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Generalized event-chain Monte Carlo: Constructing rejection-free
global-balance algorithms from infinitesimal steps

Manon Michel,1, a) Sebastian C. Kapfer,1, b) and Werner Krauth1, c)

Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC, Université Paris Diderot, CNRS,
24 rue Lhomond, 75005 Paris, France

(Dated: 13 December 2013)

In this article, we present an event-driven algorithm that generalizes the recent hard-sphere event-chain Monte
Carlo method without introducing discretizations in time or in space. A factorization of the Metropolis filter
and the concept of infinitesimal Monte Carlo moves are used to design a rejection-free Markov-chain Monte
Carlo algorithm for particle systems with arbitrary pairwise interactions. The algorithm breaks detailed
balance, but satisfies maximal global balance and performs better than the classic, local Metropolis algorithm
in large systems. The new algorithm generates a continuum of samples of the stationary probability density.
This allows us to compute the pressure and stress tensor as a byproduct of the simulation without any
additional computations.

Keywords: Monte Carlo algorithms; particle systems; event-chain Monte Carlo; Markov chain lifting; global
balance

I. INTRODUCTION

Markov-chain Monte Carlo (MCMC) methods in sta-
tistical physics have progressed far from the original
local-move, detailed-balance Metropolis algorithm3. On
the one hand, intricate non-local cluster moves have met
with great success in lattice models4,5. To a lesser ex-
tent, continuum systems of hard spheres have in recent
years also benefitted from non-local moves6–9, building
on earlier work10–12. On the other hand, extensions of
the classic detailed balance condition have allowed to con-
struct Markov chains that converge faster. These algo-
rithms introduce persistence between subsequent moves
and reduce the diffusive nature of the Markov chain
on small and intermediate length and time scales. No-
table examples are guided random walks13, hybrid Monte
Carlo14,15 and overrelaxation16. The Markov chain lift-
ing framework17–19 unifies these concepts by augmenting
the physical configuration space with auxiliary variables
that resemble the momentum in Newtonian time evolu-
tion and in molecular dynamics (MD)20. Lifted Markov
chains have already been applied to spin models23,24, but
not to continuum systems.

The present article draws on the above lines of re-
search. As a main theoretical result, we introduce a fac-
torized version of the Metropolis filter (acceptance rule)
that is well suited for the simulation of N -particle sys-
tems with pair-potential interactions. Combined with
the concept of infinitesimal Monte Carlo moves, this fil-
ter allows us to construct a rejection-free event-chain
Monte Carlo (ECMC) algorithm that breaks detailed
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balance yet satisfies maximal global balance. This al-
gorithm builds upon a recent insightful hybrid Monte
Carlo scheme15. By virtue of infinitesimal displacements
of particles, our algorithm produces a continuum of con-
figurations that all sample the equilibrium distribution.
Samples are obtained efficiently using an event-driven
algorithm. For hard spheres, the events correspond to
hard-sphere collisions, and the new algorithm reduces to
the hard-sphere event-chain algorithm6. For general pair
interactions, our algorithm replaces the hard-sphere col-
lisions by pairwise collisions, whose collision distance is
resampled after each event from to the pair potential.
Finally, the continuum of ECMC samples permits to di-
rectly compute the pressure and the stress tensor in the
NV T ensemble at no extra computational cost.

II. BALANCE CONDITIONS, FACTORIZED
METROPOLIS FILTER

For an MCMC algorithm to converge to the stationary
distribution, it must satisfy the global balance condition
for the stationary flows ϕa→b from configuration a to b:
the total flow into a configuration a must equal the total
flow out of it,∑

b

ϕb→a =
∑
c

ϕa→c = π(a), (1)

where π(a) is the statistical weight of configuration a,
e. g. given by a Boltzmann factor. The flow must also
satisfy an ergodicity requirement21. The global balance,
Eq. (1), is in particular satisfied by the detailed balance
condition which equates the flows between any two con-
figurations a and b:

ϕa→b = ϕb→a (2)
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FIG. 1. Balance conditions for probability flow in Markov-
chain Monte Carlo. Arrows represent stationary flows of
equal magnitude. Top left : Global balance, a necessary con-
dition for the convergence towards equilibrium. The total
flow

∑
c ϕc→a into any configuration a must equal the total

flow
∑

c ϕa→c out of it. The loops ϕa→a, etc., correspond to
rejected moves. Top right : Detailed balance: the net flow be-
tween any two configurations is zero, ϕa→b = ϕb→a. Bottom:
Maximal global balance: ϕa→b > 0 implies ϕb→a = 0, the
flow ϕa→a vanishes.

