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We propose the clock Monte Carlo technique for sampling each successive chain step in constant
time. It is built on a recently proposed factorized transition filter and its core features include
its O(1) computational complexity and its generality. We elaborate how it leads to the clock fac-
torized Metropolis (clock FMet) method, and discuss its application in other update schemes. By
grouping interaction terms into boxes of tunable sizes, we further formulate a variant of the clock
FMet algorithm, with the limiting case of a single box reducing to the standard Metropolis method.
A theoretical analysis shows that an overall acceleration of O(Nκ) (0 ≤ κ ≤ 1) can be achieved
compared to the Metropolis method, where N is the system size and the κ value depends on the
nature of the energy extensivity. As a systematic test, we simulate long-range O(n) spin models
in a wide parameter regime: for n = 1, 2, 3, with disordered algebraically decaying or oscillatory
Ruderman-Kittel-Kasuya-Yosida-type interactions and with and without external fields, and in spa-
tial dimensions from d=1, 2, 3 to mean-field. The O(1) computational complexity is demonstrated,
and the expected acceleration is confirmed. Its flexibility and its independence from the interac-
tion range guarantee that the clock method would find decisive applications in systems with many
interaction terms.
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spin glasses

Markov-chain Monte Carlo methods (MCMC) are
powerful tools in many branches of science and engineer-
ing [1–8]. For instance, MCMC plays a crucial role in the
recent success of AlphaGo [9], and appears as a keystone
of the potential next deep learning revolution [10, 11]. To
estimate high-dimensional integrals, MCMC generates a
chain of random configurations, called samples. The sta-
tionary distribution is typically a Boltzmann distribution
and the successive moves depend on the induced energy
changes. Despite a now long history, the most successful
and influential MCMC algorithm remains the founding
Metropolis algorithm [12] for its generality and ease of
use, ranked as one of the top 10 algorithms in the 20th
century [13].

The Metropolis algorithm has, however, two major lim-
itations. First, nearby samples can be highly correlated
and, around the phase transition, the simulation effi-
ciency drops quickly as the system size N increases. Sec-
ond, an attempted move requires calculating the induced
total energy change, leading to expensive computational
complexities of up to O(N) for systems with long-range
interactions. This issue is also very acute in machine
learning, where likelihood evaluations [14] scale with the
number of data points.

Enormous efforts have been devoted to circumventing
the two limitations. Various efficient update schemes
have been designed, including the celebrated cluster and
worm algorithms [15–17], and the event-chain (EC) ir-

reversible method [18, 19]. Several techniques are also
available in reducing the computational complexity for
specific algorithms and systems. An “early-rejection”
scheme was mentioned in the textbook [2], which is nev-
ertheless of O(N) complexity. Making use of the particu-
lar feature that each bond is treated independently in the
cluster-update scheme [20], Luijten and Blöte [21] applied
an efficient sampling procedure to place occupied bonds,
instead of visiting each bond sequentially and throwing a
random number to decide its status. The Luijten-Blöte
cluster algorithm has O(1) complexity [21–23], and has
been generalized to quantum systems [24]. Recently, an
EC algorithm was proposed for long-range soft-sphere
systems [25].

In this Rapid Communication, we propose a general
“clock” MC method, which has a constant-time sampling
and can be applied to various update schemes. The core
ingredient is the factorized Metropolis filter proposed in
Ref. [19]. In particular, an algorithm of O(1) computa-
tional complexity is formulated in the framework of the
local and most general update scheme, which we call the
clock factorized Metropolis (FMet) algorithm. By group-
ing the interaction terms into boxes of tunable sizes, we
further obtain a variant of the clock FMet algorithm for
efficiency optimization. The limiting case of a single box
recovers the Metropolis method, directly illustrating the
generality of the clock FMet algorithm. We also discuss
how the clock technique acts as a common ground for ex-
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FIG. 1: Sketch of the clock sampling technique. The inhomogeneous Bernoulli process described by Eq. (2) can be decomposed
into N+1 clocks, where the ith clock (i≤N) alarms of the first occurrence of a rejection event at time i and the (N+1)th
clock, with no alarm, represents an acceptance event. Such a process can be sampled within O(1) computational complexity.

