Univariate polynomial factorization over large finite fields - Archive ouverte HAL
Article Dans Une Revue Applicable Algebra in Engineering, Communication and Computing Année : 2022

Univariate polynomial factorization over large finite fields

Résumé

The best known asymptotic bit complexity bound for factoring univariate polynomials over finite fields grows with the input degree to a power close to 1.5, and with the square of the bitsize of the ground field. It relies on a variant of the Cantor-Zassenhaus algorithm which exploits fast modular composition. Using techniques by Kaltofen and Shoup, we prove a refinement of this bound when the finite field has a large extension degree over its prime field. We also present fast practical algorithms for the case when the extension degree is smooth.
Fichier principal
Vignette du fichier
fffact.pdf (286.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03019847 , version 1 (23-11-2020)

Identifiants

Citer

Joris van der Hoeven, Grégoire Lecerf. Univariate polynomial factorization over large finite fields. Applicable Algebra in Engineering, Communication and Computing, 2022, ⟨10.1007/s00200-021-00536-1⟩. ⟨hal-03019847⟩
163 Consultations
209 Téléchargements

Altmetric

Partager

More