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ABSTRACT

The effective properties of two-dimensional acoustic metamaterials are here obtained by applying two retrieval methods, referred to as the
direct inversion method and the differential method. They employ the scattering coefficients at the incidence and transmission sides of the
global systems immersed in a fluid. A validation case study on a one-dimensional periodic design is first presented. A two-dimensional
design comprising periodic cylindrical steel inclusions in a soft elastic matrix is then examined. Homogenization issues related to different
underlying assumptions in the two retrieval methods are discussed. It is shown that one of the retrieval methods (the differential method)
well describes the interior of the medium, away from the interfaces, while the other (the direct inversion method) captures the interface
effects. The two retrieval methods are used to build homogeneous equivalent media which are used to predict scattering coefficients.
A hybrid method is introduced which combines the two methods to create effective media that are accurate approximations of their 2D
counterparts.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002859

I. INTRODUCTION

Metamaterials are artificial materials with the capacity to
exhibit unusual properties arising from the collective manifestation
of the internal constituent units in the structure.1 This concept has
offered new perspectives for the design of noise control materials.
Utilizing their ability to manipulate wave propagation, metamateri-
als have been employed in a wide range of applications including
lensing,2 sound focusing,3 switching,4 and cloaking.5 Their study
commonly includes the determination of complex effective proper-
ties of an equivalent homogeneous medium, often a fluid. These
effective properties can strongly vary with frequency and reach neg-
ative values for frequencies associated with local resonances of the
inclusions.6–8 In acoustic metamaterials, different types of inclu-
sions have been proposed to achieve negative density and/or nega-
tive bulk modulus. Monopole resonance of voids in a soft elastic
medium has been shown to lead to negative effective bulk
modulus,9 whereas dipole resonance of hard scatterers in an elastic
medium has been shown to lead to negative effective density.10,11 A
combination of monopole and dipole scatterers has been demon-
strated to achieve simultaneous negative density and bulk modulus
for broadband acoustic performance.12,13

The effective wavenumber is commonly calculated to identify
frequency ranges where no wave propagation occurs. It is also often
assumed to be identical to the Bloch wavenumber of an infinite
periodic medium. A range of analytical techniques has been
employed to derive this effective wavenumber in one-dimensional
(1D) designs comprising successive material layers14,15 and in two-
dimensional (2D) designs comprising periodically voided soft
elastic media.16,17 While analytical methods provide insight into
physical mechanisms for wave propagation and are generally com-
putationally efficient, they are limited to simple geometric designs.
Wave propagation in periodic systems can be conveniently simu-
lated using element-based numerical methods. In early work based
on the finite element method (FEM), Hladky-Hennion and
Decarpigny16 developed a code to compute sound transmission in
a rubber medium submerged in water and embedded with periodic
cylindrical cavities of finite height. A unit cell of the coating com-
prising a single cavity in rubber was simulated and periodicity of
the geometry was implemented by applying classical Bloch condi-
tions on the boundaries of the unit cell. Using the same finite
element code, Langlet et al.18 calculated the effective wavenumber
of a periodically voided elastic medium. More recently, FEM has
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been employed to investigate material dissipative effects on wave
dispersion and bandgaps in acoustic metamaterial designs.19,20

The calculation of dispersion curves for periodic systems does
not take into account interface effects and eventual coupling with a
surrounding medium. Retrieval methods are an alternative
approach to derive effective wavenumber as well as other effective
properties using scattering coefficients obtained on the incidence
and transmission sides of the medium.21,22 For such methods, the
scattering coefficients have been obtained analytically for a periodic
multilayered medium,23,24 numerically for periodic metamateri-
als,25,26 or experimentally for acoustic metamaterials composed of
split hollow spheres27 and periodically arranged hollow tubes.28

Park et al. also proposed a method to homogenize anisotropic
metamaterial slabs by determining effective properties of the con-
stitutive unit cell.29 Within the slab, the effective properties differ
whether the unit cell is an edge cell or an inner cell.

