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ARTICLE

Quantum scars of bosons with correlated hopping
Ana Hudomal 1✉, Ivana Vasić 1, Nicolas Regnault2,3 & Zlatko Papić4

Recent experiments on Rydberg atom arrays have found evidence of anomalously slow

thermalization and persistent density oscillations, which have been interpreted as a many-

body analog of the phenomenon of quantum scars. Periodic dynamics and atypical scarred

eigenstates originate from a “hard” kinetic constraint: the neighboring Rydberg atoms cannot

be simultaneously excited. Here we propose a realization of quantum many-body scars in a

1D bosonic lattice model with a “soft” constraint in the form of density-assisted hopping. We

discuss the relation of this model to the standard Bose-Hubbard model and possible

experimental realizations using ultracold atoms. We find that this model exhibits similar

phenomenology to the Rydberg atom chain, including weakly entangled eigenstates at high

energy densities and the presence of a large number of exact zero energy states, with distinct

algebraic structure.
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Semiclassical studies of chaotic stadium billiards have
revealed the existence of remarkable non-chaotic eigenfuc-
tions called “quantum scars”1. Scarred eigenfunctions dis-

play anomalous enhancement in regions of the billiard that are
traversed by one of the periodic orbits in the classical limit when
ℏ → 0. It was shown that quantum scars lead to striking
experimental signatures in a variety of systems, including
microwave cavities2, quantum dots3, and semiconductor quan-
tum wells4.

A recent experiment on a quantum simulator5, and subsequent
theoretical work6,7, have shown that quantum many-body scars
can occur in strongly interacting quantum systems. The experi-
ment used a one-dimensional Rydberg atom platform in the
regime of the Rydberg blockade5,8,9, where nearest-neighbor
excitations of the atoms were energetically prohibited. The
experiment observed persistent many-body revivals of local
observables after a “global quench”10 from a certain initial state.
In contrast, when the experiment was repeated for other initial
configurations, drawn from the same type of “infinite” tempera-
ture ensemble, the system displayed fast equilibration and no
revivals. These observations pointed to a different kind of out-of-
equilibrium behavior compared to previous studies of quantum
thermalization in various experimental platforms11–15.

In both single-particle and many-body quantum scars, the
dynamics from certain initial states leads to periodic revivals of
the wave function. In the former case, this happens when the
particle is prepared in a Gaussian wave packet initialized along a
periodic orbit1, while in the latter case the revivals can be inter-
preted as a nearly-free precession of a large emergent su(2) spin
degree of freedom16,17. Another similarity between single- and
many-body quantum scars is the existence of non-ergodic
eigenstates. In the single-particle case, such eigenstates are
easily identified by their non-uniform probability density that
sharply concentrates along classical periodic orbits. In the many-
body case, non-ergodic eigenstates are broadly defined as those
that violate eigenstate thermalization hypothesis (ETH)18,19.
Scarred eigenstates violate the ETH in a number of ways: for
example, they appear at evenly spaced energies throughout the
spectrum6,20,21, they have anomalous expectation values of local
observables compared to other eigenstates at the same energy
density, and their entanglement entropy obeys a sub-volume law
scaling20.

In recent works, the existence of atypical eigenstates has been
taken as a more general definition of quantum many-body
scaring. For example, highly excited eigenstates with low entan-
glement have previously been analytically constructed in the non-
integrable AKLT model22,23. A few of such exact eigenstates are
now also available for the Rydberg atom chain model24. The
collection of models that feature atypical eigenstates is rapidly
expanding, including perturbations of the Rydberg atom
chain20,25,26, theories with confinement27–29, Fermi–Hubbard
model beyond one dimension30,31, driven systems32, quantum
spin systems33,34, fractional quantum Hall effect in a one-
dimensional limit35, and models with fracton-like dynamics36–39.
In a related development, it was proposed that atypical eigenstates
of one Hamiltonian can be “embedded” into the spectrum of
another, thermalizing Hamiltonian40, causing a violation of a
“strong” version of the ETH41,42. This approach allows to engi-
neer scarred eigenstates in models of topological phases in arbi-
trary dimensions43. From a dynamical point of view, it has been
shown that models with scarred dynamics can be systematically
constructed by embedding periodic on-site unitary dynamics into
a many-body system44.

A feature shared by many scarred models is the presence of
some form of a kinetic constraint. In the Rydberg atom chain,
the constraint results from strong van der Waals forces, which

project out the neighboring Rydberg excitations45. Such Hilbert
spaces occur, for example, in models describing anyon excitations
in topological phases of matter46–50 and in lattice gauge
theories51–53, including the Rydberg atom system54,55. Recent
works on periodically driven optical lattices have started to
explore such physics56,57. On the other hand, kinetic constraints
have been investigated as a possible pathway to many-body
localization without disorder58. In classical systems, non-
thermalizing behavior without disorder is well known in the
context of structural glasses59–61. The mechanism of this type of
behavior is the excluded volume interactions that impose kinetic
constraints on the dynamics62,63. Similar type of physics has
recently been explored in quantum systems where a “quasi many-
body localized" behavior was proposed to occur in the absence of
disorder64–74.

In this paper, we investigate the relation between kinetic con-
straints, slow dynamics and quantum many-body scars. In con-
trast to previous work, which focused on models of spins and
fermions that are closely related in one dimension due to the
Jordan–Wigner mapping, here we study one-dimensional models
of bosons with density-assisted hoppings, which realize both
“hard” and “soft” kinetic constraints, whilst being non-integrable.
Depending on the form of the hopping term, we demonstrate that
the models encompass a rich phenomenology, including regimes
of fast thermalization, the existence of periodic revivals and
many-body scars, as well as the Hilbert space fragmentation that
has been found in recent studies of fractonic models36–39. Unlike
the experimentally realized Rydberg atom system, we find evi-
dence of many-body scars in a bosonic model without a hard
kinetic constraint, i.e., with a fully connected Hilbert space. We
identify initial states that give rise to periodic many-body revivals
in the quantum dynamics, and we introduce a “cluster approx-
imation” that captures the scarred eigenstates that are responsible
for periodic revivals. We discuss possible experimental realiza-
tions of these models using ultracold atoms.

Results
Models and their Hilbert spaces. A fundamental ingredient of
kinetically constrained models is “correlated hopping”: a particle
can hop depending on the state of its neighbors. In this paper we
consider a system of Np bosons on a one-dimensional lattice with
L sites. We consider models where the total filling factor, ν = Np/
L, is conserved, and we will mainly present results in the dense
regime, ν = 1. We have studied models with ν < 1 and ν > 1, but
we found them to be either too constrained or not constrained
enough, and therefore less interesting. We emphasize that the
bosons in our study are not hard-core, i.e., the occupancy of any
lattice site can take any value from 0 to Np.

We study three different models, defined by the Hamiltonians:

H1 ¼ �J
XL
j¼1

byj bjþ1nj þ nj�1b
y
j bj�1

� �
; ð1Þ

H2 ¼ �J
XL
j¼1

njb
y
j bjþ1 þ byj bj�1nj�1

� �
; ð2Þ

H3 ¼ �J
XL
j¼1

njþ1b
y
j bjþ1nj þ nj�1b

y
j bj�1nj

� �
: ð3Þ

All three models contain a free-boson hopping term, byj bjþ1,

which is dressed in various ways by density operators, nj ¼ byj bj.
We will show that the position of the density operator nj
completely changes the behavior of these models, ranging from
fast thermalization to the breakup of the Hamiltonian into
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disconnected, exactly solvable sectors. For example, note that H1

and H2 are related to each other via free-boson hopping,

H2 ¼ H1 � J
X
j

byj bjþ1 þ byj bj�1

� �
; ð4Þ

which can be easily proven using bosonic commutation relations.
We will see below that this innocuous free-boson hopping leads
to surprisingly different dynamical properties of the two models.

The motivation behind introducing three different models in
Eqs. (1)–(3) can be summarized as follows. Hamiltonian H1

describes a model where a particle cannot hop to the left if that
site is not already occupied by at least one particle, and cannot
hop to the right if it is the only particle left on its initial site. This
introduces constraints to the system. Conversely, there are no
such constraints in the case of H2. Indeed, the hopping
coefficients are only modified in intensity by the particle-
number operator. Hamiltonian H3 introduces additional con-
straints compared to H1. The number of unoccupied sites and
their positions remain constant under the action of this
Hamiltonian. This leads to different connectivity of the Hilbert
space in each of the models, as we explain in the next Section.

We consider periodic boundary conditions (L + 1 ≡ 1) and set
ℏ = J = 1. With periodic boundary conditions, all three
Hamiltonians H1, H2 and H3 have translation symmetry, thus
their eigenstates can be labeled by momentum quantum number,
k, quantized in units of 2π/L. In addition, H3 has inversion
symmetry. We denote by I = 0 and I = 1 the sectors that are even
and odd under inversion, respectively.