(see Fig. 1). We will be concerned with algorithms sat-
isfying maximal global balance, where flow between two
configurations is unidirectional and flows from a to a
(that is: rejections) are avoided: if ϕa→b > 0, then
ϕb→a = 0. In this case, probability does flow back nonlo-
cally from b to a. In the particle systems that we consider,
this happens via the periodic boundary conditions.

MCMC methods commonly rely on the Metropolis al-
gorithm, which enforces detailed balance of the flows be-
tween a and b as follows:

ϕa→b = Aa
b min(π(a), π(b)), (3)

In our algorithm, the a-priori probability A is symmetric
and amounts to zero or a global constant that we drop
for simplicity. Eq. (3) is manifestly symmetric in π(a)
and π(b) so that, by construction, ϕa→b = ϕb→a. Since
ϕa→b = π(a)p(a→ b), with p the acceptance probability,
Eq. (3) is equivalent to the well-known Metropolis filter

p(a→ b) = min

(
1,
π(b)

π(a)

)
(4)

that has been implemented in countless computer pro-
grams.

In statistical physics, the weight of a configuration
a is often given by the Boltzmann factor π(a) =
exp(−βE(a)), where E(a) is the energy of a and β is
the inverse temperature, which we set to one for the ma-
jority of this article. Using the abbreviation

[x]
+

:= max(0, x) (≥ 0), (5)

we can write the Metropolis filter of Eq. (4) as

p(a→ b) = min(1, exp(−∆E)) = exp
(
−[∆E]

+
)
, (6)

where ∆E = E(b) − E(a). This corresponds to the ac-
ceptance probability of a proposed move, whereas the

rejection probability is 1− p = 1− exp
(
−[∆E]

+
)

.

We now consider an N -particle system with pair inter-
actions E =

∑
{i,j}Eij , where i and j, in our applica-

tions, label particles in D-dimensional space, but could
also refer to spins or other degrees of freedom. The sum
runs over all unordered pairs {i, j} of particles. For such
a system, the Metropolis filter has always been used as

pMet(a→ b) = min(1, exp(−
∑
{i,j}

∆Eij))

= exp
(
−[
∑
{i,j}

∆Eij ]
+)
. (7)

In the present article, however, we introduce a factorized
Metropolis filter

pfact(a→ b) =
∏
{i,j}

min(1, exp(−∆Eij))

= exp
(
−
∑
{i,j}

[∆Eij ]
+
)

(8)

which also fulfills detailed balance by respecting the
same flow symmetries as the standard Metropolis fil-
ter, as can be seen by applying the identity π(a)/π(b) =

exp(
∑
{i,j} [∆Eij)]

+ − [−∆Eij ]
+

) to Eq. (8). The con-

ventional and the factorized Metropolis filter agree in the
hard-sphere case1 and (trivially) for N = 2 . They dif-
fer whenever terms of opposite sign appear on the rhs
of Eq. (8), i. e. for general interactions and N > 2. The
factorization increases the rate of rejections in a detailed-
balance MC algorithm. We find that for the soft-sphere
interactions considered in this article, the rate of rejec-
tions is about 50% higher (soft spheres with n = 12,
ρ = 0.8 . . . 1.2, with a step size of 0.1 in units of the par-
ticle diameter). However, the factorization yields the ac-
ceptance probability as a product of independent pair in-
teraction terms. This will be the key to derive a rejection-
free lifted MCMC algorithm for general N -particle sys-
tems.