The emphasis here is on the homogenization of metamaterials
for underwater applications. A metamaterial comprising hard inclu-
sions embedded in a viscoelastic matrix is an ideal candidate as an
external coating on the hull of an underwater vehicle, attributed to
impedance matching of the viscoelastic medium with water, to the
presence of local resonances of the inclusions,11,13,30 and to the
robustness of the hard scatterers under hydrostatic pressure.26

Scattering of sound waves by resonant inclusions results in the con-
version of longitudinal waves into shear waves, the latter being easily
dissipated in a viscoelastic medium.31 Performance of such systems
can be improved by coating hard inclusions with a viscous rubber
layer32 or by using multiple layers of scatterers of different resonant
frequencies to broaden the acoustic performance.33 It is, therefore,
interesting to homogenize several of these designs in order to use
their effective properties in a topological optimization process.

Our leading goal is to develop a computationally efficient tool
to optimize complex two-dimensional metamaterials. To achieve
this, it is beneficial to effectively replace any 2D-medium, which
may comprise inclusions of various shapes and sizes, by a medium
made of successive layers of fluid. An effective medium approach
is, therefore, presented in Sec. II. In this work, two retrieval
methods are employed to determine the effective properties of a
constituent unit cell for different 1D and 2D periodic designs, con-
sidering only normally incident plane waves in water. Both retrieval
methods are based on a fluid homogenization model, whereby the
effective equivalent fluid properties of a unit cell are characterized
by an effective wavenumber and an effective impedance. Both
methods also require a priori knowledge of the scattering coeffi-
cients on the incidence and transmission sides of the global system.
In the direct inversion method, the global transfer matrix in terms
of the scattering coefficients is equated with the product of the
transfer matrices for each periodic cell. In the differential method,
the transfer matrix of a periodic cell in the core of the medium is
derived from the product of the global transfer matrices of two
periodic media differing only by length. In Sec. III, two case studies
are examined, starting with a 1D design comprising alternating
layers of soft and rigid media for which results obtained from a
model based on the transfer matrix method are compared with
results from the proposed retrieval approaches. A 2D design com-
prising periodic cylindrical rigid inclusions in a soft elastic matrix
is then considered. Effective parameters of a unit cell are used to

predict the scattering responses for various numbers of unit cells. A
hybrid prediction method is introduced which combines the two
retrieval methods similar to the work by Park et al.;29 we herein
distinguish effective properties for inner or edge cells. Our work
extends the prediction capability as effective material parameters
are retrieved well beyond the low frequency. We also demonstrate
the ability to homogenize complex systems considering a heavy
fluid environment (water), with fluid–structure interactions always
involving shear waves and with the presence of strong resonances
that generates significant near-field effects. Homogenization of the
metamaterials under study is, therefore, challenging but the predic-
tion tool developed here can work effectively for the homogeniza-
tion and optimization of 2D metamaterials since it helps building
homogeneous equivalent media which are a precise approximation
of their 2D counterparts.

II. METHODOLOGY

A. Fluid homogenization model

A fluid homogenization model is employed to characterize the
effective medium in terms of a complex effective wavenumber and
effective impedance. We herein consider a medium immersed in
water and subject to an acoustic harmonic plane wave of unity
amplitude at normal incidence given by ei(ωt�kx), where i ¼ ffiffiffiffiffiffi�1

p
, ω

is the angular frequency, k is the longitudinal wavenumber, t
denotes time, and x defines the position on the longitudinal axis. A
transfer matrix approach is adopted that relates the pressure and
normal particle velocity on the incidence and transmission sides of
the medium as follows:34

pin
vin

� �
¼ M

pout
vout

� �
, (1)

where pin and pout are, respectively, the pressure at the inlet and
outlet of the medium, and similarly, vin and vout are, respectively,
the normal particle velocity at the medium inlet and outlet.

B. Direct inversion method

Figure 1 presents a segmented system comprising periodic
repetitions of a constituent unit cell, each of length Lu. R and T ,
respectively, correspond to the coefficients of the reflected and
transmitted pressures on the incidence and transmission sides of
the global medium. All unit cells are identical.