Without restrictions on the boson occupancy, the Hilbert space
of H1, H2 and H3 grows very rapidly. For L = Np = 12, the
Hilbert space size of the k = 0 sector is 112720 (the largest one we
will consider for H1 and H2). As previously mentioned (see also
the next Section), the Hilbert space of H3 splits into many
disconnected components, thus it is possible to consider only one
connected component at a time and disregard the unoccupied
sites whose positions do not change. This is more relevant when

looking at properties such as thermalization, than fixing the filling
factor. However, the boundary conditions are in that case no
longer periodic, and the system does not have translation
symmetry. Considering only a system with the size L/2, filling
factor ν = 2, open boundary conditions and minimal number of
particles per site equal to 1 is completely equivalent to
considering the largest component of the full system which has
the size L, filling factor ν = 1, periodic boundary conditions and
no restrictions on the occupancies. The Hilbert space size of the
symmetric invariant sector of the largest connected component of
L = Np = 22 is 176484 and this is the largest sector that we will
consider for H3.

Graph structure of the models. Since we will be interested in the
dynamical properties, it is convenient to first build some intuition
about the structure of the Hamiltonians of the three models in
Eqs. (1)–(3). A Hamiltonian can be viewed as the adjancency
matrix of a graph whose vertices are Fock states of bosons,
n1; n2; ¼ ; nLj i. If the Hamiltonian induces a transition between
two Fock states, the corresponding vertices of the graph are
connected by a link. The graphs that show how the configuration
space is connected have very different structure for the three
Hamiltonians H1, H2, and H3, as can be observed in Fig. 1.

The entire graph of H2 is well connected and it has the same
structure as the graph of the standard Bose-Hubbard model: the
particle-number operators in H2 do not introduce any con-
straints, but only affect the magnitude of the hopping coefficients.
In contrast, the H1 graph shows several clusters of configurations
that are weakly connected to the rest of the graph. “Weakly
connected” means that there is a small number of connections
leading outside the cluster and that their respective hopping
coefficients are smaller in magnitude than those of the
surrounding connections within the cluster. A state that is
initially located inside a cluster is therefore more likely to stay
inside during an initial stage of the time evolution, which
increases the probability of revivals and slows down the growth of

Fig. 1 Connectivity of the Hilbert space. Adjacency graph for a H1, b H2, c H3, all for L = Np = 3. d–f same as a, b and c but for L = Np = 6. To avoid clutter,
we do not label the vertices in d–f. All graphs are weighted, i.e., the line thickness is proportional to the magnitude of the corresponding hopping coefficient.
Several different clusters of configurations are visible in the case of H1. The clusters start to form already for L = 3 (for example, the configurations 012-
021-003 in a) and become more prominent for L = 6 d. In the case of H2, almost all configurations are well connected to the rest of the graph. The graphs
for H3 show that the Hilbert space is highly reducible: its graph splits into many disconnected components.
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entanglement entropy. We will provide a more quantitative
description and examples that illustrate this in Section “Quantum
scars in H1 and H3 models”. Finally, the graph of H3, due to even
stronger constraints, is actually disconnected, which is an
example of Hilbert space fragmentation that was previously
shown to cause non-ergodic behavior in fracton-like models37,38.
This predicts that thermalization and dynamics in the three
models will be very different, which we will confirm in the
following Section. However, we note that the number of
connections and the topology of the graph is not the only
relevant factor for the dynamics. The magnitude of the hopping
coefficients between different configurations is also important
(Supplementary Note 1).

We note that the relation between H1 and H3 is reminiscent of
the relation between the quantum East model75 and the “PXP”
model describing the atoms in the Rydberg blockade
regime6,20,45. Like H3, the PXP model is doubly constrained
and inversion symmetric, while H1 and the quantum East model
are asymmetric versions of those two models with only a single
constraint. The graph of the quantum East model is similar to
that of H1, in that it contains bottlenecks which slow down the
growth of entanglement entropy75.

Dynamics and entanglement properties. We now investigate the
phenomenology of the models introduced in Eqs. (1)–(3). We use
exact diagonalization to obtain the complete set of energy
eigenvalues and eigenvectors, from which we evaluate the level
statistics and the distribution of entanglement entropies for the
three models. Furthermore, we probe dynamical properties of the
models by studying a global quench, simulated via Krylov
iteration.

The energy level statistics is a standard test for thermalization
of models that cannot be solved exactly. A convenient way to

probe the level statistics is to examine the probability distribution
P(r)76 of ratios between consecutive energy gaps sn = En+1 − En,

r ¼ minðsn; snþ1Þ
maxðsn; snþ1Þ

: ð5Þ

The advantage of studying P(r), instead of P(sn), is that there is
no need to perform the spectrum unfolding procedure—see
ref. 77. For standard random matrix theory ensembles, both P(r)
and the mean 〈r〉 are well known78. When computing the same
quantities in a microscopic physical model, it is crucial to resolve
all the symmetries of the model.

The probability distribution P(r) of the ratios of two
consecutive energy gaps is shown in Fig. 2a–c for the three
Hamiltonians H1, H2, and H3 respectively, and two momentum
or inversion sectors. In all three cases, the energy levels repel, i.e.,
the distribution tends to zero as r → 0. For H2, the distribution is
particularly close to the Wigner–Dyson (non-integrable) line. For
H1, the distribution is also consistent with Wigner–Dyson when
we restrict to the middle 1/3 of the spectrum (and after removing
special states with E = 0). We exclude the edges of the spectrum
because they contain degeneracies which are not symmetry-
related. However, such states do not appear to have a major effect
on the level statistics distribution, which is still closer to the
Wigner–Dyson than the Poisson distribution even if they are
included. The level statistics of H3 within the largest connected
component of the Hilbert space is shown in Fig. 2c and is also
consistent with the Wigner–Dyson distribution without restrict-
ing the spectrum. However, we will demonstrate below that the
dynamics in some smaller connected components of H3 can be
exactly solved.

As a complementary diagnostic of thermalization, we next
compute the entanglement entropy of all eigenstates. We divide
the lattice into two sublattices, A and B, of lengths LA and

Fig. 2 Level statistics and entanglement. a–c Probability distribution of the ratios of two consecutive energy gaps. a H1 (middle third of the spectrum
without E = 0 states, L = Np = 12), b H2 (full spectrum, L = Np = 12) and c H3 (largest connected component of L = Np = 22). The black dashed line shows
the Poisson distribution, which corresponds to the integrable case, while the red dashed line is the distribution of the Gaussian orthogonal ensemble, which
corresponds to the thermalizing case. d–f Entanglement entropies SL/2 of all eigenstates plotted as a function of the eigenstate energy per particle, E/Np. d
H1 (L = Np = 12, LA = 6, k = 0), e H2 (same) and f H3 in the largest connected component of L = Np = 20, LA = 10, I = 0. The inset shows all connected
components for L = Np = 12, LA = 6, k = 0.
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LB = L − LA. For a given pure state ψj i, the entanglement
entropy is defined as

SA ¼ �trAðρAln ρAÞ; ð6Þ
where ρA ¼ trB ψj i ψh j is the reduced density matrix of the
subsystem A. The scatter plots, showing entanglement entropy of
all eigenstates Enj i as a function of their energy En, are displayed
in Fig. 2d–f. Here we take into account the translation symmetry
of the system and work in the momentum sector k = 0 for H1 and
H2, and consider only the largest connected component and the
inversion sector I = 0 for H3. The results for other sectors are
qualitatively similar.

Entanglement entropy distribution in Fig. 2d, e reveals a
striking difference between the Hamiltonians H1 and H2, even
though they only differ by a free-boson hopping term, Eq. (4).
The model H1 is constrained, which leads to a large spread of the
entropy distribution and many low-entropy eigenstates including
in the bulk of the spectrum. From this perspective, H1 is
reminiscent of PXP model20,25. By contrast, H2 has no such
constraints and in this case the entanglement entropy is
approximately a smooth function of the eigenstate energy. The
Hamiltonian H3 is doubly constrained, and this is reflected in its
entanglement distribution, which also shows a large spread and
several disconnected bands, reminiscent of an integrable system
like the XY model79.