isting exact complexity reduction methods and present in
particular its implementation in the EC update scheme.
While gaining an O(N) speeding-up in computational

effort, the clock FMet algorithm can suffer from a lower
acceptance probability than the Metropolis method. The
overall acceleration comes from the compromise of these
two effects. We provide a systematic performance anal-
ysis by classifying the system into three types of strict,
marginal and sub-extensivities, and show that an overall
acceleration can be achieved up to O(N) for the strict
extensivity and O(Nκ) (1> κ ≥0) for the other two.
As other exact complexity reduction methods belong to
the algorithmic clock class, this analysis also applies to
these techniques. Finally, we extensively simulate long-
range O(n)-spin models in a wide parameter regime: for
n= 1, 2, 3, with disordered algebraically decaying or os-
cillatory Ruderman-Kittel-Kasuya-Yosida (RKKY)-type
interactions, with and without external fields and in spa-
tial dimensions from d=1, 2, 3 to mean-field. The O(1)
computational complexity is demonstrated, and the ex-
pected acceleration is confirmed. These achievements are
based on the complementary combination of the factor-
ized Metropolis filter, O(1) sampling procedures and the
grouping trick.
Clock FMet algorithm. Consider a system de-

scribed by a collection of states S with Boltzmann
weights π(S) ∝ exp(−βE(S)), with β = 1/kbT the in-
verse temperature. The energy E(S) =

∑
iEi(S) is

the sum of all interaction terms that are pairwise or
more generally in many-body groups. At each step, the
Metropolis algorithm attempts to update a state S into
another S ′ with acceptance probability

PMet = min

(
1,

π(S ′)

π(S)

)
= exp(−β [∆Etot]

+) (1)

with [x]+ = max(0, x). Evaluating the induced energy
change ∆Etot≡

∑
i ∆Ei requires a costly computation of

all the involved interactions. Therefore, we focus now on
the factorized Metropolis filter [19]

Pfac =
∏

i

pi(S → S ′) =
∏

i

exp(−β [∆Ei]
+) , (2)

which also satisfies the detailed-balance condition
π(S)p(S→S ′) = π(S ′)p(S ′→S). Hereinafter we omit the

dependence on S→S ′ except in case it hinders the clarity.
The factorized filter is a key component of the recent EC
methods, as it allows one to extract interesting system
symmetries. On a more general level, the factorization of
transition rates can also play an important physical role
in dynamical studies [26]. A crucial feature of Eq. (2) is
the consensus rule: As the transition probability Pfac is a
product of independent factors pi, an attempted move is
accepted only if all the factors give permission (Fig. 1).
This leads to a lower acceptance probability in Eq. (2)
than in Eq. (1). However, we show here how it plays a
key role in designing the clock technique that dramati-
cally reduces the computational complexity from O(N)
to O(1), greatly improving the overall performance.
Without loss of generality, we illustrate the clock FMet

method in the example of a long-range O(n) model of
N+1 spins, with the Hamiltonian

H = −c(N)
∑

i<j

JijSi · Sj , (|S| = 1) (3)

with S unit vectors in R
n. For n = 1, 2, 3, one has the

Ising, XY and Heisenberg models, respectively. The cou-
pling strength Jij depends on distance rij , and can be
ferromagnetic (Jij > 0), anti-ferromagnetic (Jij < 0),
or disordered. There are in total N(N +1)/2 interac-
tion terms. The normalization constant c(N), scaling
typically in 1/Nα (1 ≥ α ≥ 0), is to ensure the en-
ergy extensivity, which, e.g., is 1/N for a mean-field
ferromagnet but 1/

√
N for the Sherrington-Kirkpatrick

model [27, 28]. An attempted move is to flip or rotate a
randomly-chosen spin Sj . This leads to an energy change
−c(N)

∑
i6=j Jij(S

′
j − Sj) · Si, which requests an O(N)

computation in the Metropolis algorithm.
A straightforward implementation of Eq. (2) is as fol-

lows. One orders the factor terms from i=1, sequentially
samples the rejection of each factor i with probability
1− pi, and stops at the first-rejecting factor irej; if no re-
jection is sampled until factor N , the move is accepted.
This is analogous to an inhomogeneous Bernoulli process
of rate pi, as illustrated in Fig. 1, where the ith clock,
with probability Prej(i)=(1−pi)