On the one hand, the global transfer matrix Mn of the peri-
odic medium comprising n unit cells can be calculated using its

FIG. 1. Schematic diagram of a segmented medium comprising n identical unit
cells. Reflection and transmission coefficients on the incidence and transmission
sides of the medium are also shown.
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scattering coefficients as follows:35,36

Mn ¼ 1
2T

1� R2 þ T2 (1þ R)2 � T2
� �

Z f

(1� R)2 � T2
� �

Z�1
f 1� R2 þ T2

" #
: (2)

On the other hand, the transfer matrix for each cell is given
by 34

Mu ¼ cos(kdirLu) iZdirsin(kdirLu)
iZ�1

dir sin(kdirLu) cos(kdirLu)

� �
, (3)

where kdir is the effective longitudinal wavenumber, Zdir is the
effective impedance of the unit cell, and Z f is the impedance of
the surrounding fluid on the incidence and transmission sides of
the global medium. The global transfer matrix of the segmented
medium can also be written as the product of the transfer matrix
for each cell, which leads to Mn ¼ (Mu)

n. The calculation of (Mu)
n

for any integer n is equivalent to replacing only the thickness Lu by
nLu. The global transfer matrix of the system then becomes

(Mu)
n ¼ cos(nkdirLu) iZdirsin(nkdirLu)

iZ�1
dir sin(nkdirLu) cos(nkdirLu)

� �
: (4)

The effective impedance is, thus, given by

Zdir ¼ +

ffiffiffiffiffiffiffiffiffiffi
Mn1,2

Mn2,1

s
, (5)

where Mni,j (1 � i, j � 2) denote the elements of the global transfer
matrix Mn. For the time convention eiωt adopted in the current
work, passivity constraints set the sign of the real part of the effec-
tive impedance to be positive.37 The effective wavenumber is then
obtained using either Mn1,1 or Mn2,2 as follows:

kdir ¼ +
cos�1(Mn1,1)

nLu
þ 2πm

nLu
: (6)

The passive material condition is satisfied when the imaginary
part of kdir is negative. Integer m is chosen to ensure continuity of
the real part of kdir as a function of frequency. It is worth noting
that this phase continuity constraint is largely applied in literature
studies.22–24,27,29 It ensures that the group velocity and the acoustic
energy flux can be defined for the homogenized medium at all
frequencies.

C. Differential method

The second retrieval method presented here is an extension of
the Bianco and Parodi method,21 in which two media are consid-
ered, differing only in length by ΔL in the direction of wave propa-
gation. The propagation constant in a medium of infinite length is
obtained by examining wave propagation within the section ΔL of
the longer finite medium.

A particular case is herein considered, where the two media
are modeled as segmented media comprising periodic repetitions
of a constituent unit cell, as shown in Fig. 2. The extra portion in

the longer medium is a unit cell of length Lu. The shorter seg-
mented medium comprises n unit cells and the longer medium
comprises nþ 1 unit cells. Ri and Ti (i ¼ 1, 2), respectively, corre-
spond to the coefficients of the reflected and transmitted pressures
calculated at the interfaces between the two media and the sur-
rounding fluid.

The global transfer matrix of the shorter periodic medium
comprising n unit cells can be expressed in terms of its scattering
coefficients as follows:

Mn ¼ 1
2T1

1� R2
1 þ T2

1 (1þ R1)
2 � T2

1

� �
Z f

(1� R1)
2 � T2

1

� �
Z�1
f 1� R2

1 þ T2
1

" #
: (7)

Similarly, the transfer matrix of the longer segmented medium is
given by

Mnþ1 ¼ 1
2T2

1� R2
2 þ T2

2 (1þ R2)
2 � T2

2

� �
Z f

(1� R2)
2 � T2

2

� �
Z�1
f 1� R2

2 þ T2
2

" #
: (8)

The shorter medium is virtually segmented in two sections
referred to as section 1 (s1) and section 2 (s2), for which the transfer
matrices are, respectively, Ms1 and Ms2 . The global transfer matrix for
the shorter medium is then given by Mn ¼ Ms1Ms2 . The global trans-
fer matrix for the longer medium requires inclusion of the transfer
matrix associated with Lu and is given by Mnþ1 ¼ Ms1MuMs2 . As
similar matrices have the same trace, multiplying Mnþ1 by the inverse
of Mn yields the following trace equality:

