ROI) of the fusiform region. From left to right, FG1, FG2, 

FG3 and FG4. Colour gradients denote the probability of being in the specified ROI, from 0% (dark 

blue) to 100% (dark red). We considered the largest ROI as the mask of the corresponding region. b. 

Parietal ROIs. From left to right, AIPS_IP1, AIPS_IP2, AIPS_IP3, IPL_PGa and IPL_PGp. See text 

for full names and references of these areas. 

 

For each subject, anatomical ROIs were defined as the intersection of the subject’s grey 

matter mask and the mask of the anatomical ROIs (Anatomy Toolbox for SPM8: Eickhoff et 

al., 2007) projected into the subject’s space. Both retinotopic and atlas-based ROIs had 

different number of voxels within and across subjects. The performance of classifiers may 

depend on the number of voxels (called “features” for the algorithm), making difficult the 

comparison of absolute performance in different ROIs. Between-subject differences may also 

bias group comparisons. 

To address this issue, we first tested ROIs of different sizes by merging retinotopic areas and 

subdivisions of the fusiform areas and of the parietal areas. The pattern of results were similar 

whatever our grouping choice of ROIs. We present the results for ROIs of intermediate size 

(we indicate the min and max number of voxels across subjects in each ROI), combining 

within single ROIs the right and left parts of retinotopic areas (V1 = [206 441], V2 = [125 
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420], V3 = [156 340], V4 = [94 268]), the two posterior (J. Caspers et al., 2013) (left = 

[98 150], right = [61 125]) and anterior (Lorenz et al., 2017) (left = [174 331], right = 

[127 271]) parts of the fusiform areas, the 3 subdivisions of the Intaparietal Sulcus (Choi et 

al., 2006; Scheperjans et al., 2008) (left = [197 311], right = [191 275]) and the anterior and 

posterior parts of the Inferior Parietal Lobule (S. Caspers et al., 2006; S. Caspers et al., 2008) 

(left = [131 335], right = [124 279]). 

We also defined ROIs using the same number of voxels in each subject and ROI. To do that, 

for all classifications, we selected 100 voxels with the highest F-scores to colours in each area 

(we tested different selection sizes and found that 100 was about the optimal number of 

voxels to reach maximum performance). In order to have enough voxels to choose from in 

every subject, we selected voxels in only six large areas: the left and right retinotopic areas 

V1 to V4 (minimum number of voxels across subjects were respectively 352 and 327), the left 

and right fusiform areas FG1 to FG4 (298 and 188) and the left and right parietal areas (347 

and 315). Such a selection provides the best chances for colour classifiers (since we select 

voxels maximally modulated by colours), but classification is then not independent of 

selection when measuring colour decoding after selection of F-scores to colours (but 

classification is independent for grapheme decoding). In order to provide a fair measure of 

colour decoding performance to compare grapheme decoding with, voxels were selected 

using F-values computed based only on runs used for training, meaning that each of the six 

training sets was based on a different set of voxels. For other classifications, the same set of 

voxels was used based on F-values computed across all colour runs. 

Statistical analysis 

In each ROI, we computed the mean and 95% CIs of the performance of classifiers in each 

group. CIs were computed using a mixed-effect generalized linear model, with a binomial 

family and a logit link function, as implemented in the library lme4 (Bates, Mächler, Bolker, 
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& Walker, 2015) in R, version 3.3.3. CI values were back-transformed from the logit scale 

using the R function and library lsmeans. Mixed-models provide more accurate estimates than 

estimates based on second-level statistics (the scores of each subject) because they take into 

account the number of trials used to compute each score. Here, because each subject 

performed the same number of trials, second level statistics using one sample T-tests (mean 

+/- 2.09 SEM) produced almost identical CI values (for example, in area V4 and for the ‘C2S’ 

classification, the CI plotted in Figure 5 is [24.8, 29.4]%, whereas the T-test CI is [24.3, 

29.7]%). 

Formally, 95% CIs do not allow any inference on population values. They simply indicate 

that, if we should redo the same experiment many times, 95% of the 95% CIs computed that 

way will include the true population value within their 95% CI. However, for “well-behaved” 

distributions like the binomial and normal distributions, as used here, 95% CIs are almost 

identical to 95% Credibility Intervals computed using a flat prior (Kruschke, 2015). For 

example, in retinotopic V4, the 95% credibility interval for the average ‘C2S’ performance of 

the 20 synaesthetes is equal to [24.3, 29.8]%, meaning that there is 95% chance that the true 

‘C2S’ decoding performance of V4 is between 24.3% and 29.8% (computations using the R 

package nimble version 0.8.0: de Valpine, Turek, Paciorek, Anderson-Bergman, Lang, & 

Bodik, 2017; the values are exactly the same here for a Bayesian mixed model).  

Deciding on the presence or the absence of an effect requires “establishing a region of 

practical equivalence (ROPE) around the null value that expresses a range of parameter 

values that are equivalent to the null value for current practical purposes” (Kruschke & 

Liddell, 2018). For this study we do not have much information in the literature to decide 

which values should be considered as equivalent to the 25% chance level. Every reader would 

probably consider that 26% is equivalent to chance in this context. But what about 30%? If we 

had defined a ROPE = [20, 30]%, the Bayesian analysis would indicate that 98.3% of the 
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likely values for the mean performance are within the ROPE – meaning that we could state 

that there is 98.3% chance that the ‘C2S’ decoding performance is at chance level in V4 for 

current practical purposes. For the decoding of real colours, on the other hand, for example in 

the left retinotopic areas (retL), where the 95% CI is [34, 41]% (see Figure 7; here the 

credibility interval is exactly the same), the Bayesian analysis indicates that there is 99.98% 

chance that the performance is above the ROPE, so we could be extremely confident that 

colours can be decoded. Without any definition of the ROPE, our 95% Confidence Intervals 

show the range of “true” performance values roughly compatible with our data. 

We also computed the mean and 95% CIs of the between group differences. We performed 

both independent and paired comparisons. Paired comparisons are in principle more 

appropriate and powerful with this protocol, because it cancels any difference due to the 

specific choice of colours and graphemes; however, for voxels not concerned with those small 

differences, pairing is artificial and may just bring some noise. Results were in any case very 

similar for both comparisons. We show the 95% CIs for paired comparisons comparing 19 

synaesthetes against their matched controls, computed using paired T-tests. We also computed 

the 95% CI of the odds ratio using mixed-effect generalized linear model. Results are very 

similar and shown in Supplemental Figures S4 and S5. 

In order to fully exploit our data set, we performed two additional analyses. 