∏i−1
k=1 pk, represents the

event for the ith factor to be first-rejecting. Instead of
sequentially sampling each factor, one can also evaluate
cumulative probability Fk =

∑k

k′=1 Prej(k
′) and directly

obtain the irej = i value by solving Fi−1 <ν ≤Fi with a
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single random number ν ∈ (0, 1]. Nevertheless, the indi-
vidual probabilities pk depend a priori on a local config-
uration (Si,Sj), and each move still requires an average
number C∼O(N) of pk-evaluations.

To avoid these costly evaluations, we introduce
a bound Bernoulli process with a configuration-

independent probability p̂i, so that 1− p̂i ≥ 1−pi(S→S ′),
as done in Ref. [21]. An actual rejection at a factor i
corresponds to a bound rejection once resampled with
relative probability

pi,rel = (1 − pi)/(1− p̂i) . (4)

At each factor i, three events are possible: (A1) bound
acceptance with pA1

i = p̂i, (A2) bound rejection and re-

sampling rejection with pA2

i = (1 − p̂i)(1 − pi,rel), and
(R) bound rejection and resampling acceptance with
pRi = (1 − p̂i)pi,rel. Sampling the ith clock, i.e. the
first-rejection at factor i, is then replaced by sampling
a random path of events (A1) or (A2) for k≤ i−1 and a
first event (R) at i, as described by

Prej(i) = pRi

i−1∏

k=1

(pA1

k + pA2

k ) . (5)

As the bound p̂i’s are configuration-independent, the
bound cumulative probabilities F̂i can be analytically cal-
culated or tabulated. Initializing ir̂ej=0, the next bound
rejection ir̂ej is updated to i by solving,

F̂i−1 < ν(1− F̂i
r̂ej
)+F̂i

r̂ej
≤ F̂i , (6)

and the resampling is then applied. This is done within
an O(1) complexity. If no actual rejection occurs, i.e.
event (A2), the procedure is repeated until an event (R)

(actual rejection) is sampled or until ν(1− F̂i
r̂ej
)+F̂i

r̂ej
>

F̂N (actual acceptance). The overall complexity C iden-
tifies now with the average number of attempted bound
rejections ∼ O(lnPB/ lnPFac) ∼ O(1) if the bound con-
sensus probability PB =

∏
p̂i scales with N as PFac.

For a homogeneous case p̂i ≡ p̂, Eq. (6) reduces to
i = ir̂ej+⌊1+ln(ν)/ ln(p̂)⌋, which can be easily adapted to
inhomogeneous bound probabilities by ordering the fac-
tors increasingly with p̂i and by replacing p̂ by p̂i

r̂ej
+1 [29].

Alternatively, one can directly generate the whole list of
bound rejection events by the Walker method [30, 31]
or its Fukui-Todo extension [22], and then sequentially
apply the resampling.

Algorithm 1 summarizes a clock FMet method for
a long-range spin system. For Hamiltonian (3), p̂k
can be taken as a function of distance rij as p̂(rij) =
exp(−2βc(N)|Jij |).

Algorithm 1 Clock factorized Metropolis (Clock FMet)

Draw a random spin j and a random move Sj→S
′
j

i
r̂ej
← 0 ⊲ Sample bound rejections starting from i

r̂ej

while True do

i
r̂ej
← i ⊲ Next bound rejection i given by Eq. (6)

if i
r̂ej

>N then

Sj ← S
′
j ⊲ Move accepted

Break

else ⊲ Decide whether it is an actual rejection
pi

r̂ej
,rel ← Eq.(4)

if ran(0, 1) ≤ pi
r̂ej

,rel then

Break ⊲ Move rejected

The clock method can be applied to any transition
probability expressed as a product of independent fac-
tors, as the one proposed in [26] for instance. However,
the factorized Metropolis filter, in addition to a maximal
acceptance rate factorwise, presents the following advan-
tage. As each factor in Eq. (2) can contain an arbitrary

number of interactions, we introduce a variant of clock
FMet algorithm in which the interactions are grouped
into “boxes” b of tunable sizes Bb, as