Tr Mnþ1(Mn)
�1� � ¼ Tr Muð Þ: (9)

Assuming that wave propagation within the second medium
extra portion Lu is monomode and described by the effective wave-
number kdiff , the fluid homogenization model is applied (only) to
this core portion Lu which is then described by a transfer matrix
under the form given by Eq. (3), yielding Tr Muð Þ ¼ 2cos(kdiffLu).

FIG. 2. Schematic diagram illustrating the differential method in which two finite
segmented media comprising identical unit cells differ only by a single unit cell.
Reflection and transmission coefficients of the two segmented media are also
shown.
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The expression for the effective wavenumber can be obtained as

kdiff ¼ +
cos�1 Tr Mnþ1(Mn)

�1ð Þ
2

� �
Lu

þ 2πm
Lu

, (10)

where m is an integer whose value is determined such that the
effective wavenumber as a function of frequency is continuous. It
should be noted that in contrast to Eq. (6), the effective wavenum-
ber given by Eq. (10) corresponds to the wavenumber in the
medium core.25

The effective impedance is now derived. Equation (5), for the
direct inversion method, has been derived using the theoretical
expressions for the elements of the transfer matrix as given in
Eq. (3), which are valid to describe a fluid. In the differential
method, the effective medium is also assumed to be a fluid but the
theoretical expressions of the transfer matrix elements are not
directly used to derive the effective impedance. Instead, the transfer
matrices of the segmented media are written as the product of
the transfer matrix for each unit cell, yielding Mn ¼ (Mu)

n for the
shorter medium and Mnþ1 ¼ (Mu)

nþ1 for the longer medium. The
transfer matrix Mu of a unit cell can now be obtained from
the product of the global transfer matrix of the longer segmented
medium with the inverse of that of the shorter medium, that is,

Mnþ1(Mn)
�1 ¼ (Mu)

nþ1�n ¼ Mu: (11)

Using Eqs. (7) and (8), the left hand side of Eq. (11) can be cal-
culated in terms of the scattering responses of the two segmented
media. Using Eq. (1) and the relation Zeff ¼ pin=vin ¼ pout=vout for
fluid homogenization, the effective impedance can be obtained as

Zdiff ¼
�(Mu2,2 �Mu1,1)+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Mu2,2 �Mu1,1 )

2 þ 4Mu1,2Mu2,1

q
2Mu2,1

, (12)

where Mui,j (1 � i, j � 2) corresponds to the elements of the transfer
matrix Mu given by Eq. (11). The approach to derive Eq. (12) is,
therefore, different than that of the direct inversion method. The
reason is that the fluid homogenization model may be too simplistic
and may fail to describe complex systems exhibiting shear wave
propagation, coupling with a surrounding heavy fluid and so on. For
such cases, we observed that the calculation of the transfer matrix of
the unit cell as per Eq. (11) does not always lead to a transfer matrix
in which the diagonal terms are identical as they are meant to be
according to Eq. (3). Such cases can nonetheless be considered when
using Eq. (12).

D. Scattering coefficients

The scattering coefficients are numerically calculated using the
FEM code ATILA.38 A small domain of water is modeled on the
incidence and transmission sides of the media, with the fluid speed
of sound set as c f ¼ 1500m=s and fluid density ρ f ¼ 1000 kg=m3.
The effects of the remaining fluid domain are accounted for by
matching the pressure field in the finite element mesh with simple
plane wave expansions of the in-going and out-going waves,

similarly to the work of Hladky-Hennion and Decarpigny.16 Each
periodic medium is subject to harmonic plane wave excitation at
normal incidence from the fluid domain. A periodic boundary con-
dition is applied on the lateral boundaries of the medium to simu-
late an infinite array of unit cells in the direction transverse to the
direction of sound propagation. Reflection and transmission coeffi-
cients are calculated from the pressure at the interface between the
water and the incidence and transmission sides of the media,
respectively.