Global quenches. The constraints in the models in Eqs. (1), (2),
and (3) have significant effects on the dynamics governed by
these Hamiltonians. We probe the dynamics by performing a
global quench on the system. We assume the system is isolated
and prepared in one of the Fock states, ψ0

�� �
, at time t = 0. We

restrict to ψ0

�� �
being product states which are not necessarily

translation-invariant, as such states are easier to prepare in
experiment. However, our results remain qualitatively the same if
we consider translation-invariant ψ0

�� �
. After preparing the sys-

tem in the state ψ0

�� �
, which is not an eigenstate of the Hamil-

tonian, the system is let to evolve under unitary dynamics,

ψðtÞj i ¼ exp � i
_
Ht

� �
ψ0

�� �
: ð7Þ

where H is one of the Hamiltonians of interest. From the time-
evolved state, we evaluate the quantum fidelity,

FðtÞ ¼ jhψ0jψðtÞij2; ð8Þ
i.e., the probability for the wave function to return to the initial
state. In a general many-body system, fidelity is expected to decay
as FðtÞ � expð�LðJtÞ2Þ. It thus becomes exponentially sup-
pressed in the system size for any fixed time t*, i.e.,
Fðt�Þ � expð�cLÞ, where c is a constant. In scarred models, such

as the Rydberg atom chain, fidelity at the first revival peak
occurring at a time T still decays exponentially, but exponentially
slower, i.e., FðTÞ � expð�c0LÞ, with c0 � c. In ref. 20, for a finite
system with L ≲ 32 atoms, the fidelity at the first revival can be as
high as ~70%, and several additional peaks at times nT are also
clearly visible.

We first consider the Hamiltonian H1. Several configurations
exhibit periodic revivals of the fidelity F(t), which can in some
cases be higher than 90%. Most of these configurations involve a
very dense cluster of bosons such as :::0N10:::j i. In contrast, a
completely uniform configuration :::111:::j i thermalizes very
quickly. Here we focus on periodically-reviving configurations
with density being as uniform as possible. One family of such
reviving configurations involves n unit cells made of three lattice
sites:

210210¼ 210j i � ð210Þnj i: ð9Þ

Time evolution of the fidelity for the initial state ð210Þnj i for
different system sizes L = 3n is shown in Fig. 3a. The initial state
is assumed to be the product state, e.g., ψ0

�� � ¼ 210j i for L = 3.
The frequency of the revivals in Fig. 3 is approximately the same
for all system sizes. We emphasize that similar results are
obtained for a translation-symmetric initial state, e.g.,
ψ0

�� � ¼ 1ffiffi
3

p 210j i þ 021j i þ 102j ið Þ. Both cases converge in the

large system limit, and the differences are only significant for
L = 3 when the revival frequency of the initial state with
transition symmetry differs from the frequencies of other system
sizes.

In Fig. 3b we compare the fidelity for the initial state in Eq. (9)
when it is evolved by all three Hamiltonians in Eqs. (1)–(3). The
initial state is fixed to be ð210Þ5�� �

. We observe that the dynamics
with H3 has very prominent revivals; in fact as we will later show,
these revivals are perfect and their period is approximately twice
the revival period for H1. In contrast, for H2 the fidelity quickly
drops to zero without any subsequent revivals.

Finally, in Fig. 3c we plot the time evolution of entanglement
entropy. As expected from the fast decay of the fidelity, the
entropy for H2 rapidly saturates to its maximal value. Moreover,
as expected from the perfect revivals in H3, the entropy in that
case oscillates around a constant value close to zero. For H1, we
observe a relatively slow growth of entropy, with oscillations
superposed on top of that growth, again similar to PXP model6.
For the initial state that is not translation-invariant, it is
important how we cut the system, e.g., :::210j210:::j i versus
:::2102j10:::j i. In the first case, the entanglement entropy remains
zero for H3 because no particle can hop from one subsystem to
the other, while in the second case the entropy oscillates around a
constant value, which is the case in Fig. 3c.

Fig. 3 Dynamics of quantum fidelity and entanglement entropy for initial configurations in Eq. (9). a Time evolution of fidelity F(t) in Eq. (8) for system
sizes L = 3n. The evolution is governed by the Hamiltonian H1, different colors represent different system sizes L. b Fidelity evolution F(t) for the
Hamiltonians H1, H2 and H3 and system size L = 15. c Entanglement entropy evolution SLA ðtÞ for the same cases as in b.
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In Fig. 4 we show the H1 evolution of two local observables,
density correlations between two adjacent sites 〈n1n2(t)〉 and
density on the first site 〈n1(t)〉, starting from the initial state
ð210Þnj i. Unlike fidelity and entanglement entropy, these
observables can be easily measured in experiment. Both
observables robustly oscillate with approximately the same
frequency as the fidelity. The heights of the first few revival
peaks are approximately converged for the system sizes ranging
from L = 6 to L = 15, which suggests that revivals in such local
observables can be observed in the thermodynamic limit. In the
following Section, we will show that the oscillations observed in
the dynamics from ð210Þnj i state in Eq. (9) and their frequency
can be explained using a tractable model that involves only a
small subset of all configurations in the Hilbert space, thus
providing a realization of quantum scars in a correlated bosonic
system. Our starting point will be the model H3, whose graph
explicitly separates into disconnected subsets which makes the toy
model exact, hence we can analytically calculate the revival
frequency. Based on these results, we then introduce an
approximation scheme that describes the dynamics from the
same initial state under the H1 Hamiltonian.

Quantum scars in H1 and H3 models. The quench dynamics of
fidelity and entanglement entropy in Fig. 3 suggest that H1 and
H3 models are candidate hosts for many-body scarred eigenstates
that can be probed by initializing the system in product states
ð210Þnj i. We now analyze the structure of these states using our
approach called “cluster approximation” that is introduced in
detail in Methods.

The dynamics of H3 within the sector containing the state
ð210Þnj i can be solved exactly, as shown in Methods. The
connected component of the state ð210Þnj i consists of all possible
combinations of patterns 210 and 120. This means that triplets of
sites evolve independently, and dynamically the system behaves
as a collection of independent two level systems (spins-1/2). From
this observation, it can be shown that revivals will be perfect with
a period T3 = π/2. The same period is obtained for initial product
state ð210Þnj i and its translation-invariant version; if the initial
state is both translation-invariant and inversion-symmetric, the
period is doubled.

In contrast to the free dynamics in H3, the H1 model exhibits
decaying revivals and does not admit an exact description. In
order to approximate the quench dynamics and scarred
eigenstates in H1, we project the Hamiltonian to smaller
subspaces of the full Hilbert space. These subspaces contain
clusters of states which are poorly connected to the rest of the
Hilbert space and thereby cause dynamical bottlenecks. As
explained in Methods, the clusters can be progressively expanded
to yield an increasingly accurate description of the dynamics from
a given initial state.

For our initial state ð210Þnj i, the minimal cluster is defined as
one that contains all the states given by tensor products of 210,
120 and 300 patterns. Similar to the H3 case, within this
approximation, triplets of sites again evolve independently, and
the dimension of the reduced Hilbert space is dimHc ¼ 3L=3. The
time-evolved state within the cluster is given by

ψc
nðtÞ

�� � ¼ cosnð4tÞ ð210Þnj i þ ¼ ; ð10Þ
where the dots denote other configurations. The fidelity is

Fc
nðtÞ ¼ jhψc

nð0Þjψc
nðtÞij2 ¼ j cosð4tÞj2n: ð11Þ

As in the case of H3, this result is also valid for the translation-
invariant initial state. We see that the period of revivals is T1 = π/
4, which is the same as for H3 with a translation and inversion
symmetric initial state.

The result of the cluster approximation is compared against the
exact result for system size L = 15 in Fig. 5. The frequency of the
fidelity revival, shown by the blue line in Fig. 5a, is accurately
reproduced in this approximation, however the approximation
does not capture the reduction in the magnitude of F(t). Similarly,
the dynamics of entanglement entropy, blue line in Fig. 5b, is only
captured at very short times. In particular, we observe that the
maximum entanglement within the cluster remains bounded even
at long times t ~ 10, while the exact entropy continues to increase
and reaches values that are several times larger.

To obtain a more accurate approximation, we can expand the
minimal cluster with several neighboring configurations on the
graph. We define the extended cluster as a set of all states which
can be obtained using tensor products of the configurations 210,
120, 300, and 111. The enlarged cluster clearly contains the
minimal cluster studied above, but it also includes additional
configurations, resulting in a much better prediction for the first
revival peak height, while still allowing for analytical treatment.

Fig. 4 Evolution of local observables for the Hamiltonian H1. a
Correlations between adjacent sites 〈n1n2(t)〉 for different system sizes and
the initial state ð210Þnj i. b Density on one site 〈n1(t)〉.

Fig. 5 Comparison of the full dynamics against the minimal cluster (1)
and extended cluster (2) approximation schemes. We consider the
system size L = 15 with the initial state ð210Þ5�� E

. a Time evolution of the
fidelity. The frequency of revivals is approximately the same in both cases,
but the results for the extended cluster show better agreement with the
results for the full Hilbert space. b Time evolution of the entanglement
entropy.
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The dimension of the extended cluster grows as dimH~c ¼ 4L=3,
and is thus exponentially larger than the minimal cluster
approximation. Nevertheless, the extended cluster dimension is
still exponentially smaller compared to the full Hilbert space, and
within this approximation it is possible to numerically simulate
the dynamics of larger systems, L ≲ 30—see Fig. 6a. The revivals
are no longer perfect, while their frequency is independent of the
system size and closer to the frequency of revivals for the full
Hilbert space compared to to the minimal cluster approximation
in Fig. 5. The overlap between the eigenstates of the Hamiltonian
H1 reduced to both the minimal and extended cluster and the
state ð210Þ8�� �

is given in Fig. 6b. The eigenstates that correspond
to the minimal cluster approximately survive in the extended
cluster, where they form a band with the highest overlap.