III. LIFTING: 1D SYSTEMS AND TWO PARTICLES IN
A BOX

We now introduce the concept of Markov chain lifting
in a simple setting, which we later generalize to interact-
ing particle systems. We consider a one-dimensional dis-
crete system with configurations a and stationary weights
π(a) (i. e., a ∈ [∆, 2∆, . . . , L∆]). For moves sampled uni-
formly from {−∆,∆}, the standard Metropolis filter of
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Eq. (4) satisfies detailed balance ϕa→a+∆ = ϕa+∆→a ∀a.
The stationary distribution π is sampled in the limit of
infinite running times.

Lifting17–19, in this example, consists in duplicating
each configuration a with a momentum-like variable into
two configurations a± = (a, h = ±1). The lifting vari-
able determines the next proposed move, which would
in ordinary Metropolis MC be sampled from a prior dis-
tribution: For a+, only the particle move a→ a + ∆ is
proposed, and for a−, only a→a−∆. For flow balance,
we introduce lifting moves a+ → a− and a− → a+ which
take effect if the particle move is rejected, as summarized
in the diagram,

· · · // (a−∆)+

��

ϕ0 // a+
ϕ1 //

[ϕ0−ϕ1]+

��

(a+ ∆)+

��

// · · ·

· · · (a−∆)−oo

OO

a−ϕ0

oo

[ϕ1−ϕ0]+

OO

(a+ ∆)−ϕ1

oo

OO

· · ·oo

(9)
where the flows ϕ0 and ϕ1 are given by

ϕ0 = min[π(a), π(a−∆)], (10)

ϕ1 = min[π(a), π(a+ ∆)]. (11)

We take the weights of the lifted configurations to be
the same as the weights of the original configurations,
π(a±) = π(a), adjusting the constant of normalization.
This rejection-free MCMC algorithm satisfies maximal
global balance, as only one of the two flows ϕa+→a−

and
ϕa−→a+

can be non-zero. In the physical variables a,
however, rejections are still present.

We now consider uniform stationary probabilities
(π(a) = const) and impose hard-wall boundary condi-
tions in our one-dimensional discrete model. The lift-
ing flows are non-zero only for a rightmoving particle
at a = L∆, and for a leftmoving particle at a = ∆.
For these configurations, the lifting flow equals the en-
tire incoming flow, and the particle reverses its direction.
One can show that the lifted algorithm visits all sites in
O(L) steps, rather than in O(L2) steps for the Metropolis
algorithm.2

As demonstrated in Fig. 2, the discrete one-
dimensional system with hard walls corresponds to two
D-dimensional hard spheres that are constrained to move
only, say, along the x direction, in a box with periodic
boundary conditions. The new lifting variable i now
indicates the moving sphere, and the hard wall turns
into a no-overlap condition for the two spheres. Al-
though the spheres only move towards the right, the
algorithm satisfies maximal global balance due to flows
across the periodic boundaries. Ergodicity for the un-
constrained two-sphere problem in a D-dimensional box
is achieved by resampling, after a fixed number of steps,
the moving particle i ∈ {1, 2} and the direction of motion
∆ ∈ {+ex∆,+ey∆} (for the example of two hard disks
in a periodic box). The sequence of moves between re-
sampling is referred to in the following as an event chain.

t t+1 t+2 t+3 t+4 t+5

d1 a1 b1 c1 a1 (transl.)

Δ
c2 (transl.) b2 a2 (transl.) d2 (transl.)

hard wall hard wall

|Δx|

a+ b+ c+d+

a− b− c−d−

FIG. 2. Upper : Discrete one-dimensional system (L = 2) with
constant probabilities π(a) = π(b) and hard-wall conditions
π(c) = π(d) = 0. The lifting variable h = ±1 corresponds
to the direction of motion of the particle. Lower : Equivalent
lifting algorithm for two hard spheres with finite displace-
ment ∆ (the values of the lifting variable ±1 are replaced by
{1, 2}). The forbidden particle moves b1 → c1 and a2 → d2

trigger lifting moves. Maximal global balance is satisfied by
moving in the +x direction only. The equivalence between
one-dimensional motion and two-particle dynamics in a con-
strained direction carries over to arbitrary pair potentials.