It has to be noted that in practice, for two-dimensional media,
the scattering coefficients are not directly calculated at the inter-
faces but are taken further away and then phase-shifted to be
brought back at the interfaces. This procedure effectively ensures
that, in the presence of a non-uniform near field, the scattering
coefficients describe the behavior of the finite structure in the far
field. It should be pointed out that by definition, the fluid homoge-
nization model used here cannot describe any complex near field at
the medium inlet/outlet.

III. RESULTS AND DISCUSSION

A. 1D multilayered design

The effective properties for a 1D multilayered design obtained
using the two retrieval methods are initially compared with those
obtained using an analytical model. The unit cell of the multilay-
ered design comprises a layer of silicone rubber of thickness ds,
followed by a layer of aluminum of thickness da, and then another
silicone rubber of thickness ds, as shown in Fig. 3(a). The density
of silicone and aluminum are, respectively, ρs ¼ 1250 kgm�3 and
ρa ¼ 2700 kgm�3. The longitudinal speed of sound for silicone
and aluminum are set as 1000� (1þ 0:02i)m s�1 and 6200m s�1,
respectively. The thickness of silicone and aluminum are selected
as ds ¼ 15mm and da ¼ 10mm, hence the length of a unit cell
becomes Lu ¼ 40mm. The direct inversion method is applied to
the multilayered medium comprising n ¼ 4 unit cells, as shown in
Fig. 3(b). The differential method is applied for (n, nþ 1) ¼ (4, 5).

The model used to validate the retrieval method for this multi-
layered medium is based on the fact that a symmetric multilayered
unit can effectively be replaced by a fluid medium of wavenumber
kcell and impedance Zcell. The transfer matrix of the unit cell is
numerically calculated by multiplying the transfer matrices for each

FIG. 3. (a) Representation of the symmetric multilayered unit cell comprising
layers of silicone and aluminum. (b) Multilayered media comprising four and five
unit cells for the application of the differential method. The direct inversion
method is applied to the medium comprising four unit cells.
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layer within the unit cell using the wavenumber and impedance of
silicone rubber and aluminum. Effective parameters can then be
extracted from the transfer matrix of the effective unit cell given by

Mcell ¼ cos(kcellLu) iZcellsin(kcellLu)
iZ�1

cellsin(kcellLu) cos(kcellLu)

� �
: (13)

The transfer matrix based model for periodic multilayered
media, also referred to as the symmetric equivalent layer, has be
shown to provide an exact representation of periodic and symmet-
ric multilayered unit cells.15

Figure 4 presents the dispersion curves in terms of the
reduced wavenumber for a frequency range up to 40 kHz obtained
by multiplying the transfer matrices of the layers inside a single
unit cell (“cell” parameters) and by using the two retrieval
methods. The effective wavenumbers using either retrieval methods
are in exact agreement with the one derived with the unit cell cal-
culation. The same observation is made for the effective impedance,
not shown here.

Assuming zero damping, distinct frequency ranges corre-
sponding to bandgaps occur where the real part of the effective
reduced wavenumber is equal to 0 or π, represented by the shaded
areas. This is attributed to the fact that at the interface between the
layers of aluminum and silicone, an incoming wave is transferred
into a reflected wave which constructively interferes with the
incoming wave. The imaginary part of the wavenumber (which rep-
resents the wave evanescence) reaches a local maximum, corre-
sponding to greater evanescence of acoustic waves in the bandgaps
than in the passbands. Furthermore, the local maxima increase
with frequency, resulting in greater attenuation of the acoustic
waves with increasing frequency. Consequently, the homogenized
units obtained with the retrieval methods are accurate equivalents

of the multilayered system and accurately capture evanescence of
acoustic waves within bandgaps.