PBox
fac =

∏

b

exp


−β

[
Bb∑

i=1

∆Ebi

]+
 . (7)

It leads to new optimization possibilities (e.g. how to
group the interaction terms). If all the interactions are
in a single box, one recovers the standard Metropolis
method.
The clock technique has two important ingredients:

the consensus rule and the resampling. Both the ingre-
dients are general: They do not depend either on any
specific configurations, or on factor ordering, or on en-
ergy functions, or on update schemes. For systems in a
continuous volume, as soft spheres, one can introduce a
grid [25] to which the clock technique is applied.
Generalization to other update schemes. We illustrate

the generality of the clock method by discussing its ap-
plication in the EC method for the O(n) spin model with
n≥ 2. [32, 33]. With an auxiliary lifting variable j that
specifies the moving spin, the EC method proposes to ro-
tate infinitesimally its angle as φj→φj+dφ. Such a move
is rejected by at most one spin i, owing to a continuous
derivation of Eq. (2). This yields pi → 1 − λidφ and
Prej(i) → λidφ. For each factor i, the rejection event,
with distance δiφ, is thus ruled by a Poisson process
(PP) of rate λi, continuous derivation of the standard
Bernoulli process. The spin j is then rotated by the min-
imum distance δφ = min(δiφ), and the associated factor
becomes the moving spin, i.e. j→ imin. For long-range
interactions, evaluating δiφ for all the factors becomes
costly.
To derive the clock method, we introduce a bound

Poisson process of total rate λ̄ =
∑

λ̄i (λ̄i ≥ λi), evalu-

ate a random bound rotation δφ̂=− ln ν/λ̄, sample the
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FIG. 2: Integrated autocorrelation time τE of the energy for
the ferromagnetic mean-field O(n) model expressed in units
of system sweeps. The values for the clock FMet algorithm
are normalized by γ (Eq. (8)).

rejecting bound factor im̂in = i with probability λ̄i/λ̄,
and resample it as an actual lift j to i according to λi/λ̄i

(Eq. (4)). This comes down to the thinning method [34],
already applied for soft-sphere systems [25] and for logis-
tic regression in machine learning [35].
We also note that the cluster methods [15, 16] factorize

each interaction term independently as in Eq. (2). The
resampling procedures in the extended cluster algorithms
for long-range interactions and for quantum spin systems
[21–24] can be understood as specific cases of the clock
method.
Performance analysis. We expect and numerically

confirm in Fig. 2 that the standard Metropolis and the
clock FMet algorithms have the same physical dynam-
ics. The overall acceleration A in the latter comes then
from the speeding-up in the complexity C, corrected by
the slowing-down γ due to a lower acceptance in the fac-
torized filter (2), leading to A∼O(N/Cγ). Both effects
can be characterized by the scaling of

∑
imax |∆Ei| and∑

i |∆Ei|, as γ = PMet/PFac can be written as

ln γ=
β

2

(
∑

i

|∆Ei| − |
∑

i

∆Ei|
)

, (8)

and as C∼ lnPB/ lnPFac∼
∑

i max |∆Ei|/
∑

i |∆Ei|. De-
pending on the nature of the energy extensivity and
phase of the system, the sum

∑
i |∆Ei| may diverge as

size N→∞, while the sum |
∑

i ∆Ei| converges to a con-
stant. This normally occurs in disordered systems with
slowly decaying interactions, in which the “satisfied” and
“unsatisfied” interaction terms compensate each other.
The divergence of γ can be controlled by introducing
enough compensation through boxes. For a constant size
B, it increases the complexity to O(B| lnPB |), but leads
to an acceleration ∼ O(N/(B| lnPB |)). By definition,
B ∝ N would ensure a maximal energy compensation
but an O(1) acceleration.
We classify the system into the three types of strict,

marginal and sub- extensivities, for which
∑

i max |∆Ei|
respectively scales as O(1), O(lnN) and O(Nα) (1≥α>
0). We demonstrate that the clock FMet method of tun-
able constant box sizes B might achieve an overall accel-
eration

• A ∼ O(N) for strict extensivity, directly from γ ∼
O(1) and C∼O(1).