IV. INFINITESIMAL MOVES AND EVENT-CHAIN
ALGORITHM FOR INTERACTING MANYPARTICLE
SYSTEMS

We now extend the discussion of Section III to N -
particle systems, first for hard spheres, and then for par-
ticles with arbitrary pairwise potentials. The idea to in-
dicate the moving particle and its ‘momentum’ by lift-
ing variables generalizes trivially to the N -particle case.
Special care is, however, required to preserve global bal-
ance, and we show that the factorized Metropolis filter
can be used to implement maximal global balance in the
infinitesimal-move limit. We then implement this scheme
efficiently in an event-driven MCMC algorithm.

Lifted configurations are now specified by the N hard-
sphere centers (r1, . . . , rN ), the moving sphere i and its
direction of motion ∆. For concreteness, we focus on the
positive x direction, ∆ = +ex∆, as before. A particle
move is

ai = (r1, . . . , ri, . . . , rN )→ bi = (r1, . . . , ri+∆, . . . , rN ).
(12)

This algorithm violates global balance because it gen-
erates configurations with multiple overlaps, see Fig. 3.
In the presence of a multiple overlap, it is impossible
to define flows that satisfy the global balance condition.
Multiple overlaps vanish, and maximal global balance is
recovered, for infinitesimal moves |∆| → 0: In that limit,
the factorized Metropolis filter identifies a unique colli-
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sion partner, with probability one, since no two parti-
cles are at the same distance from the moving particle.
The collision partner then inherits the lifting variable
and moves forward in the next step. By a succession
of infinitesimal steps that add up to a finite chain dis-
placement `, this reproduces the hard-sphere event-chain
algorithm6. Of course, the infinitesimal-move algorithm
is not implemented naively through a fine discretization,
but rather by identifying the next lifting event, and then
advancing the moving disk to contact.

t t+1 t+2

c2 a2 d2

a1 b1

e3 a3 f3

FIG. 3. Multiple overlaps for hard disks (weight π = const
for the non-overlapping physical configurations a, d, f). The
violation of the global balance condition is caused by the mul-
tiple overlap in configuration b (overlap of disk 1 with both
disks 2 and 3): the flow into all legal configurations a, d, and f
must be equal, while the illegal (crossed-out) configurations b,
c, and e generate zero flow. The multiple overlap disappears,
and global balance is again satisfied, in the limit |∆| → 0.

We now generalize the infinitesimal-move event-chain
algorithm to arbitrary pair potentials, using the factor-
ized Metropolis filter, Eq. (8). For general interactions,
the energy change between configurations ai and bi which
differ by an infinitesimal displacement dxi of particle i is

dE = E(b)−E(a) =
∑
j(6=i)

∂Eij(rj − ri)

∂xi
dxi =

∑
j(6=i)

dEij ,

(13)
where dEij is the pairwise energy change, and Eij the
pair potential. According to the factorized Metropolis
filter, the move is rejected with probability

1−pfact(ai→bi) = 1−exp
(
−
∑
j(6=i)

[dEij ]
+
)

=
∑
j( 6=i)

[dEij ]
+
.

(14)
Remarkably, for infinitesimal displacements, the rejection
probability is a sum of pair terms, while the individual
terms [dEij ]

+
normally neither add up to the total energy

change dE nor to [dE]
+

. We use the terms in Eq. (14)
as the probabilities for lifting moves

plift(ai→aj) = [dEij ]
+ ∀j 6= i, (15)

and obtain a rejection-free, maximal global balance
MCMC algorithm. Fig. 4 illustrates that the total flow
into the configuration ai equals the total flow out of
configuration ai, satisfying the global balance condition
Eq. (1). Explicitly, the lifting flows in the example of
Fig. 4 are:

ϕa2→a1 = π(a)[dE21]
+

ϕa3→a1
= π(a)[dE31]

+

and the particle move flow,

ϕb1→a1
= ϕfact

a→b = π(a)(1− [dE21]
+ − [dE31]

+
)

Indeed, Eqs. (14) and (15) define a rejection-free in-
finitesimal MCMC algorithm with maximal global bal-
ance.

t t+1

a3

b1 a1

a2

FIG. 4. Maximal global balance for N particles with arbitrary
pair interactions (infinitesimal step, factorized Metropolis fil-
ter of Eq. (8)). Flow into a1 is due to N − 1 lifting moves
(here, for N = 3, a2 → a1 and a3 → a1) and to a particle
move (here, b1→a1). For infinitesimal steps, the flow into a1

equals π(a) (see text), thus balancing the flow π(a) out of a1

and satisfying global balance, Eq. (1).