B. 2D hard scatterers

In 2D systems, additional physical phenomena such as local
resonances and boundary effects occur compared to 1D periodic
systems. It, therefore, becomes more difficult to apply a simple
homogenization model, especially for metamaterials with complex
geometry. Several homogenization difficulties will be identified for
the case study of a locally resonant unit cell comprising a cylindri-
cal steel inclusion of diameter d ¼ 4mm in a square polyurethane
matrix with a side length of Lu ¼ 10mm, as shown in Fig. 5(a).
The material properties of steel are density of 7800 kgm�3, Young’s
modulus of 215GPa, and Poisson’s ratio of 0:31. The density and
speed of sound for longitudinal and shear waves of polyurethane
are set as 1100 kgm�3, 1513m s�1, and 157m s�1, respectively,
with a loss factor of 6% for the speed of sound of shear waves.

Dispersion curves in terms of dimensionless wavenumber are
plotted in Fig. 6. It can be observed that both retrieval methods
lead to the same effective wavenumber up to approximately 10 kHz.
Differences appear for frequencies around points A, B, and
C. These frequencies correspond to resonant modes for which the
displacement fields are given in Fig. 7. Figure 7(A) presents the dis-
placement field in the four-unit medium for frequency A
(13:6 kHz). The displacement field exhibits a mass-spring (dipole)
resonance where the inclusion represents the rigid mass, translating
without undergoing any shape changes, while the host matrix rep-
resents the spring that retains the oscillations of the masses. For
point C (25:7 kHz), Fig. 7(C) shows that the rubber matrix is
moving, whereas the steel inclusions are mostly stationary. The
waves scattered by the rigid cylinders are trapped in-between the

FIG. 4. Dispersion curves for (a) real part and (b) imaginary part of the reduced wavenumber obtained using the direct inversion method (kdir ), the differential method
(kdiff ), and the transfer matrix based model for symmetric the multilayered unit (kcell).
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cylinders, leading to resonance of the host rubber. This mode is,
therefore, only existing for the matrix portions which are not at the
interfaces in contact with the surrounding water. In Fig. 6, as the
imaginary part of the wavenumber represents the attenuation per
distance, the wavenumber derived with the differential method for
resonances A and C leads to slightly greater attenuation than the
one from the direct inversion method, but the variations remain
similar.

Another specific displacement field of the rubber can be
observed in Fig. 7(B) for the frequency B (19:8 kHz), but very local-
ized at the input fluid/medium interface. Point B thus also corre-
sponds to a resonant mode in the matrix which only exists between
the interface and the first layer of rigid inclusions. As such, unlike
the two other resonances, the boundary interference effects of
point B do not vary with the number of unit cells placed after the
first unit cell at the interface. In Fig. 6, the interface mode at point
B is associated with an attenuation peak for the direct inversion
method. Such attenuation is not apparent using the differential

method, which aims to describe the interior of the medium away
from the boundary interfaces with the fluid. In contrast, the direct
inversion method describes the finite medium including boundary
interface effects.

The effective density given by ρ ¼ Zk=ω is presented in Fig. 8,
showing slight differences between the two retrieval methods.
Nonetheless, both methods show the real part of effective density
becoming negative for the mass-spring resonance at point A. This
phenomenon has been widely reported in literature studies1,10,12

and is associated with dipole resonance as described previously.
The frequency of the dipole resonance has additionally been pre-
dicted using an analytical model.11

The effective properties for the locally resonant medium differ
depending on the retrieval method used, which was not the case
for the multilayered medium. This is due to the fact that the fluid
homogenization model does not take into consideration complex
near-field effects and shear wave propagation, as the effective
medium is assumed as a fluid medium in which only longitudinal
waves can propagate. This assumption is valid for 1D systems
under normal incidence where only longitudinal modes were
excited. However, for 2D systems made of a solid matrix compris-
ing inclusions, the conversion of longitudinal waves into shear
waves due to local resonances cannot be described by the present
homogenization model. However, both retrieval methods capture
the behavior of the 2D locally resonant metamaterial with reason-
able accuracy. The differential method may be more suitable for
most scattering coefficient predictions since, unlike the direct inver-
sion method, the effective parameters are almost independent of
the number of unit cells. This can be observed in Fig. 9 which pre-
sents the imaginary part of the effective wavenumbers, kdirn and
kdiff (n,nþ1) , using the two retrieval methods for different numbers of
unit cells corresponding to n ¼ (2, 4, 8, 18). With increasing

FIG. 5. (a) Representation of the locally resonant unit cell. (b) Two segmented
media comprising n ¼ 4 and nþ 1 ¼ 5 unit cells, each cell of length Lu.

