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Abstract

Smoothness priors is a well-known and most commonly used method in the analysis of stochastic processes making it very useful
in the field of stochastic signal processing. It is particularly suited for smoothing the noisy data and detrending the time-series
signals. The method is based on an optimization problem where the n-th order derivative of the signal enters as a constraint.
When the method is designed in discrete time domain, the backward difference rule is used to perform differential-to-difference
conversion. Moreover, the solution depends on a smoothness trade-off parameter. An efficient algorithm for the trade-off parameter
selection remains an important and challenging issue. In this paper, first, we propose a closed-form expression for the trade-
off parameter. The closed-form expression resulted from a frequency domain interpretation of the smoothness priors procedure.
The trade-off parameter determines the amount of frequency components that the procedure allows to pass. We show that the
trade-off parameter is related to the arbitrary choice of cutoff frequency. Second, we introduce a new way to the design and
implementation of smoothness priors using bilinear transformation method. Frequency analysis and experiments on both synthetic
and real world signals with different levels of noise demonstrate that bilinear transform is indeed more effective for smoothness
priors implementation when compared with the traditional ones, i.e., the backward difference rule.

Keywords: Smoothness priors, Hodrick-Prescott filter, Signal smoothing, trade-off parameter, Backward difference rule, Bilinear
transform, Quadratic variation

1. Introduction

Smoothness priors has a broad range of applications in time
series analysis [1, 2, 3, 4], global stereo reconstruction [5],
edge-preserving image smoothing [6], image restoration [7],
transfer function estimation [8], smoothing noisy data and sig-
nal detrending [9, 10, 11, 12], smoothing of discontinuous
signals [13], spectral estimation [14], parametric time warp-
ing [15] and spline smoothing [16, 17, 18, 19, 20, 21, 22, 23].
It is closely linked to the ill-posed inverse problems and prob-
lems of statistical Tikhonov regularization [10, 24, 25, 26]. Al-
though the notation of “smoothness priors” was first introduced
by Shiller [27], its conceptual predecessor can be seen in the
problem of estimating a smooth trend embedded in white noise
addressed by Whittaker in 1923 [28] which was known as the
method of graduating data [29, 30, 31, 32, 33]. The problem is
described by a constrained convex optimization problem where
the output smoothness (the n-th order difference of the signal)
enters as a constraint. There are a lot of connections in the liter-
ature to the smoothness priors (Whittaker problem), as briefly
presented below.

In the field of economics, Robert J. Hodrick and Edward C.
Prescott popularized Hodrick-Prescott filtering (also known as

1This is the author’s version of the manuscript accepted for publication in
Elsevier Signal Processing, November 2019. The paper can be found in its final
format at: https://doi.org/10.1016/j.sigpro.2019.107381

Hodrick-Prescott decomposition) to remove the cyclical com-
ponent from time-series data and estimate the trend signal [34].
It appears that they were unaware of Whittaker work. Hodrick-
Prescott filter is one of the standard methods for data de-
trending. It has been applied to both real data and artifi-
cial data where a model is compared with the actual data
[35, 36, 37, 38, 39, 40]. The l1 trend filter is similar to Hodrick-
Prescott filter which produces a piecewise linear estimate of the
trend makes it suitable for analyzing the time series with an
underlying piecewise linear trend [41]. The relation between
the Hodrick-Prescott filter and the l1 trend filter corresponds to
the relation between the ridge regression [42] and the popular
lasso regression [43]. Hodrick-Prescott filter is a special case of
Whittaker work, where the second-order difference of the signal
enters as a constraint.

In mathematics, the quadratic variation is a well-known prop-
erty used in the analysis of stochastic processes such as Brown-
ian motion and Wiener process [44]. The quadratic variation of
a Brownian motion is bounded (finite). This property is the cor-
nerstone of Itô calculus [45] which has important applications
in mathematical finance and stochastic differential equations.

In biomedical signal processing, the quadratic variation has
recently been used as a penalty in a convex optimization prob-
lem to remove the electrocardiogram (ECG) baseline wander
[46]. The authors used the notation of quadratic variation re-
duction for their procedure [46]. Concurrently the smoothness
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priors was used in [9] for electromyogram (EMG) and ECG
signal detrending. More recently Sameni has used smoothness
priors to design a fixed-interval smoother for denoising smooth
signals contaminated by wide-band noise and he studied the de-
noising of ECG signals as a case study [47]. The “order” of a
quadratic variation and smoothness prior is given by the order
of the derivative of the signal. According to their definition (see
[46] and [47]), it can be easily found that the quadratic variation
reduction and smoothness priors are the same.