In order to implement this algorithm efficiently, we
choose an event-based approach. As mentioned, the fac-
torized Metropolis filter ensures that no two lifting events
can occur in the same infinitesimal timestep. Thus, ev-
ery interaction of the moving particle with another can
be treated independently of other interactions. Further,
for fixed partner j, the lifting probabilites at successive
timesteps are independent, and they vanish if the pair
potential decreases during displacement. Following the
BKL algorithm15,25, we determine the displacement un-
til the first lifting move occurs by sampling a uniform
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random number Υij from (0, 1] which determines the ad-
missible energy increase until lifting, E∗ij = − ln Υij . The
displacement until lifting sij is then found from

E∗ij =

∫ E∗
ij

0

[dEij ]
+

=

∫ sij

0

[
∂Eij(rj − ri − sex)

∂s

]+

ds.

(16)
If this equation lacks a solution due to the shape of the
interaction potential, or due to a large thermal excita-
tion E∗ij , no lifting event is generated, sij = ∞. While
solving Eq. (16) can be nontrivial in general, we give
a fast method for the most usual pair potentials below.
The smallest of the N − 1 independent {sij}j 6=i deter-
mines the lifting move i → j∗ which will actually take
place, advancing the moving disk by minj 6=i(sij) = sij∗
in the +ex direction and changing the lifting variable
to j∗. We also make sure that the total displacement
in a single event chain equals the chain displacement `,
which usually requires truncating the final event. After
the end of the chain, the lifting variables are resampled.
Each chain thus consists in an infinite succession of in-
finitesimal moves that add up to the chain displacement
`. Alternatively, we could introduce a small constant
probability for terminating a chain in each infinitesimal
move. This would effectively lead to exponentially dis-
tributed random `, and is also a valid MCMC algorithm.

We conclude with some practical remarks on solving
Eq. (16) for model potentials that occur in practice.
Many model potentials are central potentials, Eij(rij) =
Eij(rij). If the pair potential consists of several terms,
e. g. attractive and repulsive terms, it may be conve-
nient to treat them separately by a further factorization
of the Metropolis filter, and decompose the lifting prob-

abilities, [dEattr
ij ]

+
+ [dErep

ij ]
+

, where Eattr and Erep are
the attractive and repulsive parts of the pair potential.
This decomposition can lead, however, to a higher event
rate than the full potential. For instance, the Lennard-
Jones potential reduces to two soft-sphere interactions,
one attractive and one repulsive, and the mean free path
between events is reduced at most by half in comparison
to the case without decomposition. In return, the de-
composition greatly simplifies the Monte Carlo program.

We will thus focus here on the case of soft-sphere po-
tentials which are monotonous. A lifting move can only
be generated if the moving particle is in the rising part of
the pair potential. In this case, solving Eq. (16) amounts
to sampling the energy increase E∗ij = − log Υij , with
Υij a uniform random number from (0, 1], which fixes
the interaction energy Elift

ij = Eij(rij) + E∗ij , and thus

the interparticle distance rlift
ij = E−1

ij (Elift
ij ) at the lifting

move. (If Elift exceeds any possible value of the interac-
tion potential, there is no lifting move generated.) The
admissible displacement sij for the i, j particle pair is
then the positive root of rlift

ij = |rj − ri − sijex|. Again,
if no such root exists, no lifting move is generated, and
particle i will pass particle j. Using this method, and
the decomposition into attractive and repulsive terms,

Eq. (16) is thus easily computable for a large range of
potentials.