FIG. 6. Dispersion curves for (a) the real part and (b) imaginary part of the reduced effective wavenumber for a locally resonant unit cell obtained with the direct inversion
method (kdir ) and with the differential method (kdiff ). The dashed lines highlight the three selected frequencies A, B, and C.
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number of unit cells, the effective wavenumber using the direct
inversion method converges toward the result obtained using the
differential method, corresponding to the effective wavenumber in
the medium interior away from boundary interface effects. More
specifically, we observe that, at the interface resonance around
20 kHz, the direct inversion method is strongly influenced by the
number of unit cells n, whereas the differential method always
accurately removes the interface effects.

Effective properties from both methods are now used to charac-
terize effective media in order to predict the reflection and transmis-
sion coefficients of a segmented metamaterial comprising N unit cells.
Effective media are thus given the length of L ¼ N � Lu. The effective
parameters used were obtained for n ¼ 4 and shown in Figs. 6 and 8.
The scattering coefficients of the effective medium are then compared
to coefficients derived from a FE model of the metamaterial compris-
ing N unit cells, as shown in Fig. 10(a). Figures 10(b) and 10(c),
respectively, show the corresponding effective medium characterized
by the effective wavenumber and effective impedance obtained using

the two retrieval methods. A hybrid effective medium is also intro-
duced in order to take advantages of both methods, by using the
effective properties of the direct inversion method at the interfaces
and the effective properties from the differential method for the inte-
rior of the effective medium. The hybrid medium is, therefore, made
of three layers as shown in Fig. 10(d).

Results are presented in Fig. 11 for N ¼ 5, 9, 19 unit cells,
using the effective properties derived with the direct inversion
method for n ¼ 4 and with the differential method with (n ¼ 4,
nþ 1 ¼ 5). All three effective media represented in Figs. 10(b)–10(d)
accurately predict the reflection and transmission coefficients up to
15 kHz. Above this frequency, the effective parameters from the
direct inversion method are strongly dependent on the parameter
n, particularly for the interface mode according to Fig. 9(a). As
such, using the direct inversion method, the scattering coefficients
for a high number N tend to present overestimated interface effects
since the effective properties have been obtained for a smaller
number n. For the reflection coefficient, the impedance of the first

FIG. 7. Displacement fields for the four-unit medium at given frequencies A, B, and C. The arrows indicate the direction of displacement and their length is proportional to
the displacement modulus.
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layer plays a major part in the results. Both the direct inversion
method and the hybrid method are, therefore, less suitable for the
prediction of the reflection coefficient for various N-layer media
than the differential method. For the transmission coefficient, each
properties characterizing the medium is relevant. Accurate predic-
tions are obtained using the differential method, except for the

transmission dip around 20 kHz, that results from the interface
mode. Therefore, the transmission coefficient is here better pre-
dicted using the hybrid effective medium, as it physically restricts
the effective properties of the direct inversion method to the inter-
faces and the effective properties from the differential method to
the core of the effective medium.

FIG. 8. (a) Real part and (b) imaginary part of the effective density for a locally resonant unit cell obtained with the direct inversion method (ρdir ) and with the differential
method (ρdiff ).