For the initial product state (210)n, it is possible to analytically
obtain the fidelity within the improved approximation for
arbitrary system size. Similar to the previous methods, it can be
shown (see Supplementary Note 2)

F~cL¼3nðtÞ ¼ 4njb2 cosðαtÞ þ d2 cosðβtÞj2n; ð12Þ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ ffiffiffiffiffi

57
pp

� 4:06815, β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� ffiffiffiffiffi

57
pp

� 1:20423,
b ≈ 0.694113 and d ≈ 0.134933. Eq. (12) is in excellent agreement
with the numerical results in Fig. 6a. It was also found to be a very
good approximation for the translation-invariant initial state
when L ≥ 9 (data not shown).

Figure 7a shows that the logarithm of the fidelity per site,
log ðFðTÞÞ=L, at the first peak, saturates at a finite value for large
L. In the improved cluster approximation, the first peak height
decays as e−0.04L (Supplementary Note 2). For a completely
random state, the fidelity would be F � 1=dimH. In the case ν = 1
and large L, the Hilbert space dimension grows with the system

size as

dimH ¼ 2L� 1

L

� �
� 2L

L

� �
� 4Lffiffiffiffiffiffi

πL
p : ð13Þ

This back-of-the-envelope estimate suggests the fidelity of a
random state is F ~ e−1.39L, which decays considerably faster than
the first peak height in Fig. 7. The improved cluster approxima-
tion correctly reproduces the short-time dynamics, including the
first revival peak, and sets a lower bound for the first peak height
– see Figs. 5 and 7b.

The evolution of the entanglement entropy for the extended
cluster approximation is shown in Fig. 5b. Inside the cluster,
entropy remains approximately constant with periodic oscilla-
tions that have the same frequency as the wave function revivals.
Any further growth of the entanglement entropy can be
attributed to the spreading of the wave function outside the
cluster. To illustrate the “leakage” of the wave function outside
the cluster, in Fig. 8 we compute the time evolution of the overlap
with a cluster, i.e., the probability to remain inside a cluster at
time t,

OCluster ¼
X

a2Cluster
jhajψðtÞij2: ð14Þ

We consider several initial configurations that lie inside or
outside the cluster. The configurations initially inside the cluster
mostly stay there, and the configuration ð210Þ4�� �

that has the
highest revivals also has the highest overlap. Similarly, config-
urations initially outside the cluster continue to have negligible
overlaps. The overlap starting from the configuration ð210Þ4�� �

Fig. 6 Cluster approximations. a Fidelity F(t), for the Hamiltonian H1 and
initial states ð210Þnj i, in the extended cluster approximation for various
system sizes. b Eigenstate overlap with the initial state jð210Þ8i plotted on a
log scale, for both cluster approximations. In the case of degenerate
eigenstates the sum of their overlaps is shown.

Fig. 7 First peak height. a Logarithm (base 10) of the first revival peak
divided by the system size, log ðFðTÞÞ=L, seems to saturate at a finite value
in the thermodynamic limit. b Comparison of the logarithm of the first
revival peak height for the full dynamics and the improved cluster
approximation. The approximation serves as a lower bound.

Fig. 8 Evolution of the probability to remain inside the minimal cluster.
OCluster, as defined in Eq. (14). Initial configurations are indicated in the
legend. Solid lines: configurations initially inside the cluster. Dashed lines:
configurations initially outside the cluster (all except jð111Þ4i are randomly
chosen). Similar results are obtained for the extended cluster (not shown).
System size L = 12.
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approximately predicts the revival peak heights for the full
dynamics.

We now summarize the relation between H3 and H1 from the
point of view of the cluster approximation. For the initial state
ð210Þnj i, the two models yield similar dynamics, compare Eq.
(23) and Eq. (12). The only difference is that the revival frequency
is doubled in the latter case, which can be easily explained by the
symmetry of the initial state and that of the Hamiltonian.
Hamiltonian H3 is inversion-symmetric. If the initial state is also
chosen to be inversion-symmetric, the frequency of the revivals
doubles. The period is then T inv

3 ¼ π=4, which is equal to the
period of revivals T1 of H1 in the cluster approximation. This is
also proven analytically in Methods, see Eq. (27). For comparison,
the revival period for the full Hilbert space is approximately 0.77,
which is slightly less than π/4 ≈ 0.79. The Hamiltonian H1 is not
inversion-symmetric, so the frequency does not double for an
inversion-symmetric initial state, but the revivals are lower in that
case. This shows that it is important for the symmetry of the
initial state to match the symmetry of the Hamiltonian.

Finally, the eigenstates of H1, projected to the subspace of the
minimal cluster approximation, form several degenerate bands
whose eigenenergies are equally spaced in integer multiples of 4.
Interestingly, some of these eigenstates approximately survive in
the full H1 model, and they are precisely the eigenstates that have
the highest overlap with the configurations ð210Þnj i, see Fig. 9a.
In small system sizes, such as L = 6, the surviving eigenstates are
also the lowest entropy eigenstates in the middle of the spectrum,
which is reminiscent of quantum scars in the PXP model20. In
larger systems, e.g., L = 12, the surviving eigenstates are slightly
lower in entropy than their neighbors, but are far from being the
lowest entropy eigenstates, as can be seen in Fig. 9. The lowest
entropy eigenstates have high overlaps with other configurations,
such as ð3100Þ3�� �

, as shown in Fig. 9b, c. In the case of ð210Þnj i,
the eigenstates surviving in the full system belong to every other
band of eigenstates in the cluster approximation and the number
of the surviving eigenstates is n + 1. For even system sizes this
counting includes a zero-energy eigenstate. In Methods we
discuss in more details the generalization of the cluster
approximations to the states of the form ðN10:::0Þnj i, which
were also found to have robust revivals and high overlaps with
some low-entropy eigenstates.

Discussion
In this paper, we have introduced three models of bosons with
“soft” kinetic constraints, i.e., density-dependent hopping. We
have demonstrated that some of these models exhibit similar
phenomenology to other realizations of quantum many-body

scars, for example the Rydberg atom system5. We have studied
quantum dynamics of these systems by performing global
quenches from tensor-product initial states. We have shown that
both the connectivity of the Hilbert space and the relative mag-
nitude of the hopping coefficients have dramatic effects on the
dynamics. For certain initial configurations, the constraints can
lead to slow thermalization and revivals in the quantum fidelity.
The revival frequency can be predicted by considering an expo-
nentially reduced subset of the Hilbert space. For a family of
initial configurations of the form ð210Þnj i, we have derived
analytical expressions for the evolution of quantum fidelity within
this approximation, which accurately capture the revival fre-
quency obtained from exact numerical data. One notable differ-
ence between scarred dynamics in the present bosonic models
and the PXP model is that the revivals exist in the absence of a
hard kinetic constraint, i.e., in the fully connected Hilbert space.
Our cluster approximation also explains the structure of some
low-entropy eigenstates in the middle of the many-body spec-
trum. In addition, we have calculated the evolution of two local
observables which are experimentally measurable, density corre-
lations between two neighboring sites and density on a single site,
and both of them show robust oscillations over a range of system
sizes. We have also shown that the introduced models contain
additional special properties, like the exponentially large zero-
energy degeneracy which is related to the bipartite structure of
the model.

We now comment on the possible experimental realizations of
the models we studied. The implementation of a correlated
hopping term (nkb

y
i bj) in optical lattices has attracted lot of

attention due to a possible onset of quantum phases related to
high-Tc superconductivity80. An early theoretical proposal
exploits asymmetric interactions between the two atomic states in
the presence of a state-dependent optical lattice80. As a result, the
obtained effective model corresponds to the inversion-symmetric
form of H1. In addition, the same term has been found to feature
as a higher-order correction of the standard Bose-Hubbard
model81–84. Although in this case the term typically represents a
modification of the regular hopping term of the order of several
percent, its contribution was directly measured85,86. More
recently, the set of quantum models accessible in cold-atom
experiments has been enriched through the technique of Floquet
engineering87. As a notable example, a suitable driving scheme
can renormalize or fully suppress the bare tunneling rate88. On
top of that, by modulating local interactions an effective model
with the density-dependent tunneling term has been engi-
neered89. For the models considered in this paper the most
promising is a more recent driving scheme exploiting a double
modulation of a local potential and on-site interactions90. Related

Fig. 9 Non-ergodic eigenstates. a Overlap of the configuration ð210Þ4
��� E

with all the eigenstates of H1, H
c
1 and H~c

1 versus the eigenstate energy for sector
k = 0 and system size L = Np = 12. b Same for ð3100Þ3

��� E
. c Entanglement entropy, eigenstates which have the highest overlap with some product states

are marked in different colors.
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sophisticated driving schemes have already enabled a realization
of dynamical gauge fields56,57,91 where both the amplitude and
the phase of the effective tunneling are density-dependent.
Although these experimental proposals explain how to realize
some of the correlated hopping terms present in our models using
ultracold atoms in optical lattices, finding a scheme that exactly
realizes our models requires further study. We emphasize that
other models which would exhibit non-ergodic dynamics and
scarred eigenstates as a result of the same mechanism that was
explained in this work could be built, for example a linear
combination of H1 and H2.