A searchlight analysis was performed over the whole brain (Kriegeskorte et al., 2006). Whole 

brain analyses are in principle less powerful than ROI analyses because they constrain to 

distort each subject’s anatomical space within one common space, so the average performance 

at any given voxel may in reality correspond to different anatomico-functional voxels in 

different subjects. Moreover, they re-introduce the methodological issues related to spatial 

smoothness (Stelzer, Lohmann, Mueller, Buschmann, & Turner, 2014). This analysis was 

therefore exploratory. It allowed us to discover other clusters potentially involved in 
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synaesthesia, which we could further analyse as post-hoc regions of interest to see if they 

displayed a consistent pattern of results across classifiers. The searchlight analysis used a 15 

mm radius and the SVC algorithm. Performance maps were transformed to the common 

DARTEL space for voxel-wise group comparisons (resolution 3 by 3 by 3 mm). We 

performed in SPM8 two-sample (groups of 20 subjects) and paired-sample T-tests (N = 19) 

between synaesthetes and controls, as well as one-sample T-tests to compare the average 

performance in each group (N = 20) against chance (= 0.25). For all comparisons, no 

individual voxel reached PFWE < 0.05. We used cluster-based statistics with the cluster-

forming threshold set to P = 0.001 and PFWE < 0.05.  

We also performed whole-brain univariate analyses on the groups of synaesthetes and 

controls to test for differences of magnitude of the BOLD responses to graphemes evoking 

synaesthetic colours. The design of the experiment was not optimized for these analyses since 

we did not have any control stimuli (those being not necessary for MVPA). The rationale was 

the same as for the whole brain searchlight analysis: if any difference was found between 

synaesthetes and controls, the revealed clusters could be defined as post-hoc regions of 

interest for our classifiers to test if those regions were involved in coding synaesthetic colours. 

A 9 mm FWHM spatial smoothing was applied to the subjects’ EPI images before testing two 

contrasts: a T-contrast of all stimuli against the fixation point (we did not have graphemes that 

did not evoke any synaesthetic colour); an F-contrast of the four pairs of graphemes. Contrast 

maps were distorted within the study-specific template computed using DARTEL procedure 

as implemented in VBM8 (Dojat et al., 2018) and to the MNI space (resolution 1.5 by 1.5 by 

1.5 mm). For second-level analyses, we compared the contrast maps of synaesthetes (N = 20) 

against controls (N = 20) using T-tests (testing stronger signals either in synaesthetes or 

controls). We also performed paired T-tests on 19 synaesthetes against their matched control 

to account for possible differences due to the specific choices of graphemes in each 
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synaesthete. For all comparisons, no individual voxel reached P < 0.05, corrected for the 

family-wise error (FWE, based on the random field theory as implemented in SPM8). We 

used cluster-based statistics with the cluster-forming threshold set to P = 0.001 (Eklund, 

Nichols, & Knutsson, 2016) and PFWE < 0.05. As a final control analysis, we performed the 

same analyses for coloured stimuli. 

 

Results 

Multivariate pattern analysis in regions of interest (defined at the individual level) 

Our main objective was to test if, in synaesthetes, some brain regions coded both real and 

synaesthetic colours. If neural representations are similar for real and synaesthetic colours, 

then classifiers trained on patterns of BOLD responses to distinguish real colours should 

predict which synaesthetic colours were experienced by synaesthetes when seeing achromatic 

letters and digits, while the performance of colour classifiers should be at chance level in 

control participants, for whom letters or digits do not evoke any synaesthetic colour. Figure 5 

shows the result of the corresponding “colour to synaesthesia” (‘C2S’) classification in visual 

areas known to be involved in colour processing, retinotopic areas and the fusiform gyrus 

(ventral pathway). Performance was around the 25% chance level in every ROI for controls, 

as expected, but also for synaesthetes. The performance for each participant was within the 

95% limits of the binomial distribution (denoted by the thin green lines), except for six 

subjects where it was just slightly above (36% in V1 for syn12, 39% in V2 for syn26, 39% in 

V3 for syn02, 36% and 39% in V4 for respectively syn27 and syn26, 36% in the subdivisions 

1 and 2 of the right fusiform gyrus, FG12R, of the control subject of syn27, and 38% in the 

subdivisions 3 and 4 of the left fusiform gyrus, FG43L, of the control subject of syn11) and 

one subject where it was slightly below (14% in FG12R for the control subject of syn01). 
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Those high and low values are expected to occur by chance given multiple comparisons (20 

subjects tested for each classification), all of them being well included within the 99.75% 

limits of the binomial distribution ([11, 42]%). 

At the group level, mean performance could have been above chance even if still included 

within the 95% limits of the binomial distribution of individual performance (thin green 

lines). However, the 95% Confidence Interval (CI) of all groups reached or crossed the 0.25 

chance baseline and remained below 30%, meaning that the highest performances compatible 

with these data were quite low (See Methods: Statistical Analysis for a Bayesian 

interpretation). Moreover, there was no evidence of better classification in synaesthetes than 

in controls: whiskers across the zero blue line denote the 95% CI for paired comparisons of 

classifier performance of 19 synaesthetes against their matched control, the difference of 

performance being denoted by the grey crosses; all the 95% CIs of the group differences 

reached or crossed the zero line; the maximum higher performance of synaesthetes 

compatible with the data was 6% (in V2 and V3). 

 

Figure 5. Performance of classifiers trained on real colours and tested on letters and digits evoking 

similar synaesthetic colours in synaesthetes (‘C2S’ classification), in retinotopic areas and in the 

fusiform gyrus of synaesthetes (red points) and controls (blue points). Each classifier was trained and 

tested on beta weights computed on voxels in the native subject space with no spatial smoothing. The 

y-axis represents both the performance of the ‘C2S’ classifier (between 0 and 1, chance level = 0.25, 
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thick green line; 95% limits of the binomial distribution of chance for each subject [0.15, 0.35], thin 

green lines) for individual subjects and their group average (with 95% CI, computed using mixed-

effect generalized linear models: see Methods, Statistical Analysis) and the difference of performance 

(grey crosses) between synaesthetes and their matched controls (0 = no difference between groups, 

blue line; whiskers denote 95% CI, computed using paired T-tests: see Methods, Statistical Analysis). 

Each ROI regrouped several areas, for example the left and right parts of V1 for ‘retV1’ in order to 

provide a large number of voxels in each subject and ROI (at least > 60 in each ROI of each subject, 

and > 100 voxels in most ROIs; see Methods: Data Analysis). ROIs have different number of voxels 

because no voxel selection was applied for this analysis. ‘retV1’ to ‘retV4’ were defined based on 

retinotopic mapping in each subject; other ROIs were defined as the intersection of the subject’s grey 

matter mask and the mask of atlas-based anatomical ROIs (Anatomy Toolbox for SPM8) projected 

into the subject’s space (see Figure 4). ‘FG12L’ = left (FG1 + FG2), etc. Please note that the scale of 

the Y-axis, adjusted for better visibility, is different than in the next figures. 