In systems with periodic boundary conditions, for very
long chains, a particle can pass by the same collision
partner more than once: The pair potential no longer is
monotonous. This is most easily avoided by tuning the
chain displacement so that the moving sphere can only
interact with one periodic image of the other spheres or
by introducing a lifting move of the moving sphere with
itself after a displacement of half the box. This move does
not change the statistics of the following events. After it,
the next event is computed as usual.

V. SPEEDUP WITH RESPECT TO METROPOLIS
MONTE CARLO

We now compare the performance of the generalized
ECMC algorithm with Metropolis Monte Carlo (MMC).
As an application, we consider a two-dimensional sys-
tem of N particles interacting with a truncated pairwise
power-law potential, Eij(r) = Ẽ(min(r, rc)), with Ẽ(r) =
ε(σ/r)n and rc = 1.8σ, σ being the particle diameter.
This potential includes important physical interactions
such as the dipole interaction in magnetic colloids26, hard
disks (n→∞) and Lennard-Jones particles, once decom-
posed into a repulsive soft-sphere interaction (n = 12)
and an attractive one (n = 6). In comparison to MMC,
the ECMC algorithm uses more random numbers, one
per interaction term, whereas Metropolis uses one per
step. In our implementations, however, the main compu-
tational workload is the evaluation of the potentials, not
the generation of random numbers (using the Mersenne
Twister). One event of the ECMC algorithm is thus im-
plemented in the same amount of time as one attempted
step of MMC. (3.2 · 109 steps per hour in MMC, 1.5 · 109

events per hour in ECMC). We compare the performance
of the algorithms in terms of the CPU time used (see
Fig. 5 for details).

As estimate of the relative performance of the algo-
rithms we consider as in other recent work6,8,9 the auto-
correlation time τ6 of the global orientational order pa-
rameter Ψ6,

Ψ6 =
1

N
·
∑
i,j

Aij

Ai
exp(6iθij) (17)

where θij is the angle of the bond vector between particles
i and j against a fixed axis and Aij/Ai the contribution of
particle j to particle i’s Voronoi cell perimeter27,28. With
Ψ6 being a global observable, we assume that its auto-
correlation time τ6 is representative for the mixing time
for dense liquid states close to the freezing point, located
at ρσ2 = 1 for n = 12, and ρσ2 ≈ 0.89 for harder disks
with n = 1024, where ρσ2 is the dimensionless density,
Nσ2/V .

We find that in terms of CPU time, in small sys-
tems, ECMC mixes a few times quicker than MMC.
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We tuned both algorithms to their optimal parameters
(see Fig. 5 for details). Speedup, defined as the ra-
tio τ6(MMC)/τ6(ECMC), is, in the region of study, not
found to be a strong function of density (Fig. 5, bottom
row). For increasing system size, however, the speedup
increases (Fig. 5, top row). An increase of speedup with
system size has also been found for hard-sphere systems,
where it approaches two orders of magnitude in large sys-
tems of 106 particles8. We thus expect that the gener-
alized ECMC algorithm has similar characteristics with
respect to system size as the hard-sphere ECMC algo-
rithm. For very large systems, the MMC algorithm does
not equilibrate within the allotted simulation time: The
distribution of |Ψ6| is not yet stationary, even though the
simulation time exceeds the τ6 by a factor of 100. Thus,
we have not determined τ6 for these systems.
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FIG. 5. Autocorrelation times τ6 of the Ψ6 orientational
order parameter for event-chain Monte Carlo (ECMC) and
Metropolis Monte Carlo (MMC), for soft-disk systems of N
particles at inverse temperature β = 1. τ6 is measured in ar-
bitrary though comparable amounts of CPU time: One unit
of CPU time for ECMC is a displacement of T = 100Nσ,
chain displacement ` = 0.025

√
Nσ, spanning thus about half

the system volume. Event chains in +x and +y alternate
every ∆T = Nσ/2 of displacement. One unit of CPU time
for Metropolis consists of 1000N moves, where a move is the
attempt to displace a particle by a random vector sampled
from a disk of radius 0.16σ.