Note added: During the completion of this work, we became
aware of ref. 92 which identified non-thermal eigenstates and slow
dynamics in the quantum East model. Moreover, a recent study93

proposed a Floquet scheme for a bosonic model with density-
assisted hopping, finding signatures of quantum many-
body scars.

Methods
In order to more efficiently describe the dynamics of our models, we introduce a
method—"cluster approximation", that is based on Hilbert space truncation
inspired by the bipartite graph structure of H1. Before providing details about the
cluster approximation for H1 and its generalizations, we present an exact solution
for the perfect revivals in H3 model, which serves as a motivation for the more
complicated case of H1.

Bipartite lattice and zero modes. The graph of H1 is bipartite, i.e. all the basis
configurations can be divided into two disjoint sets, and the action of the
Hamiltonian connects configurations in one set only to the configurations in the
other and vice-versa (the Hamiltonian is off-diagonal). One way to sort config-
urations into these two sets is by parity of the quantity

Δa ¼
jneven � nodd þ Cj

2
; ð15Þ

where C = 0 if L is even and C = 1 if L is odd. We define neven and nodd as the total
numbers of particles at even and odd sites, respectively,

neven ¼
XL1
l¼1

n2l ; nodd ¼
XL2
l¼1

n2l�1; ð16Þ

where L1 = L2 = L/2 if L is even, and L1 = (L − 1)/2, L2 = (L + 1)/2 if L is odd. If
only nearest-neighbor hoppings are allowed and if no two odd sites are coupled (if
the system has open boundary conditions for any L or periodic boundary condi-
tions for L-even), each hopping either increases neven by one and decreases nodd by
one, or vice-versa. This means that each hopping can change Δa only by ±1.

In special cases, like H1 at filling factor ν = 1, it is also possible to define
quantities like Δa for odd system sizes and periodic boundary conditions. This is a
consequence of the constraints imposed by H1, i.e., the fact that a particle cannot
hop to an empty site to its left (Supplementary Note 3). Note that H2 in the same
geometry is not bipartite.

Another way to sort configurations into two sets is by parity of the distance
from the configuration 111:::111j i, which we define as

da ¼ minnf 111:::111h jHn
1 aj i ≠ 0g: ð17Þ

In this case, the two sets are the configurations with even and with odd distances
da. One hopping can change da only by ±1 or 0. Changes by other values are not
possible by definition if the Hamiltonian is Hermitian (all hoppings are reversible).
Both da and Δa have the same parity, thus da must always change after one hopping
in even system sizes or in systems with open boundary conditions. As a
consequence, da cannot change by 0 if Δa can only change by ±1.

The graphs of bipartite systems do not contain any loops of odd dimension
(triangles, pentagons, heptagons and so on). Moreover, the energy spectra of
bipartite systems are symmetric around zero. Their Hamiltonians anticommute
with the operator ð�1ÞΔa . The presence of such an operator in a bipartite lattice
leads to exact zero energy states in the spectrum94,95. It can be shown that the
exponentially growing number of zero modes of H1 is related to the difference
between the numbers of elements in the two sets of its bipartite graph
(Supplementary Note 4). Additionally, the algebraic structure of zero energy
eigenstates can be explained by the structure of the graph – such eigenstates can be
constructed as superpositions of configurations from only one of the sets. Similar
properties are found for H2 for even L, as its graph is also bipartite in that case. The
properties of the zero-energy manifold are discussed in more detail in
Supplementary Note 4.

Perfect revivals in the H3 model. We start with a warmup calculation for H3

acting on L = 3 sites. The connected subspace of 210 contains only two

configurations, 120 and 210. The Hamiltonian reduced to this subspace is

H0
3 ¼ � 0 2

2 0

� �
; ð18Þ

where the basis vectors are

1

0

� �
¼ 210j i; 0

1

� �
¼ 120j i: ð19Þ

The eigenvalues of H 0
3 are E1 = −2 and E2 = 2. The initial state ψ1ðt ¼ 0Þ�� � ¼

210j i evolves as
ψ1ðtÞ
�� � ¼ cosð2tÞ 210j i � i sinð2tÞ 120j i; ð20Þ

and the state ψ2ðt ¼ 0Þ�� � ¼ 120j i evolves as
ψ2ðtÞ
�� � ¼ �i sinð2tÞ 210j i þ cosð2tÞ 120j i: ð21Þ

Previous results can be straightforwardly generalized to larger systems. Let the
length of the system be L = 3n for simplicity. The connected component of the
state ð210Þnj i consists only of combinations of patterns 210 and 120, which means
that triplets of sites evolve independently. From Eq. (20), the initial state
ψnðt ¼ 0Þ�� � ¼ ð210Þnj i evolves as

ψL¼3nðtÞ
�� � ¼ cosnð2tÞ ð210Þnj i

þ ð�iÞnsinnð2tÞ ð120Þnj i þ :::
ð22Þ

where “. . . ” denotes contributions of the basis configurations other than ð210Þnj i
or ð120Þnj i. The fidelity is

FL¼3nðtÞ ¼ jhψnð0ÞjψnðtÞij2 ¼ j cos 2tj2n: ð23Þ
It follows that the revivals are perfect, with a period T3 = π/2. This result is also

valid for the translation-invariant initial state ð210Þnj iT,

ð210Þnj iT � 1ffiffiffi
3

p ð210Þnj i þ ð021Þnj i þ ð102Þnj ið Þ; ð24Þ

as the connected subspaces of 210, 021 and 102 do not overlap and therefore evolve
independently.

However, an initial state that is both translation symmetric and inversion
symmetric has different dynamics. The inverse of the configuration ð210Þnj i is the
configuration ð012Þnj i, which is a translation of the state ð120Þnj i that belongs to
the connected subspace of ð210Þnj i. The initial state

ψinv
n ðt ¼ 0Þ�� � ¼ 1ffiffiffi

2
p ð210Þnj iT þ 1ffiffiffi

2
p ð120Þnj iT ð25Þ

evolves as

ψinv
n ðtÞ�� � ¼ cosn2t þ ð�iÞnsinn2tð Þ ψinv

n ðt ¼ 0Þ�� �þ ::: ð26Þ
and the fidelity is

Finv
n ðtÞ ¼ jhψinv

n ð0Þjψinv
n ðtÞij2

¼ jcosn2t þ ð�iÞnsinn2tj2:
ð27Þ

The frequency of the revivals is now doubled, so the period is T inv
3 ¼ π=4.

Cluster approximations for the H1 model. Here we introduce a scheme for
approximating the dynamics from initial states (210)n in the H1 model. As can be
observed in Fig. 3, the revival periods are approximately the same for different
system sizes. We first focus on the non-trivial case L = 6. Figure 10 shows part of
the graph that contains the initial state, 210210j i. Configurations labeled inside the
ellipses denote representatives of an orbit of translation symmetry, i.e., the con-
figurations are translation-invariant such as the one in Eq. (24).

The minimal subcluster of the graph is highlighted in blue color in Fig. 10. This
cluster is indeed weakly connected to the rest of the configuration space, as it has
only 3 connections that lead outside this cluster (dashed lines) and their hopping
coefficients are slightly lower in magnitude than those inside the cluster, meaning
that the probability is higher to stay inside the cluster than to leave. The hopping
coefficients leading outside are not significantly smaller than the coefficients
staying inside, but in combination with the relatively small number of connections
this has significant effects on the dynamics. This effect is even more pronounced
when the difference in magnitudes is further increased by squaring the particle-
number operators (see Supplementary Note 1).

The minimal cluster from Fig. 10 contains all the states given by tensor products
of 210, 120 and 300 configurations. The set of configurations belonging to this
cluster could have been chosen differently, but this particular choice has at least
two advantages. Firstly, inside this cluster, the evolution of the configuration
210210j i can be thought of as two subsystems 210 evolving separately. The
evolution of all such configurations at different system sizes can be reduced to the
evolution of L = 3 subsystems 210, similar to the case of H3 in the connected
subspace of (210)n. Secondly, this definition allows easy generalization to different
system sizes L = 3n with initial states (210)n. We would like to emphasize that the
cluster was not chosen arbitrarily. The calculations of the probability density
distribution starting from the initial configuration 210210j i and evolving with H1
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have shown that the probability density stays high in this region of the Hilbert
space as long as the revivals in fidelity are visible. The configurations important for
the dynamics were then identified by analyzing the structure of the graph around
the initial configuration.