 

Figure 6 shows the performance of all classifiers (described in Figure 3) in all our ROIs, still 

without any voxel selection (ROIs have therefore different number of voxels across regions 

and subjects). 
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Figure 6. Decoding performance of all classifiers in retinotopic areas, the fusiform gyrus and parietal 

areas. Each panel displays the individual and average performances of five classifiers (see Figure 3), 

with the same conventions as in Figure 5: ‘Col’ = training and test on betas for real colours (rings); 

‘Syn’ = training and test for synaesthetic colours (graphemes, letters or digits); ‘C2S’ = training on 

real colours (rings) test on synaesthetic colours (graphemes): these data were already shown in Figure 

5 for retinotopic areas and the fusiform gyrus; ‘S2C’ = training on synaesthetic colours test on real 

colours; ‘g1g2’ training on letters test on digits or training on digits test on letters. As in Figure 5, the 

y-axis represents both the performance of classifiers for individual subjects (blue = controls, red = 

synaesthetes) and the difference of performance (grey crosses) between synaesthetes and their matched 

controls. Whiskers around the group averages denote 95% CI as computed for Figure 5. ‘IP13L’ = left 

(AIPS_IP1 + AIPS_IP2+ AIPS_IP3), ‘PGapL’ = left (IPL_PGa + IPL_PGp), etc. (see Figure 4). For 
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the group differences, the CIs of the odds ratio computed by mixed-effect generalized linear models 

are shown in Supporting Information, Figure S4. 

 

In each subplot, the first two beeswarms from the left show the performance of decoders in 

each subject for real colours (‘Col’ classification). As expected, the decoding of real colours 

was above chance (0.25, thick green line) in retinotopic areas as well as in the fusiform gyrus 

for both controls (blue points) and synaesthetes (red points). No difference was expected nor 

observed between groups. Note though that the whole 95% CI of the group difference was 

slightly above 0 in retinotopic V3 (‘retV3’), and it was slightly below 0 in the subdivisions 1 

and 2 of the right fusiform gyrus (‘FG12R’). Differences are more visible when estimating the 

CI by a mixed-effect generalized linear models (Supporting Information, Figure S4). But 

without any independent evidence, these small differences could be due to random sampling. 

Indeed, all the 99.58% CIs included 0 (Bonferroni correction over 12 tests). 

The next beeswarms are for the classification of pairs of graphemes. In synaesthetes only, 

classification could in principle be achieved based on the synaesthetic colours, since the 

synaesthetic colour was the main shared feature associated to each grapheme pair (in most 

cases one letter and one digit) had in common (so we called it the ‘Syn’ classification). For 

example, E and 7 were both associated to red by syn01 (see Figure 1). Performance was 

above chance level (25%) in controls. This means that this performance could be achieved by 

classifiers based on either some spatial features shared by each grapheme pair or by 

optimizing decoding to only one of the graphemes. In order to test whether graphemes could 

be decoded on the basis of synaesthetic colours, we looked if classifiers performed better for 

synaesthetes than controls. This was the case in retinotopic V2 (95% CI of the difference of 

performance, two-sample T-test: [1.5, 12.5]%; paired T-test: [0.5, 13.4]%; 95% CI of the odds 

ratio [1.15, 1.56]; see Methods, statistical analysis) and to a lesser extent in retinotopic V3 

(but note that performance was lower for synaesthetes in the subdivisions 1 to 3 of the left 
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Intra-Parietal Sulcus, ‘IP13L’; such a difference is most likely due to random sampling since 

none of the group performances in ‘IP13L’ was above chance). Only the difference in V2 

survived Bonferroni correction over 12 tests, for the mixed-effect analysis (P = 0.0002). 

The third group of beeswarms represents the data answering our main question: can 

synaesthetic colours be decoded based on real colours (‘C2S’ classification)? These data were 

already displayed in Figure 5 (except for parietal ROIs), leading to a negative answer. In 

particular, performance was not significantly above chance in V2, as would have yet been 

expected if the higher performance in synaesthetes for the ‘Syn’ classification was really due 

to the coding of synaesthetic colours. We obtained similar null results when we tried to 

decode real colours based on graphemes (and possibly synaesthetic colours in synaesthetes: 

‘S2C’ classification). 

The last beeswarms on the right of each subplot show the performance for another 

classification that should have been possible only on the basis of synaesthetic colours: 

classifiers were trained on one set of graphemes (digits or letters) and tested on the other set 

of graphemes (‘g1g2’ classification). Again, performance was never above chance and never 

higher in synaesthetes than in controls, in particular in V2. We even observe lower scores for 

synaesthetes in V1 (where it even survived Bonferroni correction for the mixed-effect 

analysis: P = 0.0002) and V3, where we had yet observed higher performance for ‘Syn’ 

decoding. 

We performed again all these analyses using six larger ROIs (regrouping either the left or the 

right parts of V1 to V4, FG1 to FG2 and the areas of the inferior parietal lobule and the 

intraparietal sulcus) in which we selected the 100 voxels with the largest scores to F-tests to 

real colours, in order to feed the classifiers with the voxels most sensitive to real colours 

(Figure 7). The performance of the ‘C2S’, ‘S2C’ and ‘g1g2’ classifiers was never above 
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chance in synaesthetes (nor in controls, as expected), and performance was never better in 

synaesthetes. 

 

Figure 7. Decoding performance based on the same number of voxels (= 100) in each large ROI 

(retinotopic areas, fusiform gyrus and parietal regions) and subject. For the classification of real 

colours (‘Col’), the selection of the best F-values to colours was different for each of the six leave-

one-out classifications, based each time only on the five runs used for training the classifier, to insure 

independence of training and test. For the other selections, all colour runs were used to select the 

voxels with the highest F-scores. The high performance for the ‘Syn’ classification in retinotopic areas 

indicates that many voxels respond both to change of colour or luminance and the shape of graphemes, 

probably thanks to the small receptive fields of lower visual areas. Same conventions as in Figure 6. 

For the group differences, the CIs of the odds ratio computed by mixed-effect generalized linear 

models are shown in Supporting Information, Figure S5. 

 

Individual differences 

The phenomenological experience of synaesthetic colours may vary a lot across synaesthetes, 

which may compromise the visibility of effects at the group level. While this phenomenology 

has been so far problematic to capture with objective measures, we could estimate the strength 

of the synaesthetic associations in each subject, using variants of Stroop tasks. We reasoned 

that synaesthetes with stronger synaesthetic associations might have stronger modulations of 
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the BOLD signal and thus larger decoding values. We first tested area V2, where we had 

observed on average higher performance in synaesthetes for the ‘Syn’ classification. We were 

wondering if this higher performance was really due to the coding of synaesthetic colours, 

because our other, more specific classifiers (‘C2S’, ‘S2’C and ‘g1g2’), had not revealed any 

difference. A correlation between synaesthetic strength and performance would constitute an 

independent validation of coding. Figure 8 shows the decoding performance in each subject as 

a function of the strength of synaesthetic associations, measured in Stroop-like psychophysics 

experiments (see Table 1 and Ruiz & Hupé, 2015, for further explanations about the ‘Photism 

Strength’ index) for synaesthetes only (red crosses). Controls (blue circles) were attributed the 

value of their matched synaesthete.  