FIG. 9. Imaginary part of the effective wavenumbers obtained using the (a) direct inversion method kdirn and (b) differential method kdiff(n,nþ1) for n ¼ (2, 4, 8, 18), where
n is the number of unit cells in the shorter medium.
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The hybrid effective medium proposed herein is the most intui-
tive one, with effective properties characterizing edge cells at the input
and output edges and effective properties for propagation in the
medium interior for inner cells. Moreover, the accuracy is satisfactory
for the leading goal mentioned in the introduction. Nevertheless, it is
worth noting that other hybrid effective media could be considered,
by changing the affectation of effective properties along the medium,
for example. However, there is no ideal combination since one
working well for a type of system may be less efficient for another
type, made of a softer rubber matrix or with another fluid surround-
ing, for example, for which fluid–structure interactions or near-field
effects are different. Predictions could also be improved by considering
other models than the fluid homogenization model. The significant
effects of the interface resonance observed in the case study imply that
a non-local model may better represent the system. In such a model,
additional terms could be introduced to model the coupling between a
normally incident plane wave and waves that exhibit a transverse
wavenumber equal to multiples of the lattice reciprocal vector along
the transverse direction. Such waves are involved both in the develop-
ment of the complex near field at the fluid–structure interface and in
the near-field coupling effects between the scatterers within the lattice.
The complexity of the homogenization process would then be consid-
erably increased, which would be a major drawback for our leading
goal and for the experimental application of the methods.

FIG. 10. (a) Finite periodic medium of length comprising N unit cells, for which
the reflection and transmission coefficients are predicted using an effective
medium characterized by the effective wavenumber and impedance obtained
using (b) the differential method (diff), (c) the direct inversion method (dir), (d) a
hybrid effective medium comprising the direct inversion method at the boundary
interfaces and the differential method for the medium away from the interfaces.

FIG. 11. Reflection and transmission coefficients calculated for the effective media characterized by effective parameters of the differential method (dashed lines) or the
direct inversion method (dotted lines) that represent a periodic media comprising N ¼ 5, N ¼ 9, or N ¼ 19 unit cells. Scattering coefficients from the hybrid effective
medium (circle markers) and from FEM (full lines) are also presented.
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IV. CONCLUSION

Two retrieval methods have been introduced, corresponding
to the direct inversion method and the differential method. The
direct inversion method uses the reflection and transmission coeffi-
cients of a medium comprising a number of identical unit cells,
immersed in a fluid, while the differential method requires two seg-
mented media comprising n and nþ 1 unit cells. Both retrieval
methods lead to an effective wavenumber and an effective imped-
ance of a homogeneous fluid medium. The effective wavenumber
from the differential method was able to describe the interior of the
medium, whereas the direct inversion method captures the effects
related to the medium’s finite size and interfaces with the sur-
rounding fluid media on the incidence and transmission sides. As
such, to predict the scattering coefficients, a hybrid effective
medium was built, whereby the first and last layers are defined with
the effective properties from the direct inversion method and the
core layer is defined by the differential method. Reflection and
transmission coefficients have been predicted using effective media
characterized by the direct inversion method, by the differential
method, and by the hybrid medium. The reflection coefficient is
accurately predicted by the differential method. The hybrid
medium provides accurate predictions of the transmission coeffi-
cient as it physically restricts the effective properties of the direct
inversion method to the interface and uses the differential method
to describe the core of the medium.

The retrieval methods provided here may, therefore, be benefi-
cial to get a better understanding of the wave propagation in a
metamaterial coating. Moreover, the hybrid method is an efficient
tool to predict and optimize the acoustic performance of coating
designs that may comprise less classical inclusions. In a future
work, the retrieval methods will be applied to several metamaterial
designs in order to create a database of effective properties associ-
ated with various inclusion shapes, sizes, and materials. Effective
properties will then be used in an optimization process in order to
obtain systems with a good acoustic performance over a wide fre-
quency range. The work in the present paper is, therefore, useful to
quickly and easily make a topological optimization of acoustic coat-
ings for underwater applications using fluid properties.

In general, the goal of this work is to build homogeneous
equivalent media which are a precise approximation of their micro-
structured counterparts. Effective media can be used to study meta-
materials with complex or arbitrary geometries for which analytical
models do not apply. The proposed homogenization approach may
be especially useful in the study of large metamaterial-based
systems including structural gradients, such as the ones considered
in transformation acoustics designs. Similarly, the proposed
homogenization approach could prove useful in the study of multi-
scale metamaterials to alleviate the simulation issues related to the
presence of complex geometries at different scales, by allowing the
replacement of the smaller structures by equivalent media.
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