As an example, consider system size L = 3. The reduced Hilbert space of the
cluster Hc is spanned by the (non-translation-invariant) configurations

1

0

0

0
B@

1
CA ¼ 300j i;

0

1

0

0
B@

1
CA ¼ 210j i;

0

0

1

0
B@

1
CA ¼ 120j i: ð28Þ

The Hamiltonian reduced to this subspace is

Hc
1 ¼ �

0 2
ffiffiffi
3

p
0

2
ffiffiffi
3

p
0 2

0 2 0

0
B@

1
CA; ð29Þ

and its eigenvalues are E1 = −4, E2 = 4, E3 = 0. The initial configuration 210j i
evolves according to

ψc
1ðtÞ

�� � ¼� i
2
sinð4tÞ ffiffiffi

3
p

300j i þ 120j i
� �

þ cosð4tÞ 210j i:
ð30Þ

By generalizing this result to larger systems, it is easy to prove Eqs. (10) and (11).
The minimal clusters can be expanded by adding several neighboring

configurations. For similar reasons as in the case of minimal clusters, the extended
clusters are defined as sets of all states which can be obtained using tensor products
of the configurations 210, 120, 300 and 111. In the case of L = 6, the enlarged
cluster can be observed in Fig. 10. It contains the minimal cluster studied
previously, but it also includes additional configurations shown in green ellipses.
Again, the approximation could be improved by including more configurations,
but this particular choice is well suited for analytical treatment (Supplementary
Note 2) and, as shown above, it gives a good prediction for the first revival peak
height.

Generalization to other clusters. Building on the previous observation that some
of the low-entropy eigenstates have large weight on ð3100Þ3�� �

product state, we
have investigated periodic revivals from such a larger class of initial states. We find
that robust revivals are associated with initial product states of the form�����ððN � 1Þ1 0:::0|{z}

N�2

Þn
+
; ð31Þ

where N is the length of the unit cell (L = Nn). For example, some of these
configurations are ð3100Þnj i, ð41000Þnj i and ð510000Þnj i. Combinations of those
patterns such as 310041000j i also exhibit similar properties, but we will restrict
ourselves to the simpler former cases.

We can construct a generalization of the cluster approximation for
configurations of the form in Eq. (31). As in the case of ð210Þnj i, the dynamics
inside one unit cell explains the dynamics of the full system. The generalized
clusters can be chosen in such a way that their Hilbert spaces are spanned by N
configurations

ij i ¼ ððN þ 1� iÞði� 1Þ 0:::0|{z}
N�2

Þn
������

+
; ð32Þ

where i takes values 1, 2, …N. If we consider only one unit cell (n = 1), the graph
that connects these configurations has a linear structure without any loops, i.e.,

each configuration ij i is solely connected to the configurations i± 1j i, except the
two configurations at the edges, 1j i and Nj i, which are only connected to 2j i and
N � 1j i, respectively.

The projection of the Hamiltonian H1 to this cluster, which we denote by Hc
1,

has a very simple structure: it has the form of a tight-binding chain with the only
nonzero matrix elements on the upper and lower diagonals:

Hc
1;i;iþ1 ¼ Hc

1;iþ1;i ¼ ðN � iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðN þ 1� iÞ

p
: ð33Þ

The dynamics within a single unit cell under Hc
1 corresponds to density

fluctuations between the first and the second site. Following the same procedure as
previously, we can now diagonalize Hc

1 and compute the fidelity time series for the
initial configuration ðN � 1Þ10:::0j i. This result can be directly generalized to
configurations of the form ððN � 1Þ10:::0Þnj i. The derivation is valid for both
translation-invariant and non-translation-invariant initial configurations, as the
cluster in Eq. (32) is disconnected from its translated copies. We stress that this
disconnection, namely the absence of a hopping term between 1ðN � 1Þ0:::0j i and
0N0:::0j i, is a consequence of the constraints imposed by H1 and it would not hold
for H2. In this way, we have calculated the time evolution of the fidelity starting
from the configurations ð3100Þnj i (for n = 1, 2, 3, 4), ð41000Þnj i (n = 1, 2, 3) and
ð510000Þnj i (n = 1, 2), and compared it with the exact numerical results for the full
H1. The cluster approximation captures both the revival frequency and the height
of the first peak. Similar to the ð210Þnj i case, the approximation can be improved
by adding further configurations to the clusters. Moreover, if we want to consider
translation-invariant initial states, we can follow the same recipe for ð210Þnj i by
summing translated patterns with the required phase factors given in terms of
momenta in multiples of 2π/N. We have checked that revivals appear in these
momentum sectors, with roughly the same frequency.

We note that the configurations with larger units cells thermalize more quickly
on shorter timescales, but slower at long times. Initially, the states starting from
configurations with smaller N have lower entanglement entropies than those with
larger N. The Hilbert spaces of large N unit cells are larger, so the entanglement
entropy starting from these configurations rapidly grows to the maximal value for
that unit cell. However, the only way for the wave function to spread through the
entire Hilbert space is that a unit cell reaches a state close to 111. . . 111, so that
particles can hop to the other unit cells. This is less likely for large N, and therefore
such configurations need long times to fully thermalize. As a result, smaller N
entanglement entropies grow faster and after long enough time they overtake those
for larger N. For example, in the case of L = 12 and translation-invariant initial
states, (210)4 overtakes (3100)3 and (510000)2 around t ~ 2, and (3100)3 overtakes
(510000)2 around t ~ 80 (Supplementary Fig. 3).

Finally, we note that non-thermal behavior reminiscent of the one studied here
was previously observed in an unconstrained Bose-Hubbard model, for example in
the context of “arrested expansion”96,97 and quenches from superfluid to Mott
insulator phase98,99. In these cases, the main ingredient is the strong on-site
interaction, which causes the energy spectrum to split into several bands. Due to
the large energy differences between bands, the dynamics of an initial state from a
particular band is at first limited only to the eigenstates that belong to the same
band. Additionally, these energy bands are approximately equally spaced, which
can lead to revivals in fidelity if several bands are populated. In contrast, our
models do not feature on-site interaction, and the mechanism which slows down
the spread of the wave function is correlated hopping, which suppresses
connections between certain configurations and modifies the hopping amplitudes
between others, thus creating bottlenecks that separate different clusters of states.

Data availability
The data that support the plots within this paper and other findings of this study are
available at https://doi.org/10.5518/810100.

Fig. 10 Minimal and extended clusters. Hamiltonian H1 and system size L = Np = 6. Configurations labeled inside the ellipses are representatives of an
orbit of translation symmetry. The minimal cluster is defined by the blue configurations, while green configurations represent the additional components of
the extended cluster. Gray arrows connect to configurations outside the extended cluster. The numbers bellow the graph show the distance da from the
configuration 111111 evaluated using Eq. (17).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-0364-9

10 COMMUNICATIONS PHYSICS |            (2020) 3:99 | https://doi.org/10.1038/s42005-020-0364-9 | www.nature.com/commsphys

https://doi.org/10.5518/810
www.nature.com/commsphys


Code availability
Code is available upon reasonable request.

Received: 6 November 2019; Accepted: 5 May 2020;

References
1. Heller, E. J. Bound-state eigenfunctions of classically chaotic Hamiltonian

systems: Scars of periodic orbits. Phys. Rev. Lett. 53, 1515–1518 (1984).
2. Sridhar, S. Experimental observation of scarred eigenfunctions of chaotic

microwave cavities. Phys. Rev. Lett. 67, 785–788 (1991).
3. Marcus, C. M., Rimberg, A. J., Westervelt, R. M., Hopkins, P. F. & Gossard, A.

C. Conductance fluctuations and chaotic scattering in ballistic
microstructures. Phys. Rev. Lett. 69, 506–509 (1992).

4. Wilkinson, P. B. et al. Observation of 'scarred' wavefunctions in a quantum
well with chaotic electron dynamics. Nature 380, 608–610 (1996).

5. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum
simulator. Nature 551, 579–584 (2017).

6. Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak
ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749
(2018).

7. Ho, W. W., Choi, S., Pichler, H. & Lukin, M. Periodic orbits, entanglement,
and quantum many-body scars in constrained models: Matrix product state
approach. Phys. Rev. Lett. 122, 040603 (2019).

8. Schauß, P. et al. Observation of spatially ordered structures in a two-
dimensional Rydberg gas. Nature 491, 87–91 (2012).

9. Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for
realizing quantum Ising models. Nature 534, 667–670 (2016).

10. Calabrese, P. & Cardy, J. Time dependence of correlation functions following a
quantum quench. Phys. Rev. Lett. 96, 136801 (2006).

11. Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton’s cradle. Nature
440, 900–903 (2006).