VI. DIRECT PRESSURE COMPUTATION

In order to obtain the equation of state in the NV T en-
semble for the particle system under study, the pressure
P must be computed. Usually, the pressure is obtained
using the virial theorem (see Sec. 2.2 of30), either by av-
eraging the virial, or by integration of the product of the
static pair correlation function g(r) and the pair potential
Eij(r). Direct averaging is not possible for hard-sphere

interactions, since the potential is singular. It is thus re-
quired to compute a discrete approximation of g(r) and
extrapolate it to the contact value to obtain P . Even for
non-singular steep potentials, the approach via g(r) is
bothersome, since the dominant contributions to P come
from close pairs (for the family of power-law potentials,
r ≈ σ), which is poorly sampled in the canonical ensem-
ble. Finally, evaluation of the virial during the simulation
implies extra computation for evaluating the forces. By
contrast, in hard-sphere event-driven molecular dynam-
ics the virial pressure is directly related to the collision
rate, which is a trivial byproduct of the computation20:

βP = ρ− βρm

2TsimN

∑
collisions

bij , (18)

where ρ = N/V is the particle number density, Tsim

the total simulation time, m the mass of a particle, and
bij = (ri − rj)(vi − vj), with ri,j ,vi,j the positions and
velocities of the colliding particles. In the following we
show that in ECMC, the rate of lifting moves is, just like
the collision rate in event-driven MD, directly related to
the pressure. We give an elementary derivation indepen-
dent of the virial theorem for the soft-particle case. The
results are, however, also valid for hard particles and can
be derived using arguments by Speedy29 which connect
the pressure to the stochastic geometry of the admissible
configurations.

FIG. 6. Virtual rift volume changes by random removal of an
infinitesimal strip from a hard-sphere configuration. Left : A
successful removal, Center : Elimination of a particle (ideal
gas pressure), Right : Generation of an overlap (excess pres-
sure). The left and right cases become indistinct for soft in-
teractions.

In order to compute the pressure βP = ∂ lnZ/∂V , we
consider virtual rift volume changes effected by remov-
ing a randomly located strip of size dLx × Ly from the
system (see Fig. 6). By considering all positions of the
strip, this procedure yields all N -particle configurations
in the smaller simulation box, and thus the new partition
function Z(V + dV ). For isotropic systems, we recover
the virial expression,

βP = ρ+
1

V

〈∑
{i,j}

(xj − xi)
β∂Eij(ri − rj)

∂xi

〉
, (19)
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FIG. 7. Direct computation of the pressure: The excess pres-
sure is derived from the ratio of excess displacement (green
dashed lines,

∑
lifts(xj−xi)) and the chain displacement ` (red

solid line). For isotropic systems, only the distance between
the final and initial particle xfinal − xinitial (blue dash-dot ar-
row) has to be recorded.

where 〈·〉 is the canonical average. The first term of the
rhs in Eq. (19) is due to particles located in the removed
strip, which lead to illegal configurations with less than
N particles (Fig. 6, center). This term yields the ideal-
gas pressure. The non-ideal contribution to the pres-
sure results from changes in the Boltzmann weight due
to compressed bonds, with (xj − xi) accounting for the
probability of a bond traversing the removed strip. In
hard spheres, this term is produced by particle overlap
(Fig. 6, right panel). Replacing the canonical average in
Eq. (19) by an average in the lifted canonical ensemble,
〈·〉k := N−1

∑
k〈·〉, where k is the lifting variable, one of

the sums collapses and yields a factor of N ; we recover
the probabilities for a lifting move from i→ j and j → i.
An ECMC simulation will reproduce the lifted canoni-
cal average and thus yields an unbiased estimator of the
pressure. Summing up all the lifting events in a chain
(see Fig. 7), we obtain