 

Figure 8. Decoding performance of the classifier trained and tested with synaesthetic colours (pairs of 

graphemes) in each subject in area V2 defined retinotopically (same data as ‘Syn’ in the second panel 

of the first column of Figure 6) as a function of the strength of synaesthetic associations (‘Photism 

Strength’). This strength, measured for synaesthetes (red crosses), does not show any evidence of 

correlation with the performance of the ‘Syn’ decoder (r = -0.11, 95% CI [-0.54, 0.36]). Controls (blue 

circles) were attributed the value of their matched synaesthete (r = -0.18, 95% CI [-0.58, 0.30]). Note 

that one value of Photism Strength was larger than the other ones. We carefully checked that this value 

was correct. However, given its possible influence on the correlation results, we complemented this 

analysis with two other analyses, by removing this value (for synaesthetes, r = 0.28, 95% CI [-0.21, 

0.66]) and by performing non-parametric correlations (Spearman r = -0.03, N = 19, P = 0.90). We 

compared the results of these three statistical tests for all the other tested correlations. The statistical 

conclusions were always similar, except for one case described in Supporting Information, Figure S2. 



33 
 

There was no correlation between both measures, neither for synaesthetes nor, as expected, 

for controls. We also observed that the difference of score between each synaesthete and her 

(or his) matched control did not increase with photism strength (r = 0.06, 95% CI [-0.42, 

0.52]; Spearman r = 0.01, N = 18, P = 0.95). Therefore, this analysis did not provide any 

independent argument in favour of the decoding of synaesthetic colours in V2. We computed 

similar correlation analyses in every ROI and for all classifiers and never found any 

correlation (all uncorrected P > 0.05). We also computed both positive and negative (in case 

some regions would show a decrease of classifier performance for higher values of photism 

strength) correlations over the whole brain for the five classifiers, independently for 

synaesthetes and controls. We never found any significant cluster (cluster forming threshold, 

P = 0.001). 

Whole brain searchlight multivariate pattern analysis 

We complemented our ROI analysis with searchlight analyses over the whole brain 

(normalized to the MNI space), comparing the decoding performance in each group against 

chance as well as comparing groups for the five classifications. These exploratory analyses 

were performed to discover clusters potentially involved in synaesthesia outside of our ROIs. 

“Significant” clusters could be used as post-hoc regions of interest to see if they displayed a 

consistent pattern of results across classifiers (these results are displayed in Supporting 

Information, Table S1). We found no differences between controls and synaesthetes at our 

statistical threshold (PFWE < 0.05 at the cluster level, cluster-forming threshold P = 0.001) for 

classifiers trained and tested on colours (rings, ‘Col’ classifiers). For classifiers trained and 

tested on synaesthetic colours (graphemes, ‘Syn’ classifiers), we observed higher performance 

in synaesthetes in the parietal cortex (Table S1: on the right side with paired T-tests and on the 

left side with two-sample T-tests; bilateral difference could be observed for both contrasts 

when using a higher cluster-forming threshold). However, testing synaesthetes against chance 
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revealed no cluster at our threshold around these coordinates of the parietal cortex 

(performance was above chance in both groups in the occipital cortex, as expected). 

We found no difference between controls and synaesthetes at our statistical threshold for the 

critical test of shared coding of real and synaesthetic colours, when classifiers were trained on 

coloured rings and tested on graphemes (‘C2S’ classifiers). Testing synaesthetes against 

chance also revealed no cluster. The reverse classification (learning on graphemes, ‘S2C’), 

however, revealed two clusters with higher performance in synaesthetes for independent T-

tests, in the right occipito-temporal cortex and in the left putamen. Only the first cluster was 

confirmed by paired-comparisons. When testing performance against chance two clusters 

emerged for synaesthetes (none for controls), one again in the same part of the right occipito-

temporal cortex, and the other in the left parietal cortex, abutting the parietal cluster obtained 

previously for the higher performance in synaesthetes for the ‘Syn’ classification (we shall 

come back to this concordance in the following post-hoc analysis).  

Finally, for classifiers trained on either letters or digits (and tested respectively on either digits 

or letters), a critical test of the coding of synaesthetic colours, higher performance was 

observed, but in controls, in the left inferior frontal gyrus, for both paired and independent T-

tests. However, no cluster emerged anywhere in the brain in controls (nor in synaesthetes) 

when testing performance against chance, so this cluster should be considered as a false 

positive. 

Post-hoc analysis. We further explored the performance of classifiers in the two clusters 

identified by the ‘Syn’ classifier and the five clusters identified by the ‘S2C’ classifier, 

corresponding in fact to two parietal regions (left and right), one right occipito-temporal 

region and one cluster in the left putamen. In each cluster, we computed the average across 

voxels of the searchlight scores, in order to compare the performances of our five classifiers 

for synaesthetes and controls in these seven clusters defined post-hoc, with two-sample and 
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paired-sample T-tests. We also compared the decoding performance in each group against 

chance. Statistically “significant” differences were obtained only for the contrasts used to 

define the clusters (Table S1). Only one additional comparison was “significant” (P = 0.012, 

not corrected for multiple comparisons) in the left parietal cluster at XYZ = [-33 -28 50], 

which had been obtained when testing synaesthetes against chance for the ‘S2C’ classification 

(training classifiers on graphemes and testing them on colours: Figure 9): scores were also 

higher in synaesthetes than controls for decoding graphemes (‘Syn’ classification, 95% CI [1, 

9]%, paired comparisons) and higher than chance (95% CI [26, 31]%), but the performance 

was not correlated with the strength of synaesthetic associations (P = 0.51). 

 

Figure 9. Left: Parietal cluster identified based on whole brain searchlight analysis for ‘S2C’ 

decoding, Synaesthetes>chance (27-voxel cluster at XYZ = [-33 -28 50], one-sample T-test). Middle: 

performance of classifiers in this cluster (same conventions as in Figure 6). The decoding performance 

for synaesthetes was logically above chance for the ‘S2C’ classification, since the cluster was defined 

based on this contrast. For the independent classifier ‘Syn’, the performance for synaesthetes was also 

above chance and above that of controls. Right: Absence of correlation between the strength of 

synaesthetic associations and ‘Syn’ decoding (Spearman r = 0.02, N = 19, P = 0.95; for ‘S2C’ 

decoding, not shown: Spearman r = -0.15, N = 19, P = 0.53). 

 

Whole brain univariate analyses (normalized anatomical space) 

Similarly to the searchlight analyses, these whole-brain univariate exploratory analyses were 

performed to discover clusters potentially involved in synaesthesia outside of our ROIs. 