12. Schreiber, M. et al. Observation of many-body localization of interacting
fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

13. Smith, J. et al. Many-body localization in a quantum simulator with
programmable random disorder. Nat. Phys. 12, 907–911 (2016).

14. Kucsko, G. et al. Critical thermalization of a disordered dipolar spin system in
diamond. Phys. Rev. Lett. 121, 023601 (2018).

15. Kaufman, A. M. et al. Quantum thermalization through entanglement in an
isolated many-body system. Science 353, 794–800 (2016).

16. Choi, S. et al. Emergent SU(2) dynamics and perfect quantum many-body
scars. Phys. Rev. Lett. 122, 220603 (2019).

17. Bull K., Desaules J.-Y. & Papić Z. Quantum scars as embeddings of weakly
broken Lie algebra representations. Phys. Rev. B 101, 165139 (2020).

18. Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A
43, 2046–2049 (1991).

19. Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994).
20. Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z.

Quantum scarred eigenstates in a Rydberg atom chain: entanglement,
breakdown of thermalization, and stability to perturbations. Phys. Rev. B 98,
155134 (2018).

21. Iadecola, T., Schecter, M. & Xu, S. Quantum many-body scars from magnon
condensation. Phys. Rev. B 100, 184312 (2019).

22. Moudgalya, S., Rachel, S., Bernevig, B. A. & Regnault, N. Exact excited states
of nonintegrable models. Phys. Rev. B 98, 235155 (2018).

23. Moudgalya, M., Regnault, N. & Bernevig, B. A. Entanglement of exact excited
states of Affleck-Kennedy-Lieb-Tasaki models: exact results, many-body scars,
and violation of the strong eigenstate thermalization hypothesis. Phys. Rev. B
98, 235156 (2018).

24. Lin, C.-J. & Motrunich, O. I. Exact quantum many-body scar states in the
Rydberg-blockaded atom chain. Phys. Rev. Lett. 122, 173401 (2019).

25. Khemani, V., Laumann, C. R. & Chandran, A. Signatures of integrability in
the dynamics of Rydberg-blockaded chains. Phys. Rev. B 99, 161101 (2019).

26. Michailidis, A. A., Turner, C. J., Papić, Z., Abanin, D. A. & Serbyn, M. Slow
quantum thermalization and many-body revivals from mixed phase space.
Phys. Rev. X 10, 011055 (2020).

27. Kormos, M., Collura, M., Takács, G. & Calabrese, P. Real-time confinement
following a quantum quench to a non-integrable model. Nat. Phys. 13,
246–249 (2016).

28. James, A. J. A., Konik, R. M. & Robinson, N. J. Nonthermal states arising from
confinement in one and two dimensions. Phys. Rev. Lett. 122, 130603 (2019).

29. Robinson, N. J., James, A. J. A. & Konik, R. M. Signatures of rare
states and thermalization in a theory with confinement. Phys. Rev. B 99,
195108 (2019).

30. Vafek, O., Regnault, N. & Bernevig, B. A. Entanglement of exact excited
eigenstates of the Hubbard model in arbitrary dimension. SciPost Phys. 3, 043
(2017).

31. Iadecola, T. & Žnidarič, M. Exact localized and ballistic eigenstates in
disordered chaotic spin ladders and the Fermi-Hubbard model. Phys. Rev.
Lett. 123, 036403 (2019).

32. Haldar, A., Sen, D., Moessner, R. & Das, A. Scars in strongly driven
Floquet matter: resonance vs emergent conservation laws. Preprint at http://
arxiv.org/abs/1909.04064 (2019).

33. Schecter, M. & Iadecola, T. Weak ergodicity breaking and quantum many-
body scars in spin-1 XY magnets. Phys. Rev. Lett. 123, 147201 (2019).

34. Iadecola, T. & Schecter, M. Quantum many-body scar states with emergent
kinetic constraints and finite-entanglement revivals. Phys. Rev. B 101, 024306
(2020).

35. Moudgalya, S., Bernevig, B. A. & Regnault, N. Quantum many-body scars in
a Landau level on a thin torus. Preprint at http://arxiv.org/abs/1906.05292
(2019).

36. Pai, S. & Pretko, M. Dynamical scar states in driven fracton systems. Phys.
Rev. Lett. 123, 136401 (2019).

37. Khemani, V. & Nandkishore, R. Local constraints can globally shatter
Hilbert space: a new route to quantum information protection. Preprint at
http://arxiv.org/abs/1904.04815 (2019).

38. Sala, P., Rakovszky, T., Verresen, R., Knap, M. & Pollmann, F. Ergodicity
breaking arising from Hilbert space fragmentation in dipole-conserving
Hamiltonians. Phys. Rev. X 10, 011047 (2020).

39. Khemani, V., Hermele, M. & Nandkishore, R. M. Localization from
shattering: higher dimensions and physical realizations. Preprint at http://
arxiv.org/abs/1910.01137 (2019).

40. Shiraishi, N. & Mori, T. Systematic construction of counterexamples to the
eigenstate thermalization hypothesis. Phys. Rev. Lett. 119, 030601 (2017).

41. D’Alessio, L., Kafri, Y., Polkovnikov, A. & Rigol, M. From quantum chaos and
eigenstate thermalization to statistical mechanics and thermodynamics. Adv.
Phys. 65, 239–362 (2016).

42. Gogolin, C. & Eisert, J. Equilibration, thermalisation, and the emergence of
statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001
(2016).

43. Ok, S. et al. Topological many-body scar states in dimensions one, two, and
three. Phys. Rev. Res. 1, 033144 (2019).

44. Bull, K., Martin, I. & Papić, Z. Systematic construction of scarred many-body
dynamics in 1D lattice models. Phys. Rev. Lett. 123, 030601 (2019).

45. Lesanovsky, I. & Katsura, H. Interacting Fibonacci anyons in a Rydberg gas.
Phys. Rev. A 86, 041601 (2012).

46. Feiguin, A. et al. Interacting anyons in topological quantum liquids: The
golden chain. Phys. Rev. Lett. 98, 160409 (2007).

47. Trebst, S. et al. Collective states of interacting Fibonacci anyons. Phys. Rev.
Lett. 101, 050401 (2008).

48. Chandran, A., Schulz, M. D. & Burnell, F. J. The eigenstate thermalization
hypothesis in constrained Hilbert spaces: a case study in non-Abelian anyon
chains. Phys. Rev. B 94, 235122 (2016).

49. Lan, Z. & Powell, S. Eigenstate thermalization hypothesis in quantum dimer
models. Phys. Rev. B 96, 115140 (2017).

50. Chandran, A., Burnell, F. J. & Sondhi, S. L. Absence of Fibonacci anyons in
Rydberg chains. Phys. Rev. B 101, 075104 (2020).

51. Lan, Z., van Horssen, M., Powell, S. & Garrahan, J. P. Quantum slow
relaxation and metastability due to dynamical constraints. Phys. Rev. Lett. 121,
040603 (2018).

52. Smith, A., Knolle, J., Moessner, R. & Kovrizhin, D. L. Absence of ergodicity
without quenched disorder: From quantum disentangled liquids to many-
body localization. Phys. Rev. Lett. 119, 176601 (2017).

53. Brenes, M., Dalmonte, M., Heyl, M. & Scardicchio, A. Many-body localization
dynamics from gauge invariance. Phys. Rev. Lett. 120, 030601 (2018).

54. Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg
atom quantum simulators. Preprint at http://arxiv.org/abs/1902.09551 (2019).

55. Magnifico, G. et al. Real time dynamics and confinement in the Zn
Schwinger-Weyl lattice model for 1+1 QED. Preprint at http://arxiv.org/abs/
1909.04821 (2019).

56. Görg, F. et al. Realization of density-dependent Peierls phases to engineer
quantized gauge fields coupled to ultracold matter. Nat. Phys. 15, 1161–1167
(2019).

57. Schweizer, C. et al. Floquet approach to Z2 lattice gauge theories with
ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019).

58. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body
localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001
(2019).

59. Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical
concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986).

60. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and
amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-0364-9 ARTICLE

COMMUNICATIONS PHYSICS |            (2020) 3:99 | https://doi.org/10.1038/s42005-020-0364-9 | www.nature.com/commsphys 11

http://arxiv.org/abs/1909.04064
http://arxiv.org/abs/1909.04064
http://arxiv.org/abs/1906.05292
http://arxiv.org/abs/1904.04815
http://arxiv.org/abs/1910.01137
http://arxiv.org/abs/1910.01137
http://arxiv.org/abs/1902.09551
http://arxiv.org/abs/1909.04821
http://arxiv.org/abs/1909.04821
www.nature.com/commsphys
www.nature.com/commsphys


61. Biroli, G. & Garrahan, J. P. Perspective: the glass transition. J. Chem. Phys.
138, 12A301 (2013).

62. Fredrickson, G. H. & Andersen, H. C. Kinetic Ising model of the glass
transition. Phys. Rev. Lett. 53, 1244–1247 (1984).