βP = ρ ·
〈
xfinal − xinitial

`

〉
chains

, (20)

where 〈·〉chains is the average over event chains, xinitial is
the position of the first particle before the effects of the
chain, and xfinal the position of the last particle after,
adjusted for periodic boundaries if necessary. Thus, it
suffices to know the beginning and end of event chains to
compute the pressure. Explicitly,

xfinal − xinitial = `+
∑
lifts

(xj − xi) (21)

where xi and xj are the positions of the moving parti-
cle i and of the hit particle j, respectively, at lifting, see
Fig. 7. In the ideal gas, there are no lifting moves and
Eq. (20) reduces to the ideal gas pressure. The excess

n N ρσ2 virial pressure ECMC pressure

12 214 0.990 14.4369± 0.0058 14.4267± 0.0038

48 214 0.860 8.753± 0.011 8.7565± 0.0023

48 214 0.888 9.441± 0.025 9.429± 0.027

1024 214 0.888 9.174± 0.028 9.1679± 0.0026

∞ (HS) 216 0.888 9.1667± 0.0073 9.1723± 0.0064

12, 6 (LJ) 214 0.888 1.44833± 0.00031 1.447623± 0.000045

TABLE I. Comparison of pressure computed using the virial
expression and from excess displacement in ECMC Eq. (20),
for repulsive soft and hard sphere (HS) interactions, and for
the Lennard-Jones (LJ) potential, at β = 1. Pressures and
densities are nondimensionalized, βPσ2 and ρσ2. The devi-
ations given are standard errors from 10 independent sim-
ulations each. For LJ, the potential was decomposed into
attractive and repulsive parts.

displacement (xj −xi) can be negative for an interaction
potential with attractive components, such as Lennard-
Jones. If the potential is decomposed into attractive and
repulsive parts as outlined in Section IV, individual ex-
cess displacements for the two potentials also add up to
the correct pressure. As evidenced by Table I, the results
obtained from ECMC via Eq. (20) agree with the con-
ventional virial approach. Since no extra computation
is required, the procedure via the excess displacement
in ECMC is more efficient than the virial approach, in
particular for steep potentials.

Finally, one might be interested in anisotropic systems
where the collision rates can depend on the direction of
the event chains. In this case, the derivation presented
for longitudinal rifts (removing strips normal to the chain
direction) is supplemented with an analogous result for
transverse rifts (removing strips aligned with the event
chain), which leads in D dimensions to the full pressure,

βP = ρ+

〈
ρ

D`

∑
lifts

(rj − ri)
2

xj − xi

〉
chains

, (22)

where x is the coordinate parallel to the chain direction.
More generally, the full stress tensor τ can be computed
as an average of the dyadic product of the interparticle
distance rij = rj − ri at collision:

βτ = −ρ1−

〈
ρ

`

∑
lifts

rijr
t
ij

xj − xi

〉
chains

, (23)

where 1 is the identity matrix in D dimensions.

CONCLUSION

In the present article, we have generalized the event-
chain Monte Carlo algorithm from hard spheres to par-
ticle systems interacting with arbitrary pair potentials,
such as Lennard-Jones liquids or soft disks. The resulting
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algorithm is faster than conventional Metropolis Monte
Carlo, with the gap in performance increasing with the
system size. It is based on the lifting concept, and relies
on a new factorization of the Metropolis filter, applied
to infinitesimal Monte Carlo moves, to achieve maximal
global balance. The infinitesimal moves are implemented
efficiently in an event-based algorithm using the BKL ap-
proach. The algorithm generates a continuum of samples
of the equilibrium distribution. This has allowed us to
derive the pressure and the stress tensor in the NV T
ensemble directly from the simulation without any addi-
tional computation. Even though presented in periodic
boundary conditions, the algorithm also applies to non-
periodic systems, by introducing chains in the −x and
−y direction to render it ergodic.

Infinitesimal moves permit to apply the framework of
lifted Markov chains to the interacting particles prob-
lem, since they define uniquely the next event, while
satisfying global balance. By subdivision into infinites-
imal moves, both the original hard-sphere event-chain
algorithm6, and the hybrid MC algorithm of Peters and
de With15 are revealed to be lifting algorithms. Lifting
improves mixing in large, strongly correlated systems,
since clusters of particles are displaced in a cooperative
way. It is thus applicable to packing problems, glassy
systems, etc. particularly, as its dynamics are fundamen-
tally different from the MMC or MD case. As the original
event-chain algorithm, it can be parallelized9. We expect
the algorithm to extend to complex fluids, with particles
possessing internal degrees of freedom, to path integral
(quantum) Monte Carlo, and other sampling problems.
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