• A∼O(Nκ) (0≤κ<1) for sub-extensivity. Depend-
ing on the phase, ln γ may diverge, up to Nα. For
the spin glass of algebraically decaying interaction
as 1/rσ (σ<1), we find that a box size B ∝ N/Nω,
with a fine-tuning exponent 0≤ω< 1, gives a suf-
ficient compensation and an O(Nκ) (κ∼ [ω − α]+)
acceleration.

• O(N/(lnN)2)≤Amargin≤O(N/ lnN) for marginal
extensivity. We observe that setting B up to lnN
can be necessary to control γ.

For frustrated systems, irrespective of which class they
belong to, efficient cluster algorithms are normally un-
available due to the huge cluster sizes. Given the sub-
stantial acceleration for all the three classes of strict,

marginal, and sub-extensivities, the application of the
clock FMet method is very promising.
Simulations. We simulate three typical systems in

statistical physics, including long-range Ising spin glass,
the disordered O(n) model with random external fields,
and the O(n) model with RKKY-type interactions. We
record the number of energy evaluations C for each MC
step, which for the Metropolis method is simply C=N .
We measure the integrated correlation times τ for mag-
netic susceptibility χ in the units of energy evaluations,
and compute the overall acceleration A as the inverse
ratio A = τother/τFMet, where τother is for the Metropo-
lis or the Luijten-Blöte (LB) cluster method. For the
Metropolis method, it comes down to A=N/(γC).
Long-range Ising spin glass. We consider a periodic

one-dimensional (1D) spin glass defined by Eq. (3). The
interactions decay algebraically as Jij = sij/r

σ
ij (σ > 0),

with sij = ±1 from a bimodal distribution. The nor-
malization c(N) is given by c(N)−2 =

∑
j>1

〈
J2
1j

〉
. This

system, with a tunable exponent σ, is particularly use-
ful in revealing the crossover behavior from the low-
dimensional to the mean-field spin glass [36–38]. For sim-
plicity, the simulation is made at the mean-field critical
temperature β = 1 [27]. Depending on the value of σ, we
recover the three extensivity regimes, i.e. strict (σ > 1),
marginal (σ= 1) and sub-extensivities (σ<1). We group
the interaction terms following respective rij values and
set the box size as B = 2 (σ > 1), lnN (σ = 1), and
N2(1−σ) (σ < 1). The results are shown in Fig. 3. For
σ > 1, the computational complexity C converges to a
constant, and a dramatic overall acceleration A∼O(N)
is achieved. For σ= 1, we have C ∼ lnN2 and a signifi-
cant acceleration A converging to N/(lnN)2. For σ< 1,
both C and A increase sub-linearly as N . The accelera-
tion A drops as σ becomes smaller. Nevertheless, given
the simplicity of the clock FMet method, the gained im-
provement is still significant. We also compare its per-
formances with the LB algorithm, which confirm the su-
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FIG. 3: Complexity C (left) and acceleration A for the clock FMet algorithm for the 1D (β= 1) long-range Ising spin glass,
compared to the Metropolis algorithm (middle) and the LB algorithm (right). The dashed blue and red lines respectively
represent fits to aN and aN/(logN)2 + b.

periority of the local Clock FMet for disordered systems.
These results are fully consistent with the performance
analysis.

RKKY-type interactions. We then consider the 2D
and 3D Heisenberg models with oscillatory Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions Jij =
J0(cos(2kFrij)/r

d
ij) exp(−rij/λ), where d is the spatial

dimension, kF is the Fermi vector (kF≈4.91 for the spin-
glass system CuMn), and λ is the characteristic length in
the damping term [37, 39–43]. Due to their approximate
description of real materials, rich behaviors, and impor-
tant roles in bridging the experimental study of glassy
materials and the spin-glass theory of short-range inter-
actions [37, 39], these systems are under extensive stud-
ies. For simplicity, we set J0 = 1 and kF = π, and take
λ=3 for 3D and λ=∞ for 2D, so that the system is in
the class of strict (3D) and marginal (2D) extensivities.
The simulations are at β(2D) = 1 and β(3D) = 0.693,
close to the critical temperature βc=0.693 003(2) for the
3D pure Heisenberg model [44]. Box sizes are set to 1
and the achieved acceleration is again A∼ O(N) for the
strict extensivity, and A∼ O(N/ lnN) for the marginal
extensivity, as illustrated in Fig. 4.