63. Palmer, R. G., Stein, D. L., Abrahams, E. & Anderson, P. W. Models of
hierarchically constrained dynamics for glassy relaxation. Phys. Rev. Lett. 53,
958–961 (1984).

64. Carleo, G., Becca, F., Schiró, M. & Fabrizio, M. Localization and glassy
dynamics of many-body quantum systems. Sci. Rep. 2, 243 (2012).

65. De Roeck, W. & Huveneers, F. Asymptotic quantum many-body localization
from thermal disorder. Commun. Math. Phys 332, 1017–1082 (2014).

66. Schiulaz, M. & Müller, M. Ideal quantum glass transitions: many-body
localization without quenched disorder AIP Conf.Ser. 1610, 11 (2014).

67. Yao, N. Y., Laumann, C. R., Cirac, J. I., Lukin, M. D. & Moore, J. E. Quasi-
many-body localization in translation-invariant systems. Phys. Rev. Lett. 117,
240601 (2016).

68. Papić, Z., Stoudenmire, E. M. & Abanin, D. A. Many-body localization in
disorder-free systems: the importance of finite-size constraints. Ann. Phys.
362, 714–725 (2015).

69. van Horssen, M., Levi, E. & Garrahan, J. P. Dynamics of many-body
localization in a translation-invariant quantum glass model. Phys. Rev. B 92,
100305 (2015).

70. Veness, T., Essler, F. H. L. & Fisher, M. P. A. Quantum disentangled liquid in
the half-filled Hubbard model. Phys. Rev. B 96, 195153 (2017).

71. Smith, A., Knolle, J., Kovrizhin, D. L. & Moessner, R. Disorder-free
localization. Phys. Rev. Lett. 118, 266601 (2017).

72. Kim, I. H. & Haah, J. Localization from superselection rules in translationally
invariant systems. Phys. Rev. Lett. 116, 027202 (2016).

73. Yarloo, H., Langari, A. & Vaezi, A. Anyonic self-induced disorder in a
stabilizer code: Quasi many-body localization in a translational invariant
model. Phys. Rev. B 97, 054304 (2018).

74. Michailidis, A. A. et al. Slow dynamics in translation-invariant quantum
lattice models. Phys. Rev. B 97, 104307 (2018).

75. van Horssen, M., Levi, E. & Garrahan, J. P. Dynamics of many-body
localization in a translation-invariant quantum glass model. Phys. Rev. B 92,
100305 (2015).

76. Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high
temperature. Phys. Rev. B 75, 155111 (2007).

77. D’Alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven
interacting lattice systems. Phys. Rev. X 4, 041048 (2014).

78. Mehta, M. L. Random Matrices Vol. 142 (Elsevier, 2004)
79. Alba, V., Fagotti, M. & Calabrese, P. Entanglement entropy of excited states. J.

Stat. Mech. 2009, P10020 (2009).
80. Eckholt, M. & García-Ripoll, J. J. Correlated hopping of bosonic atoms

induced by optical lattices. New J. Phys. 11, 093028 (2009).
81. Mazzarella, G., Giampaolo, S. M. & Illuminati, F. Extended Bose Hubbard

model of interacting bosonic atoms in optical lattices: From superfluidity to
density waves. Phys. Rev. A 73, 013625 (2006).

82. Bissbort, U., Deuretzbacher, F. & Hofstetter, W. Effective multibody-induced
tunneling and interactions in the Bose-Hubbard model of the lowest dressed
band of an optical lattice. Phys. Rev. A 86, 023617 (2012).

83. Lühmann, D.-S., Jürgensen, O. & Sengstock, K. Multi-orbital and density-
induced tunneling of bosons in optical lattices. New J. Phys. 14, 033021 (2012).

84. Dutta, O. et al. Non-standard Hubbard models in optical lattices: a review.
Rep. Prog. Phys. 78, 066001 (2015).

85. Jürgensen, O., Meinert, F., Mark, M. J., Nägerl, H.-C. & Lühmann, D.-S.
Observation of density-induced tunneling. Phys. Rev. Lett. 113, 193003 (2014).

86. Baier, S. et al. Extended Bose-Hubbard models with ultracold magnetic atoms.
Science 352, 201–205 (2016).

87. Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical
lattices. Rev. Mod. Phys. 89, 011004 (2017).

88. Eckardt, A. et al. Exploring dynamic localization with a Bose-Einstein
condensate. Phys. Rev. A 79, 013611 (2009).

89. Meinert, F., Mark, M. J., Lauber, K., Daley, A. J. & Nägerl, H.-C. Floquet
engineering of correlated tunneling in the Bose-Hubbard model with ultracold
atoms. Phys. Rev. Lett. 116, 205301 (2016).

90. Zhao, H., Knolle, J. & Mintert, F. Engineered nearest-neighbor interactions
with doubly modulated optical lattices. Phys. Rev. A 100, 053610 (2019).

91. Barbiero, L. et al. Coupling ultracold matter to dynamical gauge fields in
optical lattices: From flux attachment to Z2 lattice gauge theories. Sci. Adv. 5,
eaav7444 (2019).

92. Pancotti, N., Giudice, G., Cirac, J. I., Garrahan, J. P. & Bañuls, M. C. Quantum
East model: localization, non-thermal eigenstates and slow dynamics. Preprint
at https://arxiv.org/abs/1910.06616 (2019).

93. Zhao, K., Vovrosh, J., Mintert, F. & Knolle, J. Quantum many-body scars in
optical lattices. Phys. Rev. Lett. 124, 160604 (2020).

94. Sutherland, B. et al. Localization of electronic wave functions due to local
topology. Phys. Rev. B 34, 5208–5211 (1986).

95. Inui, M., Trugman, S. A. & Abrahams, E. Unusual properties of midband
states in systems with off-diagonal disorder. Phys. Rev. B 49, 3190–3196
(1994).

96. Heidrich-Meisner, F. et al. Quantum distillation: dynamical generation of low-
entropy states of strongly correlated fermions in an optical lattice. Phys. Rev. A
80, 041603 (2009).

97. Ronzheimer, J. P. et al. Expansion dynamics of interacting bosons in
homogeneous lattices in one and two dimensions. Phys. Rev. Lett. 110, 205301
(2013).

98. Greiner, M., Mandel, O., Hänsch, T. W. & Bloch, I. Collapse and revival of the
matter wave field of a Bose-Einstein condensate. Nature 419, 51–54 (2002).

99. Kollath, C., Läuchli, A. M. & Altman, E. Quench dynamics and
nonequilibrium phase diagram of the Bose-Hubbard model. Phys. Rev. Lett.
98, 180601 (2007).

100. Hudomal, A., Vasić, I., Regnault, N. & Papić, Z. Supporting data for Quantum
scars of bosons with correlated hopping. https://doi.org/10.5518/810 (2020).

Acknowledgements
The authors thank Thomas Iadecola for fruitful discussions. A.H. and I.V. acknowledge
funding provided by the Institute of Physics Belgrade, through the grant by the Ministry
of Education, Science, and Technological Development of the Republic of Serbia. N.R.
was supported by the Department of Energy Grant No. DE-SC0016239, the National
Science Foundation EAGER Grant No. DMR 1643312, Simons Investigator Grant No.
404513, ONR Grant No. N00014-14-1-0330, the Packard Foundation, the Schmidt Fund
for Innovative Research, and a Guggenheim Fellowship from the John Simon Guggen-
heim Memorial Foundation. Z.P. acknowledges support by EPSRC grant EP/R020612/1
and the National Science Foundation under Grant No. NSF PHY-1748958. Part of the
numerical simulations were performed on the PARADOX-IV supercomputing facility at
the Scientific Computing Laboratory, National Center of Excellence for the Study of
Complex Systems, Institute of Physics Belgrade. The authors would also like to
acknowledge the contribution of the COST Action CA16221.

Author contributions
A.H., I.V., N.R., and Z.P. contributed to developing the ideas, analyzing the results and
writing the manuscript. A.H. performed the calculations and designed the figures.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42005-
020-0364-9.

Correspondence and requests for materials should be addressed to A.H.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-0364-9

12 COMMUNICATIONS PHYSICS |            (2020) 3:99 | https://doi.org/10.1038/s42005-020-0364-9 | www.nature.com/commsphys

https://arxiv.org/abs/1910.06616
https://doi.org/10.5518/810
https://doi.org/10.1038/s42005-020-0364-9
https://doi.org/10.1038/s42005-020-0364-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys

	Quantum scars of bosons with correlated hopping
	Results
	Models and their Hilbert spaces
	Graph structure of the models
	Dynamics and entanglement properties
	Global quenches
	Quantum scars in H1 and H3 models

	Discussion
	Methods
	Bipartite lattice and zero modes
	Perfect revivals in the H3 model
	Cluster approximations for the H1 model
	Generalization to other clusters

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