36 
 

We compared the maps of T-contrasts obtained for graphemes in synaesthetes and controls: T-

contrasts reveal voxels which are most activated by any grapheme; the additional synaesthetic 

colour associated to graphemes in synaesthetes could lead to stronger BOLD signal. The 

whole-brain analysis revealed no difference between controls and synaesthetes at our 

statistical threshold (PFWE < 0.05 at the cluster level, cluster-forming threshold P = 0.001) 

when performing two-sample T-tests between controls and synaesthetes. However, the paired-

sample T-tests revealed stronger BOLD signal in a small cluster in synaesthetes, close to the 

left precentral gyrus. We treated this cluster as a candidate region for the coding of 

synaesthetic colours (Supporting Information, Table S1). 

We compared the maps of F-contrasts obtained for graphemes in synaesthetes and controls: 

F-contrasts reveal voxels which are most modulated by graphemes; the additional 

synaesthetic colour associated to graphemes in synaesthetes could lead to larger 

differentiations of BOLD signals. The whole-brain analysis did not reveal any stronger 

modulation in synaesthetes than controls (neither for two-sample nor paired-sample T-tests). 

Surprisingly, we observed stronger modulation in controls in two clusters (paired 

comparisons), in the right occipito-parietal cortex (Supporting Information, Figure S1) and in 

the left insula. The two-sample T-tests revealed only the occipito-parietal cluster. We did not 

have any explanation for these differences, which might be false-positives (Eklund et al., 

2016). We note that the analysis by (Rouw & Scholte, 2010) revealed a cluster (which they 

called IPS, cluster extent = 3280 mm3) at equivalent peak coordinates on the left side ([-30 -

72 28]), obtained with the contrast synaesthetes > controls for (synaesthetic graphemes) > 

(non-synaesthetic graphemes). In our case, the weaker modulation by graphemes in 

synaesthetes would rather argue against the hypothesis of a functional role of this region in 

synaesthesia. We included these two regions in our post-hoc MVPA analyses for further 

exploration. 
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We also compared synaesthetes and controls for the maps of T- and F-contrasts for the 

responses to real colours (rings), in case the presence of synaesthesia would lead to a different 

processing of real colours. We observed stronger BOLD signal (T-contrast) in synaesthetes 

only, in three clusters for paired comparisons (in the left posterior and anterior insula – see 

Supporting Information, Figure S2 - and in the left parahippocampal region) and two other 

clusters for two-sample T-tests (in the right middle temporal gyrus and in the right superior, 

medial, frontal gyrus - see Supporting Information, Figure S3). The lack of consistency 

between paired and two-sample T-tests could again suggest false-positives, but we 

nonetheless included these five clusters in our post-hoc MVPA analyses, in case those 

stronger activations be related to the implicit activation of graphemes by the colours 

associated to them (“bi-directional” synaesthesia: Gebuis, Nijboer, & Van der Smagt, 2009). 

F-contrasts to colours revealed only one cluster of stronger modulation in controls in the 

frontal region, but in the middle of white matter and thus clearly a false positive. 

We compared the performances of our classifiers in synaesthetes and controls in those eight 

clusters defined post-hoc, with two-sample and paired-sample T-tests. Only three comparisons 

came out “significant” at p < 0.05, but without correction for multiple comparisons (Table 

S1). Supporting Information, Figures S1 to S3 detail the results obtained in these three post-

hoc clusters. 

 

Discussion 

Our goal with this study was to provide univocal evidence of the activation of the ‘colour 

network’ by imaginary colours as experienced by grapheme colour synaesthetes. 

Studies based on univariate analyses to search the neural correlates of synaesthetic colours 

face two major problems. First, BOLD responses to stimuli leading to the experience of 
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synaesthetic colours need to be compared to a control response (subtraction method: see the 

Figure 1 by Hupé & Dojat, 2015). Such a control response may be obtained by testing the 

same subjects with similar stimuli that do not generate a synaesthetic experience (pseudo-

graphemes or graphemes that, by chance, do not generate such an experience in the tested 

synaesthetes). The problem is, it is impossible to know whether the additional activations, if 

observed, are specific to the synaesthetic experience of colours. For example, letters and 

numbers can also be named, unlike pseudo-graphemes. A control response may also be 

obtained by testing non-synaesthetes with the same stimuli. But, again, it is impossible to 

know whether the additional activations, if observed, are specific to the synaesthetic 

experience of colours. For example, synaesthetes often enjoy visualizing the synaesthetic 

colours of graphemes: attentional and emotional components may therefore bias the 

comparison. Second, averaging the results across subjects require to transform the individual 

data within a common reference space, with the possible loss of fine-grained spatial 

information. The first problem may generate false positive results, the second false negative 

results. 

Thus, because univariate analysis led to inconsistent results (Hupé & Dojat, 2015), we used in 

this study Multivariate Pattern Analysis (MVPA) on 20 synaesthetes and 20 control 

participants, to explore whether the neural processing of real colours and synaesthetic colours 

shared patterns of activations. To our knowledge, it was the first time that MVPA was 

proposed in this context. By using MVPA, we could in principle overcome problems 

associated with univariate analysis because we test the performance, in each individual, 

related to the coding of certain attributes, not a level of activation in need of further 

interpretation. Our design was optimized to test if classifiers, trained to distinguish patterns of 

responses to four different real colours in groups of voxels from different regions of the brain, 

could classify above chance the responses of those voxels to achromatic graphemes leading to 
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the synaesthetic experience of the exact same colours. The logic was that only synaesthetes 

tested with their exact, idiosyncratic, synaesthetic code could produce above-chance 

performance. But the classifier performance in our group of 20 synaesthetes remained very 

close to chance (all P > 0.05, uncorrected) in all our selections of voxels (retinotopic areas 

defined at the individual level as well as the fusiform gyrus and parietal regions of interest 

defined based on a probabilistic atlas), and whatever the extent of the chosen areas or the 

selection method of the voxels (Figure 5 and ‘C2S’ classification of Figure 6 and 7, shown by 

red points for synaesthetes). A statistical comparison revealed that the classifier performance 

in synaesthetes was also no better on average than that obtained in control subjects. 

The absence of statistically significant effect cannot lead to conclude to the absence of effects. 

The null result could be due to a lack of power, if, for example, a good performance of 

classifiers was reached for only a few synaesthetes. However, the results were not ambiguous 

when inspecting the distributions of classifier performances in individual subjects: the scores 

for most synaesthetes were distributed around the chance level (binomial probability: almost 

all the points are included within the green dotted lines representing the 95% limits of the 

binomial distribution). The correlation analyses with a measure of individual differences (the 

strength of the synaesthetic associations) further confirmed the homogenous performance of 

classifier around chance for synaesthetes. There is therefore no evidence at all in the present 

data of shared coding of real and synaesthetic colours. 