In chemical engineering, the Savitzky-Golay filter [48] is a
method of data smoothing based on local least-squares polyno-
mial approximation. The Savitzky-Golay filter, based on estab-
lished Whittaker procedure was popularized by Savitzky and
Golay to smooth the noisy data obtained from chemical spec-
trum analyzers. They demonstrated that least-squares smooth-
ing increases signal to noise ratio while maintaining the shape
and height of waveform peaks (in their case, Gaussian shaped
spectral peaks).

The well-known wavelet shrinkage scheme using signal
smoothness priors developed by Donoho et al. is another ex-
ample [49]. Smoothness priors and other related methods (e.g.,
Hodrick-Prescott filter and quadratic variation reduction) are
based on a constrained least squares estimation (LSE) prob-
lem which depend on a single trade-off parameter that needs to
be adjusted properly for obtaining good performance. Neither
Whittaker nor Shiller offered an objective method for choos-
ing the smoothness trade-off at the time they introduced the
smoothness priors problem. They left the choice of the smooth-
ness trade-off to the investigator. Akaike applied the con-
cept of Bayesian likelihood and used a maximum likelihood
estimation (MLE) algorithm for determining the smoothness
trade-off parameter [50, 51]. In [52, 53] a generalized cross-
validation computation was used to select the smoothness trade-
off. Stein’s unbiased risk estimate (SURE) regularization is
another approach which similar to generalized cross-validation
needs the Jacobian matrix of the nonlinear reconstruction oper-
ator with respect to the data. In [46], Fasano and Villani argued
that the value of regularization parameter is not crucial while
in [47], Sameni proposed to choose the value of trade-off pa-
rameter based on the availability of the upper bound of signal
roughness. If the upper bound is known, the optimal value is
calculated using the upper bound of signal roughness otherwise
methods such as the L-curve [54, 55, 56] are used for finding
the trade-off parameter.

The difference approximation of the derivative operator for
the algorithm is very important in smoothness priors implemen-
tation. When the smoothness priors is designed in discrete time
domain, the backward difference rule, which is obtained from
the backward rectangular integration rule is used to perform
differential-to-difference conversion. The basis of the back-
ward difference rule is to approximate the exponential function
z = esT by truncating its series expansion to two terms, which
leads to z = 1 + T s. When we analyze the smoothness priors
in the frequency domain, we face that the transition band of the
smoothing filter is not sufficiently narrow to effectively elimi-
nate the undesired frequency components. This is due to the
backward difference rule that is used in the literature for con-

verting the differential operator to the difference operator. In or-
der to improve the smoothness priors performance and increas-
ing the transition-band characteristic of the smoothing filter, in
this paper, we propose to use bilinear transform (also known as
Tustin’s method [57]) to perform differential-to-difference con-
version. The bilinear transformation is obtained from the trape-
zoidal integration rule. It is commonly used to perform analog-
to-digital conversion in the design of infinite impulse response
(IIR) digital filters. The basis of the bilinear transformation is
to represent the exponential function z = esT by z = esT/2

e−sT/2 and
then approximate both exponentials with the first two terms of
their Taylor expansions, which leads to z =

1+sT/2
1−sT/2 . In this pa-

per, we show that in smoothing filters design, when the bilinear
transform is used to convert the derivative operator to the dif-
ference operator, the transition band of the resulting smoothing
filters will become narrower and sharper. The contribution of
this paper can be summarized as follows. Firstly, to propose a
closed-form expression for the smoothness trade-off parameter.
Secondly to propose a new way based on the bilinear transform
to perform differential-to-difference operator for the constraint
part of the smoothness priors procedure. It is notable that the
whole procedure is still in the form of fixed-interval smoother
and may only be used in the form of a non-causal smoother. It
can also be stated in terms of a zero-phase, forward-backward
LTI smoothing filter. Comparing to the previous implementa-
tions which are all-pole with conjugate symmetric pole pairs
[47], the new smoothing filter has a zero-pole impulse response
with conjugate symmetric zero and pole pairs.

The rest of the paper is organized as follows. In Section 2, the
relevant background on smoothness priors and quadratic varia-
tion is reviewed. Section 3 presents a closed-form expression
for the trade-off parameter which is derived from a frequency
domain interpretation of the smoothness priors procedure. We
show that trade-off parameter determines the amount of fre-
quency components that the procedure allows to pass. Section
4 presents a new method to the design and implementation of
smoothness priors and quadratic variation. The bilinear trans-
form method is proposed to implement the smoothness priors,
Hodrick-Prescott filter, and quadratic variation. Performance
analysis is presented in Section 6. General remarks and a dis-
cussion are given in the final section.