Disordered random-field model. Finally, we study a
disordered mean-field O(n) model in a random external
field. The interactions are partly disordered, i.e. Jij =1
for 90% of interactions while the remaining Jij are drawn
from a normal distribution with 〈Jij〉=0 and 〈J2

ij〉= 1.
A quenched random field is applied to each lattice site
as −hi ·Si, where hi is drawn from an n−dimensional
normal distribution. The normalization is c(N) = 1/N ,
and the system belongs to the class of strict extensivity.
Random-field models have applications in a wide range
of physics [45–49], including the pinning of vortices in su-
perconductors, Coulomb glass, the metal-insulator tran-
sition, and hysteresis and avalanche physics. In general
spatial dimensions, the thermodynamic properties and

43 83 163 323 643
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104 Complexity C

43 83 163 323 643
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A(Met→FMet)

N
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3D

FIG. 4: Complexity C (left) and acceleration A (right) for the
2D (β=1, red circle) and 3D (β=0.693, blue square) RKKY
Heisenberg spin systems, comparing the clock FMet method
to the Metropolis algorithm. The dashed red and blue lines
respectively represent fits to aN and aN/ logN + b.

phase transitions are still debated [50, 51]. We perform
simulations at the mean-field critical temperature β = n,
with box sizes set to 1. The results are shown in Fig. 5.
The clock FMet method clearly displays an O(N) accel-
eration over the Metropolis algorithm for all the Ising,
XY and Heisenberg models. It also exhibits some su-
periority (A ∼ 50 for large system sizes) compared to
the LB cluster algorithm that already implements the
clock technique and has an O(1) computational complex-
ity. The central-limit theorem tells that, as temperature
is lowered and/or the strength of the external fields is
increased, the acceptance rate exponentially drops for
clusters of large sizes in the LB algorithm, and thus this
superiority would become more pronounced.
Conclusion. We introduce a general clock technique

with O(1) computational complexity for each Monte
Carlo step, and discuss its implementations in various
update schemes, regrouping most existing complexity re-
duction techniques into a single algorithmic class. An
important application is the clock FMet algorithm. This
is made possible owing to the following three flexible fea-
tures of the factorized filter (2). First, the consensus rule
in Eq. (2) allows for the decision of the fate of a pro-
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FIG. 5: Acceleration A for the disordered mean-field O(n) model in random fields at β=n (complexity C in insets). The clock
FMet method exhibits important acceleration A, compared to both the Metropolis (red circles) and the LB cluster algorithm
(blue squares). The dashed red line represents a fit to aN + b.

posed move by an O(1) sampling procedure. Second, the
equal generality of Eqs. (1) and (2) allows for a similar
application range. Third, the factorization range flexi-
bility given by the grouping trick in Eq. (7) allows for
a semi-continuation from the Metropolis Eq. (1) to the
factorized filter Eq. (2) and a control over the frustration
present in the considered system.

The clock FMet algorithm and its variant with tun-
able box sizes can lead to significant or even dramatic
acceleration A. Depending on the system, theoretical
analysis gives A up to O(N), O(N/ lnN) and O(Nκ)
(1 > κ ≥ 0) for respectively strict, marginal and sub-
extensivities. Moreover, as the Metropolis method can
be understood as a limiting case of the clock FMet, the
latter cannot be worse. This is confirmed by simulations
of long-range O(n) models in a wide parameter range.
Since these systems are under active studies and the sim-
ulations rely heavily on the Metropolis method, the clock
FMet algorithm is readily available to explore their rich
physics. From its simplicity and ease of use, we conclude
that the clock technique is a serious candidate for tack-
ling Monte Carlo scaling in all scientific fields.
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