We further analysed our data set in different ways, in order to be able to detect some signs of 

coding of synaesthetic colours by neural networks not involved in the coding of real colours. 

The ‘g1g2’ classification, which could have been achieved only on the basis of shared 

synaesthetic colours across letters and digits, remained at the chance level in synaesthetes. 

The ‘syn’ classification, expected to reach a higher performance in synaesthetes, was similar 

in controls. We also explored the performance of classifiers beyond our regions of interest, 
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across the whole (normalized) brain (searchlight analysis) without obtaining significant 

results. 

We also explored the whole brain using mass univariate tests, knowing that whole brain 

analyses face the ill-posed problem of correction of multiple comparisons of partly correlated 

tests, problem not fully solved by the Random Field Theory (Eklund et al., 2016). Moreover, 

since we performed in total at least nine whole brain searchlight analyses and four whole 

brain univariate comparisons (T- and F-contrasts for responses to graphemes and colours, see 

Table S1), we could have set a family-wise error level at 0.05/13. We preferred to keep a non-

corrected level for easier comparisons with other studies. The whole brain analyses were used 

only for exploration, and for every detected cluster we searched for additional evidence 

(differential response for other comparisons, or correlation with individual differences). Since 

we did not find any additional evidence, we conclude that these clusters may be false 

positives. We however mention them (see Table S1) in case additional evidence be found in 

other studies. 

If considering synaesthetic colours simply as a form of mental imagery, as proposed in the 

Introduction, we were expecting above-chance decoding performance as observed for other 

tasks involving mental imagery. Those other tasks, however, typically involved different 

categories of objects, like food, tools, faces and buildings (Reddy et al., 2010) or objects, 

scenes, body parts and faces (Cichy, Heinzle, & Haynes, 2012), which evoked stronger 

BOLD signal in specific areas (like the Fusiform Face Area). Other studies involved 

retinotopic properties (Thirion et al., 2006) where, again, differences of BOLD signal can be 

easily observed. Here we were trying to decode mental images within only a single category, 

colour. Our negative results suggest that synaesthetic experiences do not evoke strong BOLD 

responses, as already suggested by the inconsistency of the published results based on 

univariate models (Hupé & Dojat, 2015). 
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Below we consider alternative explanations (e.g., methodological limitations) to the absence 

in our data of shared patterns of activations for real and synaesthetic colours as well as of 

neural traces of the processing of synaesthetic colours. These limitations suggest alternative 

methodological choices for further experiments. 

Colour classifiers used luminance differences rather than colour differences. 

The colours of the stimuli were based on the choices made by synaesthetes, corresponding to 

their synaesthetic colours. Those were of course not isoluminant, especially when comparing 

blue and yellow. Then, classifiers may have learnt luminance rather than hue differences, 

resulting in “luminance” decoders rather than “colour” decoders as we expected, and an 

impossibility of testing our colour hypothesis. However, such luminance decoders should 

have been able to pick up the luminance difference of synaesthetic colours in case of shared 

coding between real and synaesthetic perception, and the conclusions of our study would 

therefore be similar. In any case, it is unlikely that luminance signals were stronger than hue 

signals everywhere in the visual cortex. Luminance coding concerns mostly low-level 

retinotopic areas while high level areas are sensitive to unique hues (Stoughton & Conway 

2008). Note that hue differences are often perceptually more salient than luminance 

differences (see Figure 1); therefore, corresponding signals must exist in the brain, which our 

classifiers should have been able to pick up. In the Methods section, we evaluated the 

information content of our stimuli as measured in the L*a*b colour space, supposed to be 

approximately homogenous for colour distances (see Figure 2). We concluded that, within 

that space, colour classifiers would use hue rather than luminance cues. Nonetheless, since we 

do not know what colour space if any is the most appropriate to identify the neural correlates 

of colour processing, it could be interesting to redo our experiment by choosing only 

approximately isoluminant synaesthetic colours. Inspection of our Figure 2 shows that this 
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would have been possible at the expense of restricting our study to two colour categories, like 

red and green or yellow and green in most subjects, red and blue in a few others.  

Colour imagery could not be decoded. 

Our study used a protocol very similar to that used by (Bannert & Bartels, 2013), who could 

decode the typical colour from eight objects, presented as greyscale photos, with classifiers 

trained on concentric colour circles designed after (Brouwer & Heeger, 2009), like in our 

study. The prototypical colour of the objects was red, green, blue or yellow (like a banana and 

a tennis ball). Across 18 subjects, decoding accuracy was “significantly” above chance in V1, 

but reached only 32% on average, which is hardly above the 95% CI ([24, 30]%) of the 

performance observed for our similar classifier (‘C2S’) in the areas V1 to V4 of synaesthetes. 

Their experimental procedures, slightly different from ours, may have better optimized the 

signal to noise ratio and allowed this higher performance (see below). Alternatively, since the 

colour-diagnostic objects were presented before the coloured concentric rings, subjects may 

have imagined, when viewing the rings, the very objects that were presented before. Subjects 

had to do a motion discrimination task to divert their attention (similarly to our one-back 

task), but such a task (like ours) was not very demanding (though note that Bannert and 

Bartels argue that their results are due to automatically occurring processes during object 

vision rather than active imagery). A similar argument holds even more in our experiment: 

synaesthetes were very likely to recognize the colour matching exactly their synaesthetic 

colour of letters and digits, and they might well have imagined the letter or digit when looking 

at the coloured stimuli. In both cases, decoding would be based on the complex shape of 

stimuli rather than their colour. In the case of Bannert and Bartels, objects were similar to 

those used in other successful visual-to-imagery decoding and involved several categories of 

objects as well as different retinotopic properties (the objects had different orientations but 

were rotating; however the banana or the coke can, for example, had about 12 deg extent, 
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apparently much more than the Nivea tin or the blue traffic sign), while in our case objects all 

belonged to the grapheme category, and all spanned the same visual extent. It is therefore 

possible that in the study by Bannert and Bartels the slightly above chance decoding 

performance was due to residual category and retinotopic properties, not to colour. With such 

an interpretation, decoding of imaginary colours would have failed in both their and our 

study. 

Questionable choice in the paradigm used: duration of event presentation.  

Our close to chance performance could be linked to our choice of a fast event related 

paradigm, each stimulus being presented each time for only 1 s, with an ISI = 1 s +/- 333 ms. 

Bannert and Bartels presented images for 2 s with a 1 s ISI, each repeated four times in a row 

(miniblocks). One may wonder whether our presentation time was sufficient to trigger 

synaesthetic associations. However, psychophysical tasks show that the naming of the 

synaesthetic colours of graphemes takes on average much less than 1 s (Table 1). Because of 

our one-back attentional task, though, we cannot be sure that the synaesthetic associations 

were always conscious. However, synaesthetes did not report any specific difficulty with their 

synaesthetic experience when viewing, inside the scanner, the proposed paradigm. We 

designed such a protocol because we did not want synaesthetes to pay too much attention to 

their synaesthetic colours, then possibly triggering complex attentional and emotional 

processes. Those components are part of the synaesthetic experience, but they do not tell us 

anything about the phenomenological experience of colours, our main goal being to try to 

isolate the possible neural commonalities of the real and synaesthetic experience. The quasi-

absence of observed differences of overall activation and modulation between synaesthetes 

and controls for graphemes indicates that we were successful in synaesthetes having a similar 

experience to controls for graphemes, in terms of attentional and emotional content. With 

different conditions, favouring synaesthetic colours to be experienced intensely, we would 
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expect the overall pattern of brain activity to be different, but those differences would be 

poorly informative. However, those differences may not play any role in the specific MVPA 

decoding of synaesthetic colours based on real colours (‘C2S’ classification), except for the 

possible sub-vocalization of colour names. A protocol with longer presentation time and a 

task related to synaesthetic colours could therefore be tried, if sub-vocalization of colour 

names is prevented by a different protocol and task when presenting real colour stimuli. 

Questionable choice in the paradigm used: type of stimuli.  

A critical aspect of our fast-event paradigm is related to the slow dynamics of the 

hemodynamic signal and the signal to noise we could obtain. Here, the critical benchmark 

was the possibility to decode real colours, since the protocol was identical for synaesthetic 

and real colours. We were successful in decoding colours above chance in the visual cortex, 

between 31 and 36% in V1 to V4, chance being 25%. Using 12 s miniblocks, Bannert and 

Bartels obtained an average performance for colours between 35% and 40% in V1 to V4. 

Differences other than the timing of the stimuli may explain this only slightly higher 

performance: their total presentation time of coloured stimuli was about 42 min (20 min in our 

study; for example, Brouwer & Heeger, 2009, obtained even higher performances with 

experienced participants tested for much longer durations); their stimuli were much larger 

(7.19 deg vs. 2 deg radius) and isoluminant (we do not know whether luminance information 

in our case helped or hindered decoding). Because they were constrained by the idiosyncratic 

synaesthetic associations, our stimuli were also not well distributed within the colour space 

(see Figure 2). Colour differences between categories (R, G, B and Y) and similarity between 

colours for pairs (letter-digit) were different between subjects and not always optimal to reach 

maximal performance by classifiers. Probably, some pairs of supposedly similar colours 

confused classifiers, as well as short distances between some categories. Choosing only three 

colours would have allowed us to avoid confusions and get more exemplars for each colour 
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(with fewer categories to decode, though, confounding factors are more likely). More 

repetitions would have increased the signal to noise ratio, however we wanted to record 

signals for real and synaesthetic colours within the same scanning session to avoid any spatial 

smoothing of the voxels (which is often necessary when aligning images obtained in different 

sessions). Preliminary experiments had showed us indeed that combining the signals from 

different sessions did not improve performance (Ruiz et al., 2012). Our total session time was 

about 1 hour, which is about the limit one may ask naïve subjects to lie in a scanner without 

moving while maintaining fixation and attention. 

Lack of statistical power to detect small differences. 

Given our moderate performance for colour classification, our absence of above-chance 

performance for the decoding of synaesthetic colours might be due to a lack of power, since 

performance across real and imaginary images is typically lower than for real images (Reddy 

et al., 2010; Bannert & Bartels, 2013). However, we did have enough power to assess that 

performance for synaesthetic colours, if above chance, was less than half than for real colours: 

in the large ROI comprising the left retinotopic areas (retL), the average performance for 

decoding colour was 37%, 12% above chance. If performance was half that size for decoding 

synaesthetic colours based on real colours (‘C2S’), performance should have been 31%. It 

was only 27%, with the 95% CI [24.7, 29.2]%. Bayesian analysis (see Methods: statistical 

analysis) indicates that there is 99.9% chance that the true performance of the ‘C2S’ classifier 

in the left retinotopic areas is less than 31%. In all our tested ROIs, the upper limit of the 95% 

CI of the ‘C2S’ classifier was always less than 30%. Also, such a reasoning holds for the 

average performance, but some subjects did reach performance for colour decoding well 

above 50%. Yet, the distribution of individual scores were all very similar for controls and 

synaesthetes (see Figs. 5 to 7). For example, if we select the 11 synaesthetes whose 

performance was above 35% (that is, above the chance level at the individual level) for 



46 
 

decoding real colours in the left retinotopic areas (retL; mean performance = 43%), their 

‘C2S’ performance was no better than that of the whole group (mean = 27.5%, 95% CI [24.7, 

30.3]%; Bayesian analysis: 98.9% chance that the true performance is less than 31%). In fact, 

there was no evidence for any correlation between the performances of colour classifiers and 

of synaesthetic classifiers based on real colours (‘C2S’), in any of our ROIs (all uncorrected P 

> 0.14, -0.36 < R < 0.35).  There was some correlation between the performances of colour 

(‘Col’) and synaesthetic (‘Syn’) classifiers in retinotopic areas (especially V1), but it was 

similar in synaesthetes and controls (the differences between synaesthetes and controls for the 

‘Syn’ classifier were in fact even weaker when including the ‘Col’ performance as a 

covariate). 

For the statistical analysis, we adopted the “new statistical approach” proposed by (Cumming, 

2012) and focussed on confidence intervals of effect sizes instead of the less informative 

thresholded P-value maps (Hupé, 2015). In order to facilitate the comparison of our study 

with previous studies, we indicated when the comparisons could be considered as 

“significant” (a 95% CI not crossing the chance level corresponds to P < 0.05) when 

correcting the risk level for multiple comparisons. Note however that correction for multiple 

comparisons corresponds to an ill-posed problem, because there is no unique and objective 

way to define the family of tests (Hupé, 2015). Such a problem is pretty obvious in our case, 

where the number of considered ROIs depends on our choice of regrouping or not ROIs, and 

by how much. We applied a Bonferroni correction over twelve ROIs, but we could have 

considered the family across the five types of classifiers (so at least 60 tests). However, by 

focusing on the extent of the CIs, the conclusions do not change much for different levels of 

CI (the extent of a 99.58% CIs is just a bit larger than for a 95% CI): for all the cases that may 

suggest differences between groups, the true differences compatible with our observations 

may be either close to absent (difference close to or including 0, or odds ratio close to or 
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including 1) or at most up to about 15% (or odds ratio = 1.5), a value that one may consider 

meaningful. As in most studies currently published in cognitive neuroscience dealing with 

small effects, the width of our confidence intervals is too wide to reach any definitive 

conclusion on the sole basis of one test (lack of power). Our choice of CI presentation, 

however, brings useful information allowing cumulative science (Yarkoni, Poldrack, Van 

Essen, & Wager, 2010) and shows that if any real difference exists, it is probably not very 

large because corresponding to less than a 15% difference of performance. 

 

Conclusion 

Using MVPA, we could not identify the neural correlates of the synaesthetic experience of 

colours and we did not find any evidence of common neural coding of real and synaesthetic 

colours. By stressing this lack of evidence, we do not conclude that such a neural coding does 

not exist. We bring to light what is required to have any chance to reveal the neural bases of 

the synaesthetic experience using MRI, like more data by subject, higher signal to noise ratio 

and spatial resolution (e.g., 7 Tesla scanner: Turner, 2016), maybe larger cohorts or a different 

protocol addressing the issue of luminance differences or with a slower presentation rate. 
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Col: training and test on betas for real colours (rings) 
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C2S:  training on real colours (rings) test on synaesthetic colours (graphemes) 

S2C: training on synaesthetic colours test on real colours 

g1g2: training on letters test on digits or training on digits test on letters. 
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Appendix 

Supporting Information is available. It contains: 

Table S1. Clusters identified based on whole brain analyses and tested post-hoc with MVPA.  

Figure S1. Right occipito-parietal cortex cluster identified based on whole brain univariate 

analysis  

Figure S2. Left anterior insula cluster identified based on whole brain univariate analysis  

Figure S3. Right frontal cortex cluster identified based on whole brain univariate analysis  

Figure S4. Alternative version of Figure 6, based on mixed-effect generalized linear models 

Figure S5. Alternative version of Figure 7, based on mixed-effect generalized linear models 
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Table S1. Clusters identified based on whole brain analyses and tested post-hoc with 

MVPA 

 

Clusters potentially involved in synaesthesia were identified based on whole brain univariate analysis 

and searchlight MVPA. For each analysis the line in the table indicates which stimuli were presented 

(‘graph.’: achromatic letters and digits; ‘all’: MVPA based on both graphemes and coloured rings), 

which statistics (stat) was used to create individual whole brain maps (first-level analysis), the statistical 

test (comparison: P-s = paired-sample T-test; 2-s = two-sample T-test; 1-s = one-sample T-test) 

performed for the second level analysis as well as the statistical contrast. For all individual statistical 

maps (first level analysis), we applied a spatial smoothing with FWHM = 9 mm for univariate analyses 

and no smoothing for MVPA. For second-level analyses, the cluster forming threshold was set at P = 

0.001. We list all clusters significant at PFWE < 0.05, their size in mm3 (voxel size was 1.5 mm3 for 

univariate analyses and 3 mm3 for multivariate analyses), the coordinates in the MNI space of the voxel 

with the smallest P-value in the cluster as well as the name used in the main text, corresponding to their 

approximate location. Empty lines mean the absence of any significant cluster. Grey font was used for 

statistical contrasts for which we did not have any reason to expect any difference. The right part of the 

table lists the comparisons of MVPA scores within these post-hoc clusters. The names of the MVPA 

classifiers are explained in Figure 3. We compared the scores of synaesthetes and controls with paired 

T-tests and report the P-values that were below 0.05 (two-sided tests, not corrected for multiple 

comparisons; the results of two-sample T-tests were similar). The scores of controls were never 

significantly larger than the scores of synaesthetes. We also tested the scores of synaesthetes against 

chance (two-sided one-sample tests) and reported P-values systematically when there was a difference 
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between synaesthetes and controls. For the results of MVPA tests in clusters defined by the whole brain 

MVPA searchlight, we shaded in grey the cells corresponding to circular analysis. Note that for the 

results of the ‘S2C’ classifier in clusters based on ‘S2C’, the comparison of synaesthetes and controls 

and the comparison of synaesthetes against chance are not independent (the scores of controls in these 

cluster were in fact on average below chance). 
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Figure S1. Right occipito-parietal cortex cluster identified based on whole brain 

univariate analysis  

 

The univariate analysis of the F-contrast for achromatic graphemes revealed a significant cluster (PFWE 

< 0.05) in the right occipito-parietal cortex (MNI XYZ = [33 -70 33], k = 111) for the contrast 

Con>Syn (paired T-test). MVPA tests in this cluster revealed a higher score in synaesthetes than 

controls for the ‘Syn’ classifier, decoding graphemes based on training on graphemes (95% CI of the 

difference [1.4, 11.3]%). The decoding performance for synaesthetes was also slightly above chance 

(95% CI [24, 31]%) but did not correlate with photism strength (P = 0.67). (This result is paradoxical 

since the modulation by graphemes was higher in controls – that’s how the ROI was defined – so 

differences of BOLD signals could have favoured the ‘Syn’ classifier for controls). In this cluster, 

scores were also higher in synaesthetes than controls for the ‘Col’ classifier, decoding colours based 

on training on colours (95% CI of the difference [0.9, 6.1]%). The decoding performance for 

synaesthetes was also significantly above chance (95% CI [26, 30]%) but did not correlate with 

photism strength (P = 0.66). 
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Figure S2. Left anterior insula cluster identified based on whole brain univariate 

analysis  

     

The univariate analysis of the T-contrast for colour rings revealed a significant cluster (PFWE < 0.05) in 

the left anterior insula (MNI XYZ = [-35 35 -3], k = 60) for the contrast Syn>Con (paired T-test). 

MVPA tests in this cluster revealed that the ‘S2C’ classifier of synaesthetes decoded colours better 

than controls based on training on graphemes (95% CI of the difference [0.3, 4.6]%). The decoding 

performance for synaesthetes was also slightly above chance (95% CI [25, 28]%) and slightly 

correlated with the strength of synaesthetic associations (same conventions as in Figure 8). However, 

the correlation is driven by only one data point (non-parametric Spearman test on ranks, P = 0.30). 
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Figure S3. Right frontal cortex cluster identified based on whole brain univariate 

analysis  

 

The univariate analysis of T-contrast for colour rings revealed a significant cluster (PFWE < 0.05) in the 

right frontal cortex (MNI XYZ = [5 30 42], k = 114) for the contrast Syn>Con (two-sample T-test). 

MVPA tests in this cluster revealed that the ‘Syn’ classifier of synaesthetes decoded graphemes better 

than controls based on training on graphemes (95% CI of the difference [1, 12]%). The decoding 

performance for synaesthetes was also slightly above chance (95% CI [24, 34]%) but did not correlate 

with photism strength (P = 0.54). 
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Figure S4. Alternative version of Figure 6, based on mixed-effect generalized linear 

models 

 

Here the difference of performance between synaesthetes and controls was estimated by a mixed-

effect generalized linear models with a binomial family and a logit link function. The y-axis represents 

therefore not only the performance of classifiers for individual subjects and their group average and CI 

like in Figure 6, but also the odd-ratio of synaesthetes against their matched controls (1 = no difference 

between groups, blue line; whiskers denote 95% CI). Estimation is slightly more precise with this 

more powerful analysis. 
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Figure S5. Alternative version of Figure 7, based on mixed-effect generalized linear 

models 

 

 