Throughout this paper, boldface uppercase letters are used to
denote matrices, e.g., A; boldface lowercase letters for vectors,
e.g., a; lowercase letters for scalars, e.g., a. The subscript k
stands for discrete time index while (·)T , (·)−1 and (·)� denote
the matrix transpose, matrix inverse and deconvolution, respec-
tively. Symbol Dn denotes the n-th order derivative with respect
to t, i.e., Dn = dn

dtn , ‖·‖2 is the Euclidean norm, ∇ is the backward
difference operator and ∗ denotes the convolution.

2. Background

2.1. The Smoothing Problem

In this section, the problem of smoothness priors is revisited
in continuous time (CT) domain and discrete time (DT) domain,
respectively.
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2.1.1. Continuous time (CT)
The original problem addressed by Whittaker in [28] is to

estimate an unknown smooth trend x(t) from the observation
y(t) in the model:

y(t) = x(t) + v(t), t ∈ [a, b] (1)

where v(t) is an additive noise assumed to be uncorrelated with
x(t). Whittaker suggested that a solution can be found by appro-
priate balancing a trade-off between the signal smoothness and
minimum mean square error. By adopting the n-th order dif-
ferential equation constraint on x(·), the penalty for the solution
can be expressed as ∫ b

a
[Dnx(τ)]2dτ. (2)

The objective of smoothness priors is to estimate the unknown
signal x(t) from observation y(t) and filter out the observation
noise. The best solution is to estimate the desired signal, solv-
ing the following constrained LSE problem:

x̂(t) = argmin
x(t)

∫ b

a

[
y(τ) − x(τ)

]2 dτ + λ

∫ b

a

[
Dnx(τ)

]2 dτ (3)

where λ denotes the trade-off parameter which controls the
competition between signal smoothness and minimum mean
square error. The role of trade-off parameter is to avoid over-
fitting. In the following section, the same problem is tackled in
the DT domain by following the approach similar to that used
in the CT domain.

2.1.2. Discrete time (DT)
Let us consider yk = y(kTs), the discrete-time samples of y(t),

xk the sampled desired signal and vk the sampled observation
noise:

yk = xk + vk, k = 1, · · · , L. (4)

Now, the objective is to estimate xk (1 ≤ k ≤ L) from its obser-
vation, yk. By adopting the n-th order difference equation con-
straint on x(·), using the backward difference rule, the penalty
for the solution can be expressed as

L∑
k=1

[
∇nxk

]2 (5)

where ∇xk = xk − xk−1 is the first order difference and ∇nxk =

∇(∇n−1)xk is the n-th order difference. Therefore, in DT do-
main, (3) can be written as

x̂k = argmin
xk

L∑
j=1

[
y j − x j

]2
+ λ

L∑
j=1

[
∇nx j

]2
, for k = 1, · · · L.

(6)

2.2. Signal smoothing based on quadratic variation
The quadratic variation of x(t) is defined by

QV1(x) =

∫ b

a
[Dx(τ)]2 dτ (7)

where Dx(t) as before, denotes the first derivative of x(t) with
respect to t. Given a vector x = [x1, x2, · · · , xL]T ∈ RL, the
quadratic variation of x with first order difference approxima-
tion of the derivative is defined as [46]

QV1(x) =

L−1∑
i=1

(
xi − xi+1

)2

. (8)

Note that similar to the smoothness priors, the difference ap-
proximation for quadratic variation is obtained by the backward
difference rule. (8) can be expressed in the following matrix no-
tation

QV1(x) = ‖B1x‖2 (9)

where B1 is the matrix of size (L − 1) × L:

B1 =


1 −1 0 . . . 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 −1

 . (10)

It is more interesting to define the quadratic variation with high
order difference approximation of the derivative operator. The
quadratic variation of x with high order difference can be de-
fined by

QVn(x) = ‖Bnx‖2 (11)

where Bn is defined as the Toeplitz matrix form of bn and bn is
defined by the following recursion:b1 , (+1 − 1) n = 1

bn = bn−1 ∗ b1 n > 1
(12)

where ∗ denotes the convolution operator. Following the proce-
dure presented in [46] (i.e., the quadratic variation reduction),
x can be estimated searching for a signal component that has
reduced variability, with respect to the measured signal. Math-
ematically, it means that the unknown signal x can be estimated
by solving the following LSE problem with an inequality con-
straint:

minimize
x

‖y − x‖2

subject to ‖Bnx‖2 ≤ ε
(13)

where y = [y1, y2, · · · , yL]T ∈ RL is the observation vector and
ε is the upper bound for the signal’s “steepness” which controls
the quadratic variation of the estimated signal. The Lagrangian
form of (13) is as follows

J = ‖y − x‖2 + λ ‖Bnx‖2 (14)

which is the matrix expression of the cost function used in (6).
It can be concluded that the quadratic variation reduction is a
simple instance of the smoothness priors. Their definitions are
based on the difference approximation of the derivative oper-
ator. Greville [58] showed that there is an unique solution to

4



(14). The optimal solution that follows from the minimization
of J with respect to x is

x̂ = (I + λBT
n Bn)−1y (15)

The only unknown parameter in (15) is the trade-off parameter,
λ. In the following section, we propose a closed-form expres-
sion for λ which is a function of the cutoff frequency.

3. Estimation of the trade-off parameter based on the cutoff
frequency

In this section, we derive a closed-form formula for estimat-
ing the trade-off Parameter. We show that the design parameter
can be calculated in terms of the cutoff frequency.

Equation (15) can be expressed as

y = (I + λBT
n Bn)x̂ (16)

Any component yk of the vector y can be written in the follow-
ing convolution form [47]:

yk = (δk + λbn,−k ∗ bn,k) ∗ x̂k. (17)

where δk is the Kronecker delta function and bn,−k = bn,L−k+1.
Let (δk + λbn,−k ∗ bn,k)� denotes the mathematical inverse for
convolution product of (δk +λbn,−k ∗bn,k). Because (δk +λbn,−k ∗

bn,k)� ∗ (δk + λbn,−k ∗ bn,k) equals a delta function, (17) can be
written in the following form [47]:

x̂k = (δk + λbn,−k ∗ bn,k)� ∗ yk. (18)

The impulse response of the smoothing filter is found by sub-
stituting yk with δk in (18):

gn,k = (δk + λbn,−k ∗ bn,k)�. (19)

Taking the Z-transform of Eq. (19), the frequency response of
the smoothing filter writes:

Gn(z) =
1

1 + λ(1 − z−1)n(1 − z)n . (20)

Eq. (20) becomes in the Fourier domain

Gn(e jω) =
1

1 + λ[2 − 2 cosω]n =
1

1 + λ(2 sin ω
2 )2n . (21)

The above derivations can be found in [47]. Suppose that a
smoothing filter with a −6 dB cutoff frequency fc is desired,
then the optimal trade-off parameter, denoted by λo, is numeri-
cally calculated by solving the following equation for λo:

1
1 + λo(2 sin ωc

2 )2n =
1
2
, (22)

where ωc = 2π fc
f s . This leads to the following optimal trade-off

parameter:

λo =
1

(2 sin ωc
2 )2n . (23)

Substituting the value of λ in (20) the following smoothing fil-
ter (forward-backward zero-phase low-pass filter) with cutoff

frequency ωc is obtained:

GBD
n (z) =

1
1 + 1

(2 sin ωc
2 )2n (1 − z−1)n(1 − z)n

(24)

where n denotes the degree of the smoothness priors. The “BD
” superscript was used to show that the “backward difference”
is used to perform the differential-to-difference conversion. In
the following section, we propose a new approach based on the
bilinear transform to perform the differential-to-difference con-
version.

4. Smoothness priors based on bilinear transform

In this section, bilinear transform [59, 60] is employed for
implementing smoothness priors. As mentioned before, in the
literature, the n-th order difference of the signal is obtained by
approximating the n-th order derivative of x using backward
difference rule. So, the n-th order derivative of x, Dnx(t), is
approximated by

∇nxk = ∇n−1∇xk. (25)

Let us denote the first order derivative of x(t) with f (t), i.e.,
f (t) = Dx(t). Taking the Laplace transform of f yields to

F(s) = sX(s) (26)

A discrete version of f (t) can be obtained by taking the inverse
transform of itsZ-transform. To this purpose, we need to trans-
form (26) into Z domain. There are several methods that can
be used.

Backward difference rule is a method that substitutes s with
1 − z−1 [59]. Using backward difference rule, we obtain

F(z) = (1 − z−1)X(z) (27)

Taking the inverseZ-transform of (27), we find

fk = Z−1{(1 − z−1)X(z)} = (1 − E−1)xk = xk − xk−1 (28)

where E−nxk = xk−n. In this case, the high order difference
approximation of the derivative operator is described by:

QVn(x) =

L∑
j=n+1

[
(1 − E−1)nx j

]2

(29)

The traditional way for implementing the smoothness priors is
to use (29) as a constraint [46, 47]:

x̂k = argmin
xk

L∑
j=1

(y j − x j)2 + λ

L∑
j=n+1

[
(1 − E−1)nx j

]2

(30)

The optimal solution that follows from the optimization of (30)
is equal to (15).
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In this paper, we propose to use bilinear transform to dis-
cretize f (t). Employing bilinear transform, s is substituted with
1−z−1

1+z−1 [59]. In this case

F(z) =
1 − z−1

1 + z−1 X(z) (31)

Finally taking the inverseZ-transform of (31) yields

(1 + E−1) fk = (1 − E−1)xk (32)

The new definition that we propose for the quadratic variation
(or the penalty term in smoothness priors) is as follows

QVn(x) =

L∑
j=n+1

[(
1 − E−1

1 + E−1

)n

x j

]2

(33)

For instance, the first and second order quadratic variations are
defined by

QV1(x) =

L∑
j=2

[
x j − x j−1

x j + x j−1

]2

QV2(x) =

L∑
j=3

[
x j − 2x j−1 + xi−2

x j + 2x j−1 + x j−2

]2
(34)

Using (33) in the penalty term of the smoothness priors prob-
lem, the following optimization problem is obtained

x̂k = argmin
xk

L∑
j=1

(y j − x j)2 + λ

L∑
j=n+1

[ (
1 − E−1

1 + E−1

)n

x j

]2

(35)

which can equivalently be represented as the following opti-
mization problem:

x̂k = argmin
xk

L∑
j=1

[
(1 + E−1)n(y j − x j)

]2
+ λ

L∑
j=n+1

[
(1 − E−1)nx j

]2

(36)
For all k, we finally can write (36) in the following matrix no-
tation:

x̂ = argmin
x
‖Hn(y − x)‖2 + λ ‖Bnx‖2 (37)

where Bn is defined in (10) and Hn is defined as the Toeplitz
matrix form of hn and hn is defined by the following recursion:h1 , (+1 + 1) n = 1

hn = hn−1 ∗ h1 n > 1
(38)

For instance, H1 is defined by

H1 =


1 1 0 . . . 0

0 1 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 1

 (39)

It is straightforward to show that the optimal solution that fol-
lows from the optimization of (37) is

x̂ = (HT
n Hn + λBT

n Bn)−1HT
n Hny (40)

Any component x̂k of x given by (40) can be written in the
following form:

x̂k = (hn,−k ∗ hn,k + λbn,−k ∗ bn,k)� ∗ hn,−k ∗ hn,k ∗ yk. (41)

The impulse response and frequency response of the pro-
posed smoothing filter are respectively equal to

gn,k = (hn,−k ∗ hn,k + λbn,−k ∗ bn,k)� ∗ hn,−k ∗ hn,k

GBT
n (z) =

[
(1 + z−1)(1 + z)

]n[
(1 + z−1)(1 + z)

]n
+ λ

[
(1 − z−1)(1 − z)

]n .
(42)

where the “BT ” superscript denotes “Bilinear Transformation”.
Eq. (42) becomes in the Fourier domain

GBT
n (e jω) =

1

1 + λ
(

1−cosω
1+cosω

)n (43)

The optimal value of the trade-off parameter corresponds to the
−6 dB cutoff frequency fc

λo =

(
1 + cosωc

1 − cosωc

)n

(44)

The frequency response of the smoothing filter using back-
ward difference rule and bilinear transform for different val-
ues of cutoff frequencies is depicted in Fig. 1. It acts as a
forward-backward low-pass filter which is suited for estimating
the smooth components. It is seen that the steepness of the roll-
off of the smoother using bilinear transform is sharper than that
obtained with backward difference rule.

5. Application to high-pass and band-pass Smoothing filter
Design

The smoothness priors can also be used to estimate the high
frequency components. To this purpose, one can remove the
estimated low frequency components from the measured sig-
nal by subtraction. When the smoothness priors is designed by
backward difference rule, the high frequency components are
estimated by

x̃ = y − x̂ = (I − (I +
1

(2 sin ωc
2 )2n BT

n Bn)−1)y (45)

The frequency response of the high-pass smoothing filter using
backward difference rule is

GBD
n (z) =

[
(1 − z−1)(1 − z)

]n

(2 sin ωc
2 )2n +

[
(1 − z−1)(1 − z)

]n (46)

When the smoothness priors is designed by bilinear transform,
the high frequency components are estimated by

x̃ = y − x̂ = (I − (HT
n Hn +

1
tan2n ωc

2

BT
n Bn)−1HT

n Hn)y (47)
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Figure 1: Amplitude response of the low-pass smoother, GI
n(e jω) and GBT

n (e jω), for different values of n = 1, 2.

The smoothing filter has the following frequency response:

GBT
n (z) =

[
(1 − z−1)(1 − z)

]n

tan2n ωc
2

[
(1 + z−1)(1 + z)

]n
+

[
(1 − z−1)(1 − z)

]n

(48)

The amplitude response of the high-pass smoothing filter
for different values of n is shown in Fig. 2. Compared
to the smoothing filter designed by backward difference rule,
the smoothing filter designed by bilinear transform achieves a
sharper transition between the passband and the stopband at the
same order. Band-pass smoothing filters are another types of
smoothing filters which have many applications in a wide range
of economic and signal processing contexts [61, 62]. The task
of a band-pass smoothing filter is to pass frequencies within
a certain range and reject frequencies outside this range. A
bandpass smoothing filter can be obtained by cascading a low-
pass smoothing filter and a high-pass smoothing filter. The fre-
quency response of the bandpass smoothing filter using back-
ward difference rule and bilinear transform are respectively:

GBD
n (z) =

1
1 + 1

(2 sin
ωc,1

2 )2n
(1 − z−1)n(1 − z)n

×

1
(2 sin

ωc,2
2 )2n

(1 − z−1)n(1 − z)n

1 + 1
(2 sin

ωc,2
2 )2n

(1 − z−1)n(1 − z)n

GBT
n (z) =

(1 + z−1)n(1 + z)n

(1 + z−1)n(1 + z)n + 1
tan2n ωc,1

2

(1 − z−1)n(1 − z)n

×

1
tan2n ωc,2

2

(1 − z−1)n(1 − z)n

(1 + z−1)n(1 + z)n + 1
tan2n ωc,2

2

(1 − z−1)n(1 − z)n
(49)

where ωc,1, ωc,2 are the cutoff frequencies of the bandpass
smoothing filter. The amplitude response of the band-pass
smoothing filter for different values of n is shown in Fig. 3.
Compared to the bandpass smoothing filter designed by back-
ward difference rule, the bandpass smoothing filter designed by
bilinear transform achieves narrower bandwidth.

6. Performance Analysis

The performance of the proposed approach was investigated
using synthetic and real data. We compare the performance of
the improved smoothness priors (the bilinear transform based
approach) with previous smoothness priors (the backward dif-
ference rule based approach). We omitted comparisons with
other denoising approaches since extensive comparisons be-
tween those approaches and the previous smoothness priors
(backward difference rule based approach) were performed in
the previous papers [46, 47]. We show the merits of the use of
bilinear transform for smoothing filter design comparing to the
backward difference rule for the implementation of smoothing
filter.

7
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Figure 2: Amplitude response of the high-pass smoother, GI
n(e jω) and GBT

n (e jω), for different values of n = 1, 2.

6.1. Synthetic Data Simulation
To verify the performance of the proposed approach, we ap-

plied it on simulated data, which allows to quantify the esti-
mation error directly. Application to ECG denoising will be
discussed in the next section. To this purpose, synthetic data
were obtained using sinusoidal (trigonometric) functions. Any
signal can be approximated as a truncated Fourier series:

x̂(t) =

N−1∑
i=0

ci cos(2π fit + ψi) (50)

where ci, fi and ψi are respectively, the amplitude, frequency
and phase of the i-th sinusoid.

We generate 5000 synthetic series 5s long using (50). The
sampling rate was set to 200 Hz, and the frequencies were
selected between 0 and N − 1. That is the frequency ranges
of the generated data is in [0, N) Hz. The amplitudes, ci

were randomly selected. We considered different values of
N = 5, 10, 20, 30, 40. The next step is to contaminate the sig-
nals with noise. The noise can be any other signals that its
frequency range is out of [0, N) Hz. To this purpose, we used
the same approach using (50) to generate synthetic noise but
the frequencies fi were selected between N Hz and fs/2 Hz and
their amplitudes were randomly selected. In this experiment,
the noise is a broad-band signal with varying power from 0 to
25 dB.

A low-pass smoothing filter with fc = N Hz can be used
to remove the noise and reconstruct the signal. In any signal

denoising based on a filter g(t), the output is

x̂(t) = g(t) ∗ y(t) = g(t) ∗ [x(t) + v(t)] = g(t) ∗ x(t) + g(t) ∗ v(t)

The observation (1) is a mixed of signal and noise. The input
signal-to-noise ratio is defined by

S NRin =
Px

Pv
(51)

where Px denotes the power of x and Pv denotes the power of
v. Now, consider the output of the smoothing filter as a new
observation:

x̂(t) = x f (t) + v f (t) (52)

If the filter is all-pass, then

x̂(t) = y(t) =⇒ x f (t) = x(t) and v f (t) = v(t) (53)

In this special case

S NRout =
Px f

Pv f

=
Px

Pv
= S NRin (54)

That means there is no SNR improvement. If the smoothing
filter is ideal, then

x̂(t) = x(t) =⇒ x f (t) = x(t) and v f (t) = 0 (55)

In this special case

S NRout =
Px f

Pv f

=
Px

0
= ∞ (56)
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Figure 3: Amplitude response of the band-pass smoother, GI
n(e jω) and GBT

n (e jω), for different values of n = 1, 2.

That means we have the maximum SNR improvement.
In other cases, if the smoothing filter is of high quality, very

close to the ideal one (x f ≈ x and v f ≈ 0), then

x̂(t) = x f (t)︸︷︷︸
≈x(t)

+ v f (t)︸︷︷︸
≈0

(57)

Since the smoothing filter is not ideal and passes some parts of
noise and attenuates some parts of signal of interest, we con-
sider the approximation2

x f (t) = αx(t)
v f (t) = βv(t)

Therefore, we have

x̂(t) ≈ αx(t) + βv(t) (58)

Our results show that α is close to 1 (whatever the input SNR,
α̂ ≈ 0.9 or 0.95, for 1st and 2nd order smoothing filters based
on bilinear transform approach), which means that the smooth-
ing filter is of high quality, very close to the ideal one. So our
method of computation (even if (58) is a simple approxima-
tion) provides SNR which is more realistic (taking into account
that g(t) is not the ideal filter) and close to measurement. The

2In the ideal case, α is very close to 1 and β is very close to 0.

MMSE estimate of α and β are

α̂ =

∫ b
a x̂(t)x(t)dt∫ b

a x2(t)dt
,

β̂ =

∫ b
a x̂(t)v(t)dt∫ b

a v2(t)dt
.

and can be used for computing the performance of the denois-
ing. As mentioned before, in the best signal recovery (ideal
signal smoothing), the estimated signal, x̂(t), only shares the in-
formation about the desired signal, x, but not the noise, v. Con-
sequently, in the ideal case, we should have β = 0 and α = 1.
Since the smoothing filter is not ideal, it attenuates some parts
of signal and allows some parts of noise to pass, i.e., β̂ , 0 and
α̂ , 1. Therefore, the output signal-to-noise ratio is [63, 64]

S NRout =
Px f

Pv f

=
α2Px

β2Pv
=
α2

β2 S NRin. (59)

We further define the SNR improvement as the difference
SNRdif = SNRout − SNRin =

α̂2−β̂2

β̂2 SNRin. In Fig. 4, we re-
port the results of the smoothing procedures on synthetic data.
The results show that the smoothness priors designed by bilin-
ear transform outperform that of designed by backward differ-
ence rule. The results also show that the signal reconstruction
improves as n increases. We also compared the methods when
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Figure 4: Mean values of S NRdi f f for signal reconstruction by quadratic varia-
tion reduction using backward difference rule and bilinear transform, as a func-
tion of the input SNR (the signal and the noise are on disjoint frequency ranges).

the noise frequency components fall within the signal frequency
components (i.e., white Gaussian noise). The results are shown
in Fig. 5. Also, in this case the smoothness priors obtained
with the filter designed by bilinear transform outperforms that
of designed by backward difference rule.

6.2. Real ECG Data
The ECG signals used in this study were provided by Phys-

ioNet [65]. The first dataset contains 80 records, originally pro-
vided for the PhysioNet/Computers in Cardiology Challenge
2004 [66]. Each record, extracted from a two-lead, sampling
frequency 128 Hz Holter ECG recording, 1 min in length. The
second dataset is the PTB Diagnostic ECG Database [67] (sam-
pling frequency: 1000 Hz; resolution: 16-bit). 561 ECG seg-
ments, each with a duration of 5s, were selected from the first
lead. The −6 dB cutoff frequency was swept linearly between
5 Hz to fs/2 Hz, in two smoothness orders, 1 and 2. The cutoff

frequency that minimizes the minimum mean square estimation
was selected to compute the optimal value of trade-off param-
eter. As a preliminary example, the result of applying smooth-
ness priors using both transforms (backward difference rule and
bilinear transform) for a specific case (record t10m from Phy-
sioNet/Computers in Cardiology Challenge 2004 [66]) is re-
ported in Fig. 6. Figures 6(c)-6(f) show the results of applying
both approaches for denoising the noisy ECG with S NR = 5
dB. The results of both approaches for denoising the noisy ECG
with S NR = 0 dB are reported in Figures 6(h)-6(k). The de-
noised ECG using the smoothing filter designed by bilinear
transform is closer to the ideal ECG, compared to the denoised
ECG estimated by the backward difference rule.

The smoothness priors procedures were tested in presence
of input noise with variable SNR ranging from 0 dB to 25 dB.
The average and standard deviation of S NRdi f f obtained after
smoothing was used as a measure of performance and shown
in Fig. 7(a). The results, reported in Fig. 7(a), show that the
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Figure 5: Mean values of S NRdi f f for signal reconstruction by quadratic varia-
tion reduction using backward difference rule and bilinear transform, as a func-
tion of the input SNR (noise is white Gaussian noise).

smoothness priors designed by bilinear transform improves the
ECG reconstruction. For evaluating the performance of the pro-
posed method, we also used two other measures of improve-
ment. The first one, given by

imp = −10 log10

∑
k (xk − x̂k)2∑
k (yk − xk)2 (dB), (60)

which considers the ratio between the power of the reconstruc-
tion error and the power of the noise in the original signal. The
results shown in Fig. 7(b) confirmed the results obtained with
S NRdi f f . A similar result is conveyed in Fig. 7(c) by the third
metrics

NSR =

√∑
k (xk − x̂k)2∑

k x2
k

,

which is a classical ratio between the power of the reconstruc-
tion error and the power of the signal.

7. Sensitivity analysis and computational complexity

As noted above, the desired signal is estimated with (15)
when backward difference rule is used to implement the
smoothness priors or it can be estimated using (40) when bilin-
ear transform is employed. We have shown that the value of λ
determines the amount of frequency components that is passed
by the smoothing filter. So its value depends on the class of
signals to detrend. In this section, we analyze how robust the
proposed algorithm is to variations of λ. A measure of robust-
ness is the sensitivity of the cutoff frequency to variations of
λ. Measuring sensitivity in terms of the derivative of fc with
respect to λ, the following result holds. According to (23) and
(44), for large values of λ the cutoff frequency is computed as

fc = 1
π

sin−1 1
2 2n√

λ
≈ 1

2π 2n√λBD
or

fc = 1
π

tan−1 1
2n√
λ
≈ 1

π 2n√λBT

(61)
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Figure 6: ECG smoothing provided by smoothness priors using backward difference rule and bilinear transform, for different values of n, for record t10m from
PhysioNet/Computers in Cardiology Challenge 2004 (SNR = 5, SNR = 0).
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Figure 7: Mean values of S NRdi f f , NSR and imp for ECG reconstruction by quadratic variation reduction using backward difference rule and bilinear transform, as
a function of the input SNR (noise is broadband).

The first equation is for backward difference rule and the second
one is for bilinear transform, hence the index added on λ. The
sensitivity of cutoff frequency with respect to variations of λ
satisfies

∂

∂λ
fc = O

(
1

λ
2n+1

2n

)
(62)

where O(·) denotes the Landau symbol.
Regarding the computational complexity of the methods,

both solutions (15) and (40) involve matrix inversion, which
have complexity O(n3). However, since the matrix ΓT Γ+λDT D
or I + λDT D are symmetric, positive-definite, tridiagonal, the
system (15) and (40) can be solved efficiently with complexity
O(n) [68].

8. Conclusion

In this paper, we proposed a closed-form expression for the
smoothness trade-off parameter. The closed-form expression
resulting from a frequency domain interpretation of the smooth-
ing procedure. We have shown that the smoothness trade-
off is related to the amount of frequency components that the
method allows to pass. We introduced a new way to design and
implement the smoothness priors, Hodrick-Prescott filter, and
quadratic variation. The bilinear transformation method was
proposed to design the smoothness priors. Experiments on both
synthetic and real world signals with different levels of noise
demonstrated that the proposed technique (bilinear transform)
is indeed more effective in smoothness priors design when com-
pared to the traditional ones (backward difference rule